PHANTOM: Practical Oblivious Computation
in a Secure Processor

Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwarit,
Elaine Shit, Krste Asanovi¢, John Kubiatowicz, Dawn Song

University of California, Berkeley

ABSTRACT

We introduce PHANTOM?, a new secure processor that ob-
fuscates its memory access trace. To an adversary who can
observe the processor’s output pins, all memory access traces
are computationally indistinguishable (a property known as
obliviousness). We achieve obliviousness through a crypto-
graphic construct known as Oblivious RAM or ORAM. We
first improve an existing ORAM algorithm and construct an
empirical model for its trusted storage requirement. We then
present PHANTOM, an oblivious processor whose novel mem-
ory controller aggressively exploits DRAM bank parallelism
to reduce ORAM access latency and scales well to a large
number of memory channels. Finally, we build a complete
hardware implementation of PHANTOM on a commercially
available FPGA-based server, and through detailed exper-
iments show that PHANTOM is efficient in both area and
performance. Accessing 4KB of data from a 1GB ORAM
takes 26.2us (13.5us for the data to be available), a 32x
slowdown over accessing 4KB from regular memory, while
SQLite queries on a population database see 1.2 — 6x slow-
down. PHANTOM is the first demonstration of a practical,
oblivious processor and can provide strong confidentiality
guarantees when offloading computation to the cloud.

Categories and Subject Descriptors

C.1 [Processor Architectures]: Miscellaneous

Keywords
Secure Processors; Oblivious RAM; FPGAs; Path ORAM

1. INTRODUCTION

Confidentiality of data is a major concern for enterprises
and individuals who wish to offload computation to the
cloud. In particular, cloud operators have physical access

'PuaNTOM stands for Parallel Hardware to make
Applications Non-leaky Through Oblivious Memory.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’13, November 4-8, 2013, Berlin, Germany.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2477-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2508859.2516692.

 University of Texas, Austin

T University of Maryland, College Park

%‘%“;gx i :
H xxxi& XE«X x> /’ Texas *
Hz x5 & X B -

L|" ™ SELECT populatlon FROM all countles in..]

Xy X x x
L x % X X < 4
x

40000000

Xx

x x x
x o - i
LR X x California

X L X L L L

x
X X

T
x X

Physical Memory Address
20000000
I

X =
I S
oo

<— Read database
1 n n 1 n n n 1

0 2000000 4000000 6000000 8000000 10000000
Memory Accesses (Time)

Figure 1: Visible information leakage in memory ad-
dress traces from SQLite, running on a RISC-V proces-
sor model with caches. Two queries running on the same
SQLite database yield clearly discernible memory accesses.

W x|
Query><

to machines and can observe sensitive information (data
and code) as it moves between a CPU and physical mem-
ory [17,19,42]. In response to such attacks, commercial
interest in protecting off-chip data has begun to grow [1].

To protect against such attacks, prior work has proposed
secure processors [27,29,33,34] that automatically encrypt
and integrity-check all data outside the processor — whether
in DRAM or non-volatile storage.

Although secure processors encrypt memory contents, off-
the-shelf DRAMs require that memory addresses be trans-
mitted over the memory bus in cleartext. An attacker with
physical access can snoop the memory bus and observe the
locations of RAM accessed [19] and in turn learn sensitive
data such as encryption keys or information about user-level
programs [42] and guest VMs in a virtualized server [15].

As an example, we demonstrate how a program is suscep-
tible to information leaks through the address bus. Figure 1
plots memory accesses over time for a simulated processor
running two different SQLite queries — to select Californian
citizens v. Texas citizens — on a population census database.
The two queries generate a visually distinct address trace,
even when the effects of on-chip caches and SQLite instruc-
tion fetches are accounted for.

Preventing such information leakage requires making mem-
ory address traces computationally indistinguishable, or obliv-
ious. In this paper, we propose a new hardware architecture
for efficient oblivious computation that ensures both data
confidentiality and memory trace obliviousness. In other
words, an attacker capable of snooping the memory bus and

the DRAM contents cannot learn anything about the secret
program memory — not even the DRAM locations accessed.

Oblivious RAM: We rely on an algorithmic construct called
Oblivious RAM (ORAM), initially proposed by Goldreich
and Ostrovsky [11], and later improved in numerous sub-
sequent works [12, 14, 38]. Intuitively, ORAM techniques
obfuscate memory access patterns through random permu-
tation, reshuffling, and reencryption of memory contents,
and require varying amounts of trusted memory that the ad-
versary cannot observe. To develop a practical ORAM in
hardware, we adopt Path ORAM proposed by Stefanov et
al. [32] — a simple algorithm with a high degree of memory
access parallelism. Path ORAM builds on the new binary-
tree ORAM framework recently proposed by Shi et al. [28].

Other recent work has also used Path ORAM to propose
a secure processor (ASCEND [9,26]); this work focused on
optimizing the basic Path ORAM algorithm and on a design-
space exploration of algorithm parameters using a simple
model of a CPU and ORAM controller. In contrast, we
focus on building a practical oblivious system — complete
with a CPU, an ORAM controller, and running non-trivial
programs like SQLite running obliviously on the CPU. The
high-level algorithmic optimizations in ASCEND are com-
plementary to our algorithmic improvements targeted at
Path ORAM’s microarchitecture and to our work in design-
ing and building a practical oblivious system.

Challenges: Making oblivious processors practical poses
several challenges. The first is Path ORAM’s significant
memory bandwidth overhead — more than 100x over a non-
secure access. Second, Path ORAM’s irregular, data-driven
nature makes it difficult to simply add more memory chan-
nels and build a deterministic yet efficient ORAM controller.
Finally, we do not propose a custom chip but rely on an off-
the-shelf FPGA platform that, on the one hand, can provide
high memory bandwidth but on the other hand restricts us
to use a slow FPGA for the ORAM controller logic. The
ratio of slow logic to high memory bandwidth makes the
problem of scaling to more memory channels even harder.

Contributions: In this paper, we present PHANTOM, a pro-
cessor that exploits a highly parallel memory system in com-
bination with a novel ORAM controller to implement an ef-
ficient oblivious system. Specifically, we make the following
technical contributions:

1. Empirical Model for Path ORAM. We determine
Path ORAM’s trusted memory requirements by simulating
both synthetic, worst-case memory access traces and SPEC
benchmark traces. We develop an empirical model for Path
ORAM’s trusted memory size v. size of the ORAM, and
show that SPEC benchmarks’ high degree of memory local-
ity means that they require considerably less trusted mem-
ory than the worst-case access traces.

2. Efficient ORAM Microarchitecture. We intro-
duce an ORAM controller architecture that is very effec-
tive at utilizing high-bandwidth DRAM — even when imple-
mented on slow FPGA logic. We propose critical improve-
ments of the Path ORAM algorithm, and a deeply pipelined
microarchitecture that utilizes 93% of the maximum DRAM
bandwidth from 8 parallel memory controllers, while only
fetching the minimum amount of data that Path ORAM re-
quires. As a result, PHANTOM achieves close to the optimal
8x speedup over a baseline design with 1 memory controller.

Convey Computer Platform
0 user Scalar Xilinx Xilinx Xilinx Xilinx
RISC Virtex Virtex Virtex Virtex
— —_— — —
ﬂ x86 a Core FPGA GA FPGA FPGA
Host
(Ethernet) CPU
Crossbar
Host
‘ l—%' RISC-V CPU ‘ ‘ ‘
mc| | md MC| |MC| 'MC
LLC misses I
92 gy oMM B2gggige
EE=EES EEEIEEIEE
Host DRAM B E 2222 2R
to MCST
ﬂ Encrypted Data ¥ Trust lary

Figure 2: Phantom prototype on a Convey HC-2ex
Computing Platform. PHANTOM comprises a CPU, non-
volatile memory, and an ORAM controller implemented on
a single chip (here, an FPGA). All digital signals outside the
PHANTOM chip are assumed to be visible to the adversary.

3. Real-world evaluation. We build and evaluate
PHANTOM’s oblivious memory controller on an FPGA-based
computing platform running SQLite workloads, and simu-
late its performance for different cache sizes. Using sev-
eral ORAM configurations, we show that PHANTOM logic
requires only 2% of the logic on a Xilinx Virtex 6 FPGA
and a single FPGA is sufficient to support an ORAM of 1GB
effective size. The PHANTOM prototype sustains 38,191 full
4KB ORAM accesses per second to a 1GB ORAM — which
translates to 0.2x to 5x slowdown for SQLite queries.

To the best of our knowledge, this is the first practical
demonstration of an oblivious processor.

2. PLATFORM OVERVIEW
2.1 Usage Model

We consider a setting where a user wants to offload sen-
sitive data and computation to the cloud, a cloud provider
sells infrastructure as a service, and a hardware manufac-
turer creates secure FPGAs.

We envision a secure processor that has non-volatile mem-
ory on-chip to store a unique private key. A remote client
can establish a session key with a loader program on the
secure processor and then transfer an encrypted ORAM im-
age with sensitive data and code to the processors physical
memory (i.e. DRAM). The loader then executes the code
obliviously and stores results back into ORAM. The remote
client can collect the encrypted results once the time allo-
cated for the computation is complete.

PHANTOM is our take at this secure processor. It sup-
ports two usage scenarios: 1) The remote client stores all
sensitive computation, including both code and data, into
PuantoM’s ORAM. PHANTOM, which comprises a general
purpose RISC core and an ORAM controller on a trusted
chip (an FPGA in our prototype), then executes this pro-
gram obliviously. 2) The remote user runs a trusted pro-
gram on a standard processor (after establishing a dynamic
root of trust), and does her best to keep sensitive data
in confidential on-chip memory [1]. When sensitive data
must be spilled off-chip, the trusted program makes en-
crypted ORAM reads/writes through the PHANTOM copro-
cessor. The second scenario is harder to make verifiably se-
cure because preventing plain-text data from going off-chip
on a commercial microprocessor is complicated, but has the
benefit that existing applications can be ported easily and
can run faster than on the FPGA.

2.2 Attack Model

We aim to protect against untrusted cloud providers. We
trust users and hardware manufacturers (malicious hard-
ware attacks [36] are out of scope) and focus on digital at-
tacks where the cloud provider probes board-level intercon-
nect and chip pins to learn confidential data. While existing
secure processors prevent explicit data leakage with encryp-
tion, we prevent implicit information leakage through the
address bus. Specifically, we provide the property that “for
any two data request sequences of the same length, their ac-
cess patterns are computationally indistinguishable by any-
one but the client” (from definition of ORAM security [31]).

Note that the total execution time (i.e. a termination
channel) is out of scope for ORAM. However, information
leaks through this channel can be countered by computing
the worst case execution time for a program, or through
offline program analysis to set execution times that are in-
dependent of classified data. Further, the timing of individ-
ual ORAM accesses does not leak information if PHANTOM
is deployed such that a non-stop stream of DRAM traffic
is maintained. Cache hits inside the CPU or the ORAM
controller would not alter the pattern of DRAM accesses ob-
servable by an adversary and only reduce the execution time
(i.e. timing channels are reduced to a termination channel).

Our current implementation does not ensure integrity of
data, but the Path ORAM tree can be treated as a Merkle
tree to efficiently provide integrity with freshness [25, 32].
We do not consider software-level digital attacks where ma-
licious software relies on covert channels through the proces-
sor or operating system. Such attacks can be addressed us-
ing architectural and OS support for strong isolation [20,35],
obfuscation [23], and deterministic execution [4,8].

Analog attacks that exploit the physical side-effects of
computation — such as temperature, EM radiation, or even
power draw — are orthogonal to our proposal as well. These
can be addressed through techniques that normalize or ran-
domize the potential physical side-effects of computation.
Further, timing and termination channels can be eliminated
by normalizing the program execution time and rate of mem-
ory access by the secure CPU. Alternate obfuscation ap-
proaches [23] exist as well.

2.3 FPGAs: Opportunities & Challenges

We implemented our ORAM system on a Convey HC-2ex
server (Figure 2). The HC2-ex is a heterogeneous comput-
ing platform with a server-grade Intel Xeon CPU connected
to a custom board that features four large FPGAs (Xilinx
Virtex-6 LX760) and 16 independent memory channels, each
with 64 DRAM banks, for a combined memory of 64GB.
Convey’s combination of reconfigurable logic and high band-
width memory system presents an opportunity to make the
memory bandwidth-hungry ORAM algorithm practical.

Designing high performance logic on an FPGA, however,
is challenging. FPGAs operate at much lower frequencies
than custom chips — for instance, a simple RISC CPU runs at
only 75MHz, and the PHANTOM controller runs at 150MHz —
because logic is implemented as a network of interconnected
look-up tables. Our task thus is to map Path ORAM, an
irregular data-driven algorithm, onto slow FPGA logic and
yet ensure that 1) PHANTOM maximizes memory bandwidth
utilization, and 2) execution time of an ORAM access is
independent of the access pattern. Sections 4 and 5 describe
how we achieve these requirements.

3. THE PATH ORAM ALGORITHM

Intuitively, the Path ORAM algorithm prevents informa-
tion leakage through memory addresses by reshuffling con-
tents of untrusted memory after each access, such that ac-
cesses to the same location cannot be linked (while also en-
crypting the accessed content with a different nonce at every
access). Furthermore, we assume the secure processor has
a small amount of trusted memory, which the ORAM con-
troller can access without revealing any information to the
attacker. This memory is used to keep track of where data
resides in untrusted memory. Path ORAM ensures that all
that is visible to an attacker is a series of random-looking
accesses to untrusted memory.

Path ORAM allows data to be read and written in units
called blocks. All data stored by an ORAM instance is ar-
ranged in untrusted memory as a binary tree structure, each
node of which contains space to store a few blocks. When
a request is made to the ORAM for a particular block, the
controller looks up the block’s current location in a table
in trusted memory called the position map. In the position
map, every block is assigned to a particular leaf node of the
ORAM tree, and the Path ORAM algorithm guarantees an
invariant that each block will be resident in one of the nodes
along the path from the tree’s root to the block’s designated
leaf node. Reading this entire path into the stash — a data
structure that stores data blocks in trusted memory — will
thus necessarily retrieve the desired block along with other
blocks on the path to the same leaf node.

After the requested block is found and its data returned
to the requester (e.g. a CPU), the ORAM controller writes
the same path back to memory. Since a requested block is
reassigned to a random leaf node before it is written back to
untrusted memory, it may belong to a different path from
that on which it was read. Since all paths emanate from
the root, they will have at least the root node in common,
but there is a 50% chance they will not share any others, in
which case the reassigned block will have to stay in the root
node. If no additional steps were taken, the upper levels of
the tree would thus quickly become full. A Path ORAM
implementation therefore has to move blocks in the stash as
deep as possible towards the leaf of the current path as it is
written back — this is called reordering. At the same time,
blocks may stay behind in the stash if there is no space for
them in the path.

The obliviousness of Path ORAM stems from the fact that
blocks are reassigned to random leaf nodes every time they
are accessed. Repeated accesses to the same block will ap-
pear as accesses to a random sequence of paths through the
tree (each of which consists of a full read followed by a full
write of the same path). Algorithm 1 summarizes the Path
ORAM algorithm, and Figure 3 illustrates its execution.

3.1 Algorithmic Details

Path ORAM represents the full binary tree as a set of
partitions in untrusted memory that each represent a node
of the tree and are called buckets. Buckets are themselves
divided into a fixed number of slots (usually four) that can
each hold a single block and its associated header.

All data stored in untrusted memory has to be encrypted
at all times, and is reencrypted with a different nonce during
every ORAM operation that touches it (otherwise it would
be possible to correlate accesses to the same data). Each
block’s header therefore contains a nonce that changes every

First Operation: Access Block A

000 001 010 011 100 101 10 111 000 001 010 011 100

Second Operation: Access Block C

Final State of Memory and the Stash

110 111 000 001 010 011 100 101 110 111

Position Map Position Map Position Map
BlockiD| LeaflD BlockiD| LeaflD BlockD| LeaflD
A 101011 A_[011 ©p A_LoN
B_[011 B_[011 B _|011
C [000 C_[0004>=010 _ C |010
D _[010 D _|010 Crotevicted E ?(1)(1)
E [101 E [101 .
h k
F_l010 F {010 this Bucket F 010
Items in Stash after Path Read: Items in Stash after Path Read Final Stash State
[e[T Al] [~ &[o F]J < e 1| 1

Figure 3: The Path ORAM Algorithm from [32]. The algorithm’s operation is demonstrated for two path reads on a
small ORAM tree. The first is a read of Block A, which the position map shows must be located somewhere on the path to
leaf 101. Reading this path results in blocks B and E also being read into the stash. Block A is then randomly reassigned to
leaf 011, and is therefore moved to the root of the path as it is being written back, since this is as far as it can now be inserted
on the path to 101. Next, block C is read. Since the position map indicates that it is on the path to leaf bucket 000, that
path is read, bringing blocks A, B, D, and F into the Stash as well. C is reassigned to leaf 010 and the bucket containing D
and F is already full, so it can only be in the root of the path being written back. However, A and B must also be in the root
as they cannot be moved any deeper, so C cannot be inserted. It therefore remains in the stash beyond the ORAM access.

time the block is accessed, and affects the encryption of the
entire block.

All slots of the tree that do not contain a block are filled
with dummies, which contain no actual data but are en-
crypted in the same way as blocks so that their cipher text
is indistinguishable from that of a block. Dummies are ig-
nored for reordering and are not written into the stash.

Even with reordering, there can be cases where not all
blocks in the stash can be written back to the current path
(Figure 3). This is addressed by making the stash larger
than a path worth of blocks. Blocks that cannot be written
back remain in the stash and are carried over into the next
ORAM access and handled the same as if they had been read
during that operation. At the start of an ORAM operation,
it therefore has to be checked whether the block is in the
stash already. If it is, a random path can be accessed to not
leak this information.

Stash overflows: It is important to note that the stash may
overflow (i.e. no more blocks can be fit into the stash). Path
ORAM can recover from overflows by reading and writing
random paths and try to evict blocks from the stash during
those path reads and writes. While this does not leak in-
formation (the random path accesses are indistinguishable
from regular ORAM accesses), it increases execution time
and may hence cause execution to not finish in the allotted
time. It is therefore desirable to size the stash in such a way
that these accesses occur rarely. In Section 3.2 we present
an empirical analysis to determine a stash size that makes
these overflows extremely unlikely.

Access timing: To avoid information leakage through mem-
ory access timing, Path ORAM can perform a non-stop se-
quence of path reads and writes, accessing a random path
if there is no outstanding ORAM request from the CPU.
Stash hits can be hidden by performing a fake path access
as well, and multiple stash hits can be hidden behind the
same access. As described in Section 2.2, this is orthogonal
to our microarchitecture (and hence not implemented) but
would be required in a real deployment.

Algorithm 1 Pseudo-code of Path ORAM [32]

procedure ACCESS (block id, read_write)
if block_id in stash, access block there and exit
leaf_id + position_map [block_id]
position_map [block_id] +— new random position
path[] + read path from root to leaf_id
add all blocks found in path to stash
if read_write = READ then
return block with id block id in stash
else
overwrite block with id block_id in stash
end if
write path from leaf_id to root (evicting as many blocks
as possible and filling up with dummies)

Fundamental Overheads: Path ORAM'’s obliviousness
has both space and bandwidth costs.

The capacity N of the ORAM is defined as the number
of logical blocks it can store. We set the number of leaf
nodes in the tree to N/4, and the number of blocks in each
bucket to 4. As a result, 50% of the physical memory is
available as oblivious memory (including data and 0.4% for
block headers) and the rest is reserved for dummy blocks.

Since each block access results in an entire path read and
write, Path ORAM’s bandwidth overheads range from 104 x
for a 13-level ORAM tree (16MB capacity with 4KB blocks)
to 192x for a 24-level tree (32GB capacity with a 4KB
blocks). Consequently, the task of building a real, well-
performing ORAM system becomes quite challenging: in
particular, such a system will have to read two orders of
magnitude more data per memory access.

3.2 Empirical Stash Size Analysis

To implement Path ORAM, we first had to determine a
suitable stash size that makes stash overflows unlikely.

Our goal was to find a stash size such that the overflow
probability is 27> for a suitable value of X, e.g. A = 128.
One way to do this is to rely on a recent theoretic bound [32]

Worst Case
log(N)=21 ® log
log(N)=20 B log
log(N)=19 H log
log(N)=18 M log|

N)=17
N)=16
N)=15
N)=14

EOEE

Pr[stash size > x]
1e-05

(o2}
OI W 5 SPEC Traces, log(N)=19] &8
3

0 20 40 60 80
X (# blocks)

Figure 4: Distribution of stash sizes for SPEC and
worst-case traces. N is the size of the ORAM in blocks.
Unlike in the Path ORAM paper [32], the stash size mea-
sured includes the temporarily fetched path during Access.

on Path ORAM. However, this theoretic bound is only tight
up to a constant factor.

We performed an empirical analysis that determines the
required size of the stash with high confidence. Our analysis
is based on a number of long simulation runs of the ORAM
algorithm (reassigning ORAM blocks to random leaf nodes
at every access)?.

We run the algorithm for billions of time steps, and mea-
sure the fraction of time the stash has size at most z, for
varying values of z. The purpose is to determine the stash
size for a given overflow probability of 27*. We should set A
to be a large enough (say, 80). However, we cannot simulate
far enough to A = 80, since such negligible overflow prob-
abilities are computationally infeasible to directly measure.
We therefore simulate for smaller A values and extrapolate
the stash size for large As based on the theoretic analysis of
Path ORAM [32].

We used two different kind of memory access traces as in-
put for this simulation. 1) Worst-case traces that exhibit no
locality (i.e. blocks 1,2,... are accessed sequentially, wrap-
ping around after the last block): this represents the worst-
case input for the stash size [32] since accessing a block that
is not already in the stash will cause more blocks to be read
into the stash; and 2) SPEC traces: real-world memory ac-
cess traces that exhibit high locality. We therefore expect to
see lower stash consumption compared to worst-case traces.
The benchmarks we ran were mcf, cactus, gemsfdtd, lesli8d
and soplex with an ORAM block size of 4KB. We chose these
benchmarks as they had a large number of cache misses and
would thus stress the stash. While we choose our implemen-
tation’s stash size conservatively based on the worst-case
traces, the SPEC traces also shed light on how differently
real-world traces behave in comparison with the worst-case.

We start with an initially empty ORAM and first perform
N accesses to place all N blocks within the Path ORAM
tree. Then we perform another 100 million round-robin
(worst-case) memory accesses to warm up the ORAM. For
the worst-case traces, we then simulate 5 billion memory
accesses and record the stash size each time the stash con-
tent changes. The SPEC traces have 1.6 billion to 11 billion
memory accesses.

2Tt is well-known that for regenerative stochastic processes,
time average is equal to ensemble average — therefore, a
single long run is as good as many shorter runs.

80
|

Security Parameter
m 22
= 20
m 18
| 16

70
I
b

Stash Size (# blocks)
60
L

50
L

40
Il

14 15 16 17 18 19 20 21
log2(N)

Figure 5: Empirical measurements of minimum
stash size such that the probability of the stash overflowing
is bounded by 27* where) is the security parameter. Un-
like in the Path ORAM paper [32], the stash size measured
includes the temporarily fetched path during Access.

For each trace, Figure 4 plots the fraction of accesses dur-
ing which the stash size exceeded a particular value. Each
of the values on the y-axis corresponds to a particular prob-
ability 27> that the stash will overflow at any given access,
where we call A the security parameter. In practice, a good
value for A may be 128. For large enough values of A\, we
should not expect to see any stash overflows in any reason-
able amount of time (just like encryption cannot be broken
in any reasonable amount of time).

Using the data from Figure 4, we derived the minimum
stash size that makes the probability of overflowing 27 for
a fixed A, varying the size of the ORAM (N). The results
are shown in Figure 5. The figure suggests that for a given
security parameter, the stash size grows linearly in log N.

Based on the findings in Figures 4 and 5, and the closed
form theoretic bound in [32], using least square fitting, we
determined the following minimum stash size (here the stash
counts both the temporarily fetched path during access and
the overflowing blocks):

2.19498 log, (N) + 1.56669\ — 10.98615

with an R? value of 0.9973.

From the known theoretic bound on Path ORAM [32],
we know that the above stash size includes two parts: 1) a
O(log N) part for storing the path fetched from the server;
and 2) a O(\) part for storing overflowing blocks after the
write-back phase of each ORAM access. Based on the above
formula, we designed the PHANTOM prototype with a stash
size of 128 or 256 for log N = 13 to 19, to achieve corre-
sponding security parameter values from A = 65 to A = 143.

4. THE ORAM CONTROLLER

In this section, we discuss how PHANTOM achieves high
performance compared to a naive Path ORAM implementa-
tion without breaking its security guarantees.

Recalling Section 2, PHANTOM receives an encrypted pro-
gram and data as input, and produces encrypted data as
output. PHANTOM’s CPU runs the program and generates
an address to access from the ORAM on each last-level cache
miss. The ORAM controller then translates this address into
a leaf node, reads and decrypts the path to the leaf, and re-
turns a value to the CPU or updates the appropriate block.
It then encrypts and writes back the entire path.

Levels (N) 17 19 17
Block size 4096 | 4096 | 1024
Stash size O(C) 128 256 | 128
1 MC (baseline) 34816 | 38912 | 8704
8 MCs, pick from stash 10880 | 21888 | 9248
8 MCs, non-overlapped sort 5248 6912 | 1984
8 MCs, overlapped sort (ours) | 4352 | 4864 | 1088

Table 1: Potential improvement from optimizations
in cycles (or time) per ORAM access. Baseline is
an ORAM processor with one memory controller (MC).
PHANTOM uses 8 MCs and adds novel sorting stage to Path
ORAM; we expect it to be 8 X better than the baseline.

4.1 Achieving High Performance

Like all ORAM schemes, Path ORAM has a fundamental
overhead in the amount of data that needs to be accessed
per memory request (e.g. 136x for a 1GB ORAM with 4KB
block size). Path ORAM’s bandwidth requirement thus mo-
tivates the use of platforms such as Convey HC-2ex that have
wide memory systems: by employing a 1,024b-wide memory
system rather than a conventional 128b-wide one, we can
achieve a potential speed-up of 8x over a naive implemen-
tation. However, exploiting the higher memory bandwidth
is non-trivial: it is necessary to co-optimize the hardware
implementation and the Path ORAM algorithm itself.

We now present the key design decisions of our imple-
mentation. Table 1 summarizes the potential performance
gains over a naive implementation. We call these numbers
‘potential’ because the analysis assumes a perfect PHANTOM
implementation without DRAM stalls. We demonstrate ex-
perimentally in Section 6 that PHANTOM comes close to this
ideal on an actual FPGA implementation.

Table 1 presents three different ORAM configurations and
a baseline design that uses a standard, 128 bit wide mem-
ory controller (MC) operating at 150MHz. The baseline as-
sumes that all ORAM logic is free and accesses are limited
only by the bandwidth of a single MC, namely 34,816 cycles
to access a 17-level ORAM with 4kB block. Our potential
performance-gains are therefore conservative estimates.

Memory layout to improve utilization: Simply using
a wide memory bus does not yield maximum DRAM uti-
lization. Concurrent accesses to addresses in the same bank
— bank conflicts — lead to stalls and decrease DRAM band-
width utlilization. To resolve such bank conflicts, we present
a precise layout of the Path ORAM tree in memory (DRAM)
where data is striped across memory banks, ensuring that
all DRAM controllers can return a value almost every cycle
following an initial setup phase. Fully using eight mem-
ory controllers in parallel thus reduces the 136 x bandwidth
overhead to a 17x, making ORAM controller logic on the
FPGA the main implementation bottleneck.

Picking Blocks for Writeback: Bringing 1,024b per cycle
into PHANTOM raises acute performance problems: the op-
eration of the Path ORAM algorithm now has to complete
much faster than it did before, to keep up with the mem-
ory system (e.g. PHANTOM needs to decrypt and encrypt
1,024 bits per cycle in parallel). While encryption can be
parallelized by using multiple AES units in counter mode,
the Path ORAM algorithm still has to manage its stash and
decide which blocks from the stash to write back after each
ORAM access (the reordering step from Section 3).

2000

= e
<
g 1500 /
2 unsorted
x®
o 1000
N
o
<
2 500
» sorted

0

0 2000 4000 6000 8000 10000

Operation Index

Figure 6: Benefits of sorting the stash contents be-
fore each write phase (N=2'). Our heap-based reorder-
ing data structure ensures that we can sort the stash effi-
ciently without stalling the ORAM. If we instead tried to use
an efficient (O(1)) stash eviction strategy that doesn’t per-
form sorting, the stash size will grow uncontrollably. Note:
unlike in the Path ORAM paper [32], the stash size mea-
sured here includes the temporarily fetched path.

The latter is of particular importance: The ORAM con-
troller has to find the block that can be placed deepest into
the current path, and do so while the memory controllers
push in data at 1,024b per cycle . One approach would be
to scan the entire stash and pick a possible block for every
position on the path (starting from the bottom), in paral-
lel with writing to memory. However, with Convey’s high
memory bandwidth, scanning through the stash takes longer
than writing out an ORAM block, causing this approach to
achieve less than 2x the potential performance improvement
with stash size C' = 128 (Table 1).

At the same time, in order to keep the stash small, it is
crucial to select each block from the entire stash — includ-
ing both the current path blocks and old blocks. To verify
whether a simpler alternative would suffice, we analyze an
O(1) option: choosing from the top 4 entries in a list of
ORAM blocks to be written back, instead of considering the
entire stash to find the block that can be pushed the fur-
thest down the current path. Our analysis — in Figure 6 —
shows that this simple scheme to choose blocks for write-
back causes the stash to grow uncontrollably.

We hence propose a different approach — to split the task
of picking the next block to write to the current path into
two phases: a sorting phase that sorts blocks by how far
they can be moved down the current path, and a selection
stage that (during writeback) looks at the last block in the
sorted list and checks in one cycle whether it can be written
back into the current position or not — if not, no other block
can, and we have to write a dummy.

We further improve on this approach by replacing the
sorting and selection stages by a min-heap This replaces
an O(C'log C) operation by two O(log C') operations, where
C' is the size of the stash. This makes it now possible to
overlap sorting completely with the path read and selecting
with the path write phase.

Treetop Caching inside the Stash: While the stash is
required by Path ORAM as a temporary store for ORAM
blocks while they wait to be written out, it can also be
used to improve performance by securely caching ORAM
blocks on-chip. We propose to cache k levels of the ORAM
tree inside the stash — we call this treetop caching — which
saves PHANTOM from fetching these parts of the path from

DRAM. Since the number of nodes is low at levels close to
the root, caching a few levels improves ORAM latency and
throughput significantly while using only modest amounts
of trusted memory. Our results demonstrate this insight
experimentally (Figure 12).

We designed PHANTOM’s stash management to support
treetop caching with minimal effort (as well as other meth-
ods, such as LRU caching). To do so, we use a content-
addressable memory (CAM) that serves as lookup-table for
entries in the stash, but is also used as directory for caching
and as free-list to find empty slots in the stash. This avoids
placing caches separate from the stash — one of our previ-
ous prototypes showed that this leads to performance delays
from checking the cache and moving ORAM blocks between
the cache and the stash (and additionally complicates PHAN-
TOM’s logic, which makes obliviousness harder to ensure).

Meeting FPGA Constraints: Each on-chip memory mod-
ule on an FPGA (i.e a Block RAM or BRAM) is limited to 2
read/write ports. However, BRAMs in PHANTOM that con-
stitute the stash have to be multiplexed among four func-
tional units (encryption, decryption and reads/writes by the
secure CPU). We designed PHANTOM such that all the units
that read from or write to the stash are carefully scheduled
such that only a single read port and a single write port
on the BRAM is in use at any particular clock cycle. Im-
plementing the heap to reorder stash entries also requires
similar tricks which we describe in Section 5.6.

FPGAs also impose strict timing constraints on our de-
sign. Convey’s DRAM controllers operate at 150MHz which
makes this frequency the minimum target for PHANTOM. We
modified a baseline PHANTOM implementation extensively
to replicate and pipeline critical paths, and implemented
PuANTOM’s RISC CPU on a separate clock domain (75MHz)
from the ORAM controller to meet timing constraints.

4.2 Preserving Security

Design principles for obliviousness: We use two simple
design principles to ensure that PHANTOM’s design does not
break Path ORAM’s obliviousness guarantees. Any oper-
ation — checking the position map, reordering, caching etc
— that depends on ORAM data is either a) statically fixed
to take the worst-case time or b) is overlapped with an-
other operation that takes strictly longer time. PHANTOM’s
decrypt operation could, for example, be optimized by not
decrypting dummy ORAM blocks — but this leaks informa-
tion since it would cause an operation to finish earlier de-
pending on whether the last block was a dummy or not.
Instead, PHANTOM pushes dummy blocks through the de-
cryption units just the same as actual data blocks. These
two design principles yield a completely deterministic PHAN-
TOM pipeline. Figure 7 shows how the different operations
in PHANTOM overlap with reading and writing a path.

Terminating timing channels at the periphery: The
DRAM interface requires further attention to ensure secu-
rity. PHANTOM sends path addresses to all DRAM con-
trollers in parallel, but these controllers do not always return
values in sync with each other. Although DRAM stalls do
not compromise obliviousness (DRAM activity is not con-
fidential), propagating these timing variations into PHAN-
TOM’s design can make PHANTOM’s timing analysis compli-
cated. To keep PHANTOM’s internal behavior deterministic

Path Read XX
Constant-time gap (69 cycles)

A ES — Decrypt X Encrypt V—

Path Write >

Memory

Reordering —(Heapify YHeap Insert)}« Heap Delete —
CPU I/O = Xmead) T i —

Figure 7: Overlapping the different steps of the Path
ORAM algorithm with the memory accesses.

oaﬁ?l 1) Block ID to Leaf ID Position Map | F—rv
Request | a
5 —@) Stash
ata CPU 8-Column buffer for plain text blocks | | |1 4ex
1/0 o (ORAM Block Stash) (CAM)

[}
16)

o] ContolLogic

E Leaf ID

g T e

o 16-Column buffer for reading to and

< writing from DRAM, 2 ports/column - ‘ "

B (DRAM Block Buffer) Ol |s@s [
1"

LT
| Address Generation Logic (3) |-7

ORAM SYSTEM

...to Convey Memory Controllers...

Figure 8: Overview of the ORAM system.

and simple to analyze, we introduce DRAM buffers at the
interface with external DRAMs to isolate the rest of PHAN-
TOM’s ORAM controller from timing variations in the mem-
ory system. At the same time, all inputs to the DRAM
interface and their timing are public (a leaf id and 1,024b
of encrypted data per cycle during writeback), so that no
information can be leaked out of PHANTOM.

S. DETAILED MICROARCHITECTURE

The goal of PHANTOM’s microarchitecture is to make max-
imum use of the available DRAM bandwidth (e.g. up to
1,024b/cycle on the Convey HC-2ex). This involves accel-
erating all computation related to Path ORAM such that it
can be completely overlapped with the memory accesses.

Figure 8 shows how the microarchitecture components fit
together and Figure 9 illustrates PHANTOM’s data path in
further detail. First, ORAM blocks are read from memory,
decrypted, and written to the stash — we call this the read
phase. After the read phase, blocks are read from the stash,
encrypted, and written back to memory using the same func-
tional units as in the read phase. This is the write phase.
Concurrently to the read and write phases, PHANTOM re-
orders the blocks in the stash and returns a value to the
secure CPU (or writes a value into an ORAM block).

5.1 Data Structures

The Position Map (@) in Figure 9) is the central data
structure for making memory accesses oblivious, and stores
a mapping from ORAM blocks to the leaf node in the ORAM
tree that the block is assigned to.

Path Read Phase

Path Write Phase

Stash Parallel AES

Trans/Lookup Memory Read/Buffer and Parallel AES Memory Writeback
Header Decrypt 0 Decrypt @ 0 Encrypt @ e
——— / —F—
i U | AE 7 . i
o —»6“”5 ;DD 128 bits > 128 bit$ 96 128 bits e 128 bits g - >
o o) > D = E
o o p— @ £ p— =
B 3 . < E B>| AES >:g % B> AES > D =
S M) o & Q
3 o P> o o 9 Al—39| O
> z { AES g (o L =
? | AES | & @
%
—| AES [———>> >
4 9 6 ‘ﬁ reserve 9 4 9
o ();_ | Stash Entry o 0 I_ = v free % 0 @ §
—{0 & = °) o o o X
2 G = 2%l —» 2 22
©n Leaf | @

I:l = Reuses Same Functional Units
as beginning of pipeline

Figure 9: The data path in Phantom resembles a boomerang: Data is read, decrypted and written to the stash. It
is then read from the stash, encrypted and written back to memory, using the same functional units.

The Stash @) buffers ORAM blocks in plaintext. Its size is
chosen to make the overflow probability small (Section 3.2).
Any block that is decrypted in the read phase is put into
the stash, and blocks are removed from the stash when they
are encrypted in the write phase. All blocks stored in the
stash are striped across 8 independent columns (i.e. mem-
ories), each accessed by an AES unit (Section 5.3). This is
necessary to reduce the critical path (and achieve the clock
frequencies required for the Convey platform).

The Stash Indez @ is a content-addressable memory
(CAM) that stores the address of the block contained in
each entry of the stash, including a bit to indicate whether
a stash entry is occupied. Before decrypting a block, the
stash index is queried to find a free slot. During a path
write, once encryption of a block finishes, the corresponding
entry of the Stash Index is set to free.

The Stash Index is queried before starting each ORAM
access, in parallel with the position map. If the requested
block is present, the ORAM controller will read or write
to the stash directly, rather than initiating a Path ORAM
access . Querying the Stash Index and the Position Map
adds a single cycle latency to each request. Position Maps
grow linearly with ORAM sizes and may have to be pipelined
to keep the critical timing path low (up to 4-deep for the
position map of a 17-level tree, representing an additional
4 cycles of latency). Updating the stash index requires 2
cycles, but these are overlapped with the path reads/writes.

5.2 DRAM Interface

PaANTOM’S DRAM Interface takes a leaf ID and fetches
an entire path from the untrusted DRAM into the trusted
memory on the FPGA.

Memory Request Generation: The Convey platform
features 1,024 DRAM banks (64 for each of its 16 memory
channels). We cannot place ORAM blocks sequentially in
the memory address space if we want to fetch data at (close
to) peak bandwidth. Instead, we place each word such that
the DRAM banks’ latency can be hidden behind successive
64 bit words being read from different DRAM banks.

We stripe each ORAM block across the 1,024 banks such
that every memory controller accesses all its banks in se-
quence, reading a 64 bit word from each bank, wrapping
around after the last bank. Going round-robin across all
DRAM banks allows each bank enough time to open a DRAM
row and return its data to the memory controller without
the controller having to stall.

DRAM Buffer: As encrypted data arrives from memory,
it is put into the DRAM Buffer in order to be decrypted
in subsequent stages. In practice, DRAM controllers often
run ahead or fall behind, and the DRAM Buffer waits until
it receives a complete row — the maximum number of bits
received from DRAM each cycle (1,024 bits on the HC2-ex) —
before forwarding it into AES decryption units. To account
for worst case DRAM stalls, we provision the DRAM Buffer
with space to store an entire path of ORAM blocks. During
the write phase, the DRAM Buffer stores encrypted data
from the AES units on its way to be written back to memory,
absorbing DRAM stalls without stalling AES encryption.

The DRAM Buffer thus isolates the internals of PHAN-
TOM from these timing variations. As long as it consumes
1,024 bits of data per cycle out of the DRAM buffer, and
produces data at this rate during write-back, PHANTOM is
completely shielded from any DRAM timing variations.

The DRAM Buffer is implemented using 16 independent
columns. Each column serves one memory channel and
keeps track of how much data it has received from the mem-
ory system — we use a feature of the HC-2ex that forces the
memory controllers to buffer responses internally and deliver
them in order, so that the DRAM Buffer only has to store
how many words each column has received. As soon as all
the words of a row are available, the buffer notifies the rest
of the system that it is ready to be consumed.

5.3 Encryption of ORAM Blocks
Once data has arrived in the DRAM buffer, it is con-
sumed by AES units to be decrypted into the stash. The

same units also encrypt all data as it is written back from
the stash into the DRAM buffer. PHANTOM uses eight AES-

128 units in counter mode (CTR). This approach was cho-
sen since counter-mode allows to parallelize both encryption
and decryption, which is crucial to maintain the required
throughput of 1,024 bits per cycle.

Each ORAM block has an associated clear-text nonce for
CTR stored in its first 128 bits. This is followed by the
block’s (encrypted) header which includes the block’s ad-
dress and whether or not it is a dummy. As an optimiza-
tion, we store the block’s leaf ID in the header as well — this
reduces accesses to the position map.

Decryption is overlapped with the rest of the algorithm
by adding a forwarding path 6 from the first two memory
channels. It buffers all words belonging to nonces in a way
similar to the DRAM buffer, so that the nonces are available
when the AES units start to decrypt the actual block.

Further, to avoid wasting oblivious storage, we store the
nonce in the block header itself (since more than 80 out of
128 header bits are free—even for large configurations). The
nonce now gets encrypted, since it is included in the header
AES block. Thus, the forwarding path must be extended
with an AES unit (@) that pre-decrypts the header while
the rest of the block is being fetched, and (due to overlapping
and in-order memory fetch) is always finished by the time
the rest of the block is available to be decrypted.

Decrypting the header in advance also allows PHANTOM to
insert a block into its proper place in the reorder heap (Sec-
tion 5.4) as the rest of the block is being read in. PHANTOM
reserves an entry in the stash once the header is decrypted;
subsequent outputs of the AES decrypt units can then be
directly written to this entry without any stalls, thereby
hiding the 2-cycle stall of the stash index lookup.

The choice AES implementation is a trade-off that is largely
orthogonal to our architecture, as long as each AES unit is
pipelined and provides 128 bit/cycle throughput. In our pro-
totype, we model AES-128 units as 11-stage pipelines that
take nonce, plain text and counter as input, and output
the cipher text 11 cycles later. We also assume an on-chip
pseudo-random number generator. While we do not include
the size of AES and PRNG in our results, we show that
PHANTOM’s Oblivious RAM controller requires less than 2%
of the logic on the FPGA, leaving ample space for AES
and PRNG functionality (e.g. 9 instances of the AES unit
from [18] would require 50% of the logic). Instead of gen-
erating truly random numbers, our prototype uses a linear
feedback shift register to emulate the PRNG functionality
(which is insecure but sufficient for prototyping purposes).

5.4 Heap-based Reordering

As described in Section 3, the blocks in the stash have to
be reordered before being written back to memory, ensuring
that each block is moved as far down the path as possi-
ble. A simple implementation would be to go through the
entire stash to choose a candidate block for each slot. How-
ever, this search would take a larger number of cycles than
the write-back of the block to memory would take, mak-
ing PHANTOM computationally bound rather than memory
bound (especially on an FPGA).

For this to be avoided, PHANTOM has maz_time = (block-
size [bits_per_cycle) cycles to pick a block to write back. In
our prototype with 4KB block size, maz_time is 32. With
a stash of about 100 entries, a linear scan will not be hid-
den behind a 32-cycle ORAM block read, and will thus in-
troduce a 68-cycle stall per block or (68 x path_length x

blocks_per_bucket) cycles for each ORAM access — roughly
1,200 additional cycles for a 17-level ORAM. To avoid these
stalls, we need a different approach to overlap reordering
with memory accesses.

An alternative to scanning the entire stash is to pre-sort
its entries based on their leaf IDs. PHANTOM reorders stash
entries by performing a bit-wise XOR between the leaf IDs
of entries in the stash and the leaf id of the current path
(assuming the leaf id naming scheme from Figure 3), and
then sorting (0) them in increasing order. The resulting
order reflects how deeply they can be placed in the tree,
since the first bit where they disagree with the current leaf
ID is at a later, lower-order bit.

Once entries have been sorted like this, PHANTOM de-
termines which blocks to write back by going backwards
through the path (starting from the leaf), always looking at
the lowest element in the sorter and checking its leaf id to
determine whether it can be placed in the currently exam-
ined slot in the tree. If yes, PHANTOM inserts the block,
otherwise PHANTOM fills the slot with a dummy (dummies
are generated directly by the AES units - instead of read-
ing data from the stash, they simply encrypt some random
data). We call this the select stage (@) .

While this approach avoids going through the entire stash,
the sorting step requires further attention. Algorithms like
Merge sort cannot overlap the sorting with the memory
reads and writes (because they require all entries to be present
at the time the sort begins). On the other hand, algorithms
like Insertion sort (which is simple to implement in hard-
ware and can perform the insertion in parallel to the reads)
would make the latency to insert each block to be linear in
the stash size and larger than maz time (i.e. 32 cycles).

We therefore designed PHANTOM to use a min-heap in-
stead. Rather than performing all the sorting either during
the write phase or during the read phase, we insert the blocks
into a heap as they are read in, and remove them from the
heap as we write them back. This takes logarithmic time
both during reading and write phases, but as a result, the
phases can individually keep up with the speed at which
blocks arrive from memory and have to be written back.

We also have to make sure that we heapify (re-sort) the
current contents of the heap at the start of each ORAM
operation, since the ordering changes with the leaf id of the
path. We therefore added a queue (which holds as many
entries as the stash) to buffer incoming blocks in case the
heapify operation is not complete by the time the first blocks
come out of the AES unit. We can show that the overall
latency does not exceed the amount of time we have during
the read phase, ensuring that we always finish sorting by
the time the last block has finished reading (a proof can be
found in Appendix A).

With these optimizations, we can overlap the reordering
completely with the memory requests, making our system
completely limited by the available memory bandwidth.

5.5 Control Logic

PHANTOM’s control logic coordinates the movement of
data through the ORAM controller, namely from the DRAM
buffer through the AES units to the stash (and vice versa for
the write-back), maintaining the invariant that data takes
constant number of cycles to flow down the pipeline.

At its core, the control logic consists of a pipeline that
runs in parallel to the pipelined AES units. Each stage of the

MG MCo
I[D—' Header AES
(AES-H)

N]

Counter Counter

v

64 bit 64 bit v v v v v
Nonce | Block ID | Dummy? | Stash row |Buffer row | Offset

&
A |

M~ |

AES

s
7

128 bit

Offset Stash
v Index

Row 4
Select
STASH

Figure 10: The Control Logic The arrows describe the
flow of data through the logic.

Write block id into Getempty stash row

stash index’s row

pipeline holds a descriptor for the data in the corresponding
stage of the AES units (Figure 10), which is a tuple compris-
ing an ORAM header, a row in the DRAM buffer, a stage
in the AES pipeline, and an entry in the stash.

During the read phase, the control logic reads rows of data
from the appropriate location in the DRAM buffer and feeds
them into the AES units. It also directs the output of the
AES units into the appropriate locations in the stash. In ad-
dition, the control logic checks each decrypted block header
to see if it is the block the CPU has requested. Once the
block is found, it is returned to the CPU and also remapped
to a new, random leaf node in the ORAM tree (overwriting
the block’s header before writing it into the stash).

The write phase uses the same pipeline and AES units, but
with different descriptors. As data is moved out from the
stash to the DRAM buffer, the control logic queries the select
stage (Section 5.4) to determine whether the next block to
be written is a dummy, and if not, which entry from the
stash to write back. Further, all block headers are updated
with a new nonce.

If the ORAM access is a write, the CPU’s block will be
used to update the ORAM block in the stash in parallel
to the write-back phase, so that the updated ORAM block
is available for write-back at least one cycle ahead of the
encryption unit. In the case of a dummy, no data is read
from the stash and zeros are fed to the unit instead (since
the nonce is randomly generated and affects the whole block,
zero-valued dummies do not affect security).

The remainder of the write phase resembles the read phase:
data is written to the DRAM Buffer in order from bottom
to the top of the path and is guaranteed to arrive at 1,024
bits per cycle, so that the memory system can write at full
pin bandwidth (1,024 bits/cycle).

5.6 FPGA-specific Challenges

PHANTOM has to overcome several challenges unique to
an implementation on an FPGA:

Current comparison (will be written this cycle)

Figure 11: Min-heap on the FPGA’s on-chip RAM.
The numbers represent the RAM each node is stored in. The
four second-degree children of each node are put into four
separate RAMs in order to read them in parallel.

The heap implementation requires some care to minimize
the cost of each operation. For some heap operations, a
node must be compared to both of its children, potentially
doubling the access latency to the heap (from [log k] cycles
to 2[log k] cycles, where k is the number of nodes in the
heap), since each of the FPGA’s BRAM memories has only
one read and one write port. We avoided this problem by
splitting the heap into two separate memories, each with a
read and a write port. One holds even memory locations,
the other holds the odd memory locations. As a result, the
two children of a node are always in different BRAMs and
can be accessed in the same cycle. Furthermore, we perform
reads and updates concurrently every cycle.

Though this approach is functionally correct, it results in a
circuit with paths from one BRAM through multiple levels
of logic to another BRAM, leading to a long critical path
latency. We therefore split the memory even further: our
final implementation uses 4 different BRAMs (Figure 11).
At every cycle, we prefetch the four grandchildren of a node
so that the two children we are interested in will be available
in buffer registers at the point when they are required for
comparison, whichever way the previous comparison goes.

The limit of one memory read and one write port also
complicates the stash’s design. While there are four units
that access each stash column (read for encryption, write for
decryption and reads/writes by the secure CPU), these op-
erations are scheduled such that only two ports are required
at the same time (reading the response data to the CPU is
overlapped with decryption, writing with encryption).

5.7 Integrating ORAM with a CPU

Our ORAM controller is integrated with an in-order RISC
processor implementing the RISC-V instruction set [37]. The
processor (like our ORAM controller) is implemented using
Chisel [5], a new hardware construction language embedded
in Scala. The CPU features a full implementation of the
RISC-V instruction set as well as an uncore with instruc-
tion, data and last-level cache (LLC). For our prototype,
we use a version with very small caches (4KB instruction
cache, 4KB data cache, 8KB LLC) and no floating-point
unit. The reason for this choice is that our Convey plat-
form requires the CPU to run at 75 Mhz on an FPGA, and
supporting larger cache sizes at this frequency would have
caused significant amounts of additional work (the CPU was
optimized for an ASIC implementation before we adopted it
for PHANTOM). Such work is orthogonal to our proposed
ORAM controller (for our performance evaluation, we sim-
ulate a larger CPU with reasonable cache sizes to determine
results for a realistic deployment).

The CPU is integrated with PHANTOM by translating mem-
ory requests from the LLC into ORAM requests, buffering 8
previously used ORAM blocks to reduce the miss rate. We
use the CLOCK algorithm to determine which ORAM block
to evict from the buffer. Furthermore, translating memory
addresses into ORAM block addresses is non-trivial since
it requires division by a non-power of two (due to the 128
bit used by the block header). Our current prototype uses
a Xilinx divider IP core that takes an additional 36 cycles,
but custom logic could eventually exploit the fact that this
division is by a power-of-two multiple of 31 to reduce that
latency to just a few cycles.

5.8 Utilizing Multiple FPGAs

The Convey HC-2ex features 4 FPGAs that provide ad-
ditional logic and memory capacity which can be used for
ORAM state. For example, we experimented with split-
ting the position map across the FPGAs adjacent to the one
carrying the ORAM controller — this allows us to scale to
larger ORAM sizes. When performing a position map ac-
cess (which only happens at the start of an ORAM request),
we send the (encrypted) address of the block we are looking
for, as well as the new leaf ID to map it to, to both of the
neighboring FPGAs. Both of them then send an encrypted
reply at the same time. Since it is public knowledge that an
ORAM request was initiated, this is secure.

6. EVALUATION

In this section, we experimentally determine the cost of
obliviousness on PHANTOM, as well as its performance im-
pact on real applications. Our evaluation demonstrates that:
1) ORAM latency to access a 4kB block is 22x over a non-
secure access (30x for 128B blocks®) for a 64MB ORAM.
ORAM access latencies vary from 18us to 30us for ORAMs
of effective size 64MB to 4GB and a block size of 4kB. A
non-ORAM access takes 812ns for a 4kB block and 592ns
for a 128B block. 2) PHANTOM utilizes 93% of the theoret-
ical peak bandwidth of the memory channel, validating our
memory layout and micro-architectural optimizations. 3)
PHANTOM requires less than 2% of the logic of the FPGA,
leaving space to implement other accelerators or a CPU.
PHANTOM’S prototype implements ORAMs of up to 1GB
on a single FPGA (before on-chip memory is exhausted)
and 2GB or larger using multiple FPGAs. 4) The over-
all program performance depends upon access patterns and
working set size. Different SQLite queries on a population
census workload shows overheads from 20% to 5x.

6.1 ORAM Latency and Bandwidth

The primary metric of efficiency for an ORAM system
is the time to service a single request to the ORAM. This
approximates the amount of overhead per memory access
(i.e. last-level cache miss).

We synthesized a set of different configurations of PHAN-
TOM, with effective ORAM storage capacity ranging from
64MB to 4GB (13-19 tree levels with a 4KB block size).
Each ORAM configuration includes a stash of 128 elements,
which allows up to 3 levels of treetop caching. For 18 and
19-level ORAMs, PHANTOM’s position map is stored on one
and two adjacent FPGAs respectively.

3Since the granularity of ORAM accesses is much larger
than a cache line, we compare to 128B reads to estimate the
worst-case overhead where only a fraction of data is used.

IS
S

Write phase

w
G

M Read phase

0123 0123 0123 0123 0123 0123 0123

w
S

~N
@

N
@

Time per ORAM access (us)
5 S

«

ORAM Conﬁguratlon (Flrst row: Number of cached Ievels Second row: log N)

Figure 12: Average time per ORAM access for dif-
ferent configurations on hardware. 1M accesses each,
block size 4KB, 18 & 19 levels are split across 3 FPGAs.

18500 ¢

18000 F
=
£17500

=
$17000
2

Ideal Peak Bandwidth
1 GB Sequential Read
PHANTOM (4KB DRAM Reads)

216500 F
H

@
16000 ¢

0 200000 400000 600000 800000
Time (Accesses)

Figure 13: DRAM utilization over time.

Figure 12 shows the total time per ORAM access for these
configurations. The experiments were conducted on the FP-
GAs of our Convey HC-2ex machine. We performed a se-
quence of 1 million random ORAM accesses (block reads and
writes) for each experiment, and report the average times
per access (note that times for accesses may vary without
compromising security, but only due to timing variations in
the DRAM system).

For each data point, we also report how long it takes until
the data is available (for reads) — this is important since
a client using the memory system can continue execution
as soon as the data is returned from ORAM. For writes,
execution can continue immediately.

We measured that PHANTOM’s latency until ORAM data
is available ranges from 10us for a 13-level (64MB) ORAM to
16 us for a 19-level (4GB) ORAM. Compared to sequentially
reading a 4kB (812ns) or a 128B (592ns) block of data using
all Convey memory controllers, this represents 12x to 27x
overhead. An ORAM access that hits the stash takes 84
cycles (560ns) .

When considering full ORAM accesses, latencies range
from 19us to 30us. Much of PHANTOM’s real-world per-
formance is therefore determined by how much of the write-
back can be overlapped with computation, but is bounded
above by 23x to 50x overhead.

Compared to the ideal numbers from Section 4, our proto-
type takes an average of 4,719 cycles per full ORAM access
(for a 1GB ORAM without treetop caching), compared to
the theoretical minimum of 4,352 cycles. The difference in
performance is due to the additional overhead of encryption
and the latencies in the DRAM system. This relatively small
overhead over the theoretical numbers shows the effective-
ness of PHANTOM.

DRAM Utilization. Figure 13 shows that PHANTOM
utilizes 93% of the theoretical peak DRAM bandwidth, i.e.
the actual number of cycles between receiving the first and
last words from memory relative to the number of cycles

1400 160.
33% of 1 FPGA (Total: 474,240 LUTs) 2

1200 140.

1000

A
TR

7
7
7
2
7
4

-

Memory Utilization (# of BRAMs)
1

Logic Utilization (# of 1,000 LUTs)

0___-II
6 17 18 19

-
)
=
IS
-
&

16 17

ORAM Configuration (log N) ORAM Configuration (log N)

M position Map ORAM (including Stash & DRAM Buffer) % Convey

Figure 14: FPGA resource utilization. The design
uses 30-52% (less than 2%) of available memory (logic); up
to 74% (10%) including Convey’s interface. It fits onto a
single FPGA for up to 17 levels (1GB). For larger sizes, the
position map is stored remotely on other FPGAs.

that would be taken if each memory controller returned the
maximum number of bits every cycle. For reference to a
practical best-case — where an application reads memory se-
quentially from DRAM — PHANTOM achieves 94% of the
read bandwidth®. Given that PHANTOM accesses no addi-
tional data beyond what is required by the Path ORAM
algorithm, this shows that our goal of making high use of
the available bandwidth has been achieved.

6.2 FPGA Resource Usage

Figure 14 reports PHANTOM’s hardware resource consump-
tion through the percentage of logic elements (LUTSs) that
are used by the different configurations, as well as the num-
ber of on-chip RAMs (BRAMs) used on the FPGA. The
design itself uses 30-52% of memory and about 2% of logic —
the other resources are used by Convey’s interface logic that
interacts with the memory and the x86 core.

This breakdown shows that the biggest contributors to
memory usage are the position map and the stash. To sup-
port ORAM sizes larger than 1 GB, we therefore move the
lookup table to another FPGA and communicate through
(encrypted) messages over Convey’s inter-FPGA communi-
cation facilities (Section 5.8).

These results do not include the resources that would
be consumed by real AES crypto hardware. There exist
optimized AES processor designs [18] that meet our band-
width and frequency requirements while consuming about
22K logic elements and no BRAM — our nine required units
would therefore fit onto our FPGA (as even large config-
urations of the ORAM controller leave almost 90% of the
FPGA’s logic elements available).

6.3 Impact on Application Performance

After evaluating PHANTOM’s ORAM controller in isola-
tion, we are now interested in how PHANTOM’s ORAM la-
tency translates into application slowdowns.

As an end-to-end example, we used our real RISC pro-
cessor to run several SQLite queries on the 7.5MB census
database from Figure 1 on our real hardware. Due to the
processor’s extremely small cache sizes, a very large per-
centage of memory accesses are cache misses (we ran the
same workloads on a RISC-V simulator and found 7.7%
dcache misses, and 55.5% LLC misses). As a result, we

4Response data ordering was enabled for all experiments.

sqlite-query3

sqlite-query2
[
ORAM 19
[u
sqlite-queryl ORAM 17
I ORAM 15
ORAM 13
[
sqlite-warmup ® DRAM
I
0 1 2 3 4 5 6

Execution time normalized to DRAM

Figure 15: SQLite Performance Results. We simu-
lated the performance of sqlite running with and without
PHANTOM on a timing model of a processor on the same
FPGA. We assume a 1MB L2 cache, 16KB icache, 32KB
dcache and an extra buffer for 8 ORAM blocks (32KB).

observed slow-downs of 6.5x to 14.7x for a set of different
SQLite queries (which are described in more detail later in
this section). This experiment shows how crucial caching is
to achieve good ORAM performance: with high miss rates,
the overhead of ORAM compared to regular memory ac-
cesses leads to order-of-magnitude slow-downs compared to
a baseline without ORAM).

To investigate the effect on applications in the presence of
realistic cache sizes (namely a 16KB cache, 32KB cache and
1IMB LLC cache), we fed the same application traces into
a timing model derived from our real processor to simulate
how our system would perform with realistic cache sizes.
The model assumes an in-order pipelined RISC-V processor
with 1 cycle per instruction, 2 cycles for branch misses, 2
cycles to access the data cache, 14 cycles to access the LLC,
and 89 cycles to access a 128B cache line from DRAM (us-
ing our measurement for the full Convey memory system)
and our access latencies for different DRAM configurations.
We also assumed that the processor waits for a full ORAM
request to finish and additionally evict a previous block,
essentially causing an up to 4x longer stall than a real exe-
cution. At the same time, we allow the baseline to use the
full Convey memory system.

Despite these penalties, we see that a real-world workload,
such as SQLite, can absorb a fair amount of our memory ac-
cess overheads and make use of our relatively large block
size of 4KB. Figure 15 shows our results for applying our
timing model to several SQLite queries on the 7.5MB cen-
sus database from Figure 1. sqlite-warmup and sqlite-
queryl are a JOIN operation between two large tables. The
difference in execution times show the effect of caching: in
the second query, much of the tables are already in the cache
and the impact of ORAM accesses is much lower. sqlite-
query?2 on the other hand shows fetching a single column of
a relatively small table — here, PHANTOM performs poorer
due to its large block size. sqlite-query3 represents a full
scan through all fields of a large table — this is an example
where PHANTOM fares particularly well since it can make
use of the locality (we would also like to point out that the
baseline would also benefit from pipelining requests, which
we do not account for).

In summary, our evaluation shows that the overheads ex-
posed by PHANTOM are indeed reasonable for real-world
workloads, especially given the fundamental cost of oblivi-
ousness is a bandwidth overhead of greater than 100x. Note

that these numbers depend upon the application’s last level
cache miss-rate and the overheads are small because most
of the application’s working set fits in the cache.

7. RELATED WORK

In the introduction, we highlighted representative prior
work on secure processors. Here we focus on work on oblivi-
ousness, especially in the context of secure processors. Obliv-
ious RAM (ORAM) is an algorithmic construct for hiding
memory access patterns and was first proposed by Goldreich
and Ostrovsky [12]. ORAM hides only memory access pat-
terns, but does not hide the timing or the total number of
memory accesses — complementary techniques can be used
to secure timing and termination channels [2,3,7,16,41].

Recent research on ORAM [6, 10, 12-14, 21,22, 24, 28, 31,
39,40] shows that it is possible to achieve obliviousness with
O(polylog(N)) overhead, i.e., every memory access trans-
lates into O(polylog(V)) seemingly random accesses.

The above algorithms have been demonstrated for disk
accesses in datacenters [22, 30, 40], but are impractical to
implement in a hardware memory controller since they are
complex and have high constant factors. Some prior work
(HIDE [42]) has looked at probabilistic solutions in hard-
ware that do not provide complete obliviousness but have
far lower overheads. Where strong obliviousness guarantees
are not required, HIDE might be a better fit.

In this project, we build upon Path ORAM [32], an ORAM
algorithm that is much simpler than prior ORAM algo-
rithms. Path ORAM has also been adopted by ASCEND |9,
26], a proposed secure processor with an oblivious memory
interface. While similar on the surface, we believe our work
to be largely complementary to ASCEND. The authors ap-
ply optimizations such as hierarchical ORAM, background
eviction, and integrity verification to Path ORAM. These
optimizations can be applied on top of PHANTOM as well,
while our optimizations are directed towards the hardware
architecture for Path ORAM. Using simulations, they pre-
dict that a SPEC 2006 int benchmark subset can execute
with a 3x (geometric mean) performance overhead over na-
tive. Note that with an ORAM latency of more than 2000
cycles, the low overhead can be attributed as much to the
SPEC benchmarks’ working set fitting in the cache (similar
to our results for SQLite).

8. CONCLUSION

We present PHANTOM, a practical oblivious memory sys-
tem that achieves high performance by exploiting memory
parallelism and using an architecture that scales to wide
memory channels. Importantly for adoption, implementing
PHANTOM prototype on a Convey FPGA machine enables
obliviousness to be available today. In the future, PHAN-
TOM can expose a memory composed of DRAM, encrypted
DRAM, and ORAM banks to software and thus open the
door to compiler analyses that improve performance with-
out compromising obliviousness.

Acknowledgements

We would like to thank John Lazzaro, John Wawrzynek and Brian
Zimmer (for CS250 instruction, Fall’11), Yunsup Lee and Andrew
Waterman (for RISC-V support), Derek Chiou and Walid Najjar
(for Convey hardware), and Glen Edwards and George Vandegrift
(for technical advice and support). Last but not least, we thank
the anonymous reviewers for their comments.

This work partially supported by Microsoft (Award #024263),
Intel (Award #024894) and matching U.C. Discovery funding
(Award #DIG07-10227); by National Science Foundation (NSF)
Grant #1136996 to the Computing Research Association for the
ClIFellows Project; by TerraSwarm, one of six centers of STAR-
net, a Semiconductor Research Corporation program sponsored
by MARCO and DARPA; by the NSF Graduate Research Fellow-
ship under Grant No. DGE-0946797; the DoD National Defense
Science and Engineering Graduate Fellowship; a Google Research
Award and a grant from the Amazon Web Services in Educa-
tion program; the NSF under Grants No. CNS-1314857, CCF-
0424422, 0311808, 0832943, 0448452, 0842694, 0627511, 0842695,
0808617, 0831501 CT-L, the Air Force Office of Scientific Re-
search under MURI Award No. FA9550-09-1-0539, the Air Force
Research Laboratory under grant No. P010071555, the Office of
Naval Research under MURI Grant No. N000140911081, and by
the MURI program under AFOSR Grant No. FA9550-08-1-0352.
Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of the funding agencies.

9. REFERENCES

(1] “PrivateCore,” http://www.privatecore.com/.

(2] J. Agat, “Transforming out Timing Leaks,” in POPL, 2000.

(3] A. Askarov, D. Zhang, and A. C. Myers, “Predictive
black-box mitigation of timing channels,” in CCS, 2010.

[4] A. Aviram, S. Hu, B. Ford, and R. Gummadi,
“Determinating Timing Channels in Compute Clouds,” in
CCSW, 2010.

(5] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman,

R. Avizienis, J. Wawrzynek, and K. Asanovic, “Chisel:
Constructing Hardware in a Scala Embedded Language,” in
DAC, 2012.

[6] K.-M. Chung, Z. Liu, and R. Pass, “Statistically-secure
oram with O(log? n) overhead,”
http://arxiv.org/abs/1307.3699, 2013.

[7] B. Coppens, I. Verbauwhede, K. D. Bosschere, and B. D.
Sutter, “Practical Mitigations for Timing-Based
Side-Channel Attacks on Modern x86 Processors,” in SP,
2009.

J. Devietti, B. Lucia, L. Ceze, and M. Oskin, “DMP:

Deterministic Shared Memory Multiprocessing,” in

ASPLOS, 2009.

[9] C. W. Fletcher, M. v. Dijk, and S. Devadas, “A Secure
Processor Architecture for Encrypted Computation on
Untrusted Programs,” in ST'C, 2012.

[10] C. Gentry, K. Goldman, S. Halevi, C. Julta, M. Raykova,
and D. Wichs, “Optimizing oram and using it efficiently for
secure computation,” in PETS, 2013.

[11] O. Goldreich, “Towards a Theory of Software Protection
and Simulation by Oblivious RAMs,” in STOC, 1987.

[12] O. Goldreich and R. Ostrovsky, “Software Protection and
Simulation on Oblivious RAMs,” J. ACM, 1996.

[13] M. T. Goodrich and M. Mitzenmacher, “Privacy-Preserving
Access of Outsourced Data via Oblivious RAM
Simulation,” in ICALP, 2011.

[14] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and
R. Tamassia, “Privacy-preserving Group Data Access via
Stateless Oblivious RAM Simulation,” in SODA, 2012.

[15] Y. Gu, Y. Fu, A. Prakash, Z. Lin, and H. Yin,
“OS-Sommelier: Memory-only Operating System
Fingerprinting in the Cloud,” in SoCC, 2012.

[16] A. Haeberlen, B. C. Pierce, and A. Narayan, “Differential
Privacy Under Fire,” in USENIX Security, 2011.

[17] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum,
and E. W. Felten, “Lest We Remember: Cold-boot Attacks
on Encryption Keys,” Commun. ACM, vol. 52, no. 5, 2009.

(8

[18] A. Hodjat and I. Verbauwhede, “A 21.54 Gbits/s Fully
Pipelined AES Processor on FPGA,” in FCCM, 2004.

[19] A. Huang, “Keeping Secrets in Hardware: The Microsoft
Xbox Case Study,” in CHES, 2002.

[20] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski,

M. Norrish, T. Sewell, H. Tuch, and S. Winwood, “sel.4:
Formal Verification of an OS Kernel,” in SOSP, 2009.

[21] E. Kushilevitz, S. Lu, and R. Ostrovsky, “On the
(In)security of Hash-based Oblivious RAM and a New
Balancing Scheme,” in SODA, 2012.

[22] J. R. Lorch and B. Parno, “Shroud: Ensuring Private
Access to Large-Scale Data in the Data Center,” in FAST,
2013.

[23] R. Martin, J. Demme, and S. Sethumadhavan, “TimeWarp:
Rethinking Timekeeping and Performance Monitoring
Mechanisms to Mitigate Side-channel Attacks,” in ISCA,
2012.

[24] R. Ostrovsky and V. Shoup, “Private Information Storage
(Extended Abstract),” in STOC, 1997.

[25] L. Ren, C. Fletcher, X. Yu, M. van Dijk, and S. Devadas,
“Integrity verification for path oblivious-ram,” in HPEC,
2013.

[26] L. Ren, X. Yu, C. W. Fletcher, M. van Dijk, and
S. Devadas, “Design Space Exploration and Optimization of
Path Oblivious RAM in Secure Processors,” in ISCA, 2013.

[27] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin,
“Using address independent seed encryption and bonsai
merkle trees to make secure processors os- and
performance-friendly,” in MICRO, 2007.

[28] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li, “Oblivious
RAM with O((log N)3) Worst-Case Cost,” in
ASIACRYPT, 2011.

[29] S. W. Smith, “Outbound Authentication for Programmable
Secure Coprocessors,” in ESORICS, 2002.

[30] E. Stefanov and E. Shi, “Oblivistore: High performance
oblivious cloud storage,” in S & P, 2013.

[31] E. Stefanov, E. Shi, and D. Song, “Towards Practical
Oblivious RAM,” in NDSS, 2012.

[32] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren,

X. Yu, and S. Devadas, “Path O-RAM: An Extremely
Simple Oblivious RAM Protocol,” in CCS, 2013.

[33] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and
S. Devadas, “AEGIS: Architecture for Tamper-evident and
Tamper-resistant Processing,” in ICS, 2003.

[34] D. L. C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,

J. Mitchell, and M. Horowitz, “Architectural Support for
Copy and Tamper Resistant Software,” SIGOPS Oper.
Syst. Rev., vol. 34, no. 5, pp. 168-177, 2000.

[35] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T.
Chong, and T. Sherwood, “Complete Information Flow
Tracking from the Gates up,” in ASPLOS, 2009.

[36] A. Waksman and S. Sethumadhavan, “Silencing Hardware
Backdoors,” in SP, 2011.

[37] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovié,
“The RISC-V Instruction Set Manual, Volume I: Base
User-Level ISA,” EECS Department, UC Berkeley, Tech.
Rep. UCB/EECS-2011-62, May 2011.

[38] P. Williams and R. Sion, “Round-Optimal Access Privacy
on Outsourced Storage,” in CCS, 2012.

[39] P. Williams, R. Sion, and B. Carbunar, “Building castles
out of mud: practical access pattern privacy and
correctness on untrusted storage,” in CCS, 2008.

[40] P. Williams, R. Sion, and A. Tomescu, “PrivateFS: A
Parallel Oblivious File System,” in CCS, 2012.

[41] D. Zhang, A. Askarov, and A. C. Myers, “Predictive
Mitigation of Timing Channels in Interactive Systems,” in
CCS, 2011.

[42] X. Zhuang, T. Zhang, and S. Pande, “HIDE: An
Infrastructure for Efficiently Protecting Information
Leakage on the Address Bus,” in ASPLOS, 2004.

APPENDIX
A. PROOF OF OVERLAPPING HEAPIFY.

For a heap with tree-depth d, insert and extractMin take
d 4+ 3 cycles. For a stash size less than 256, d < 8 and
hence the extractMins overlap with the (32 cycle) writes
since 8 + 3 < 32. To prove that the insertions overlap as
well, we have to show that the heapify operation and all
insertions always finish in the available time.

Heapify starts at the first cycle of the ORAM access, and
incoming blocks from from AES decrypt are stored in a
queue. Hence it is sufficient to show that the combined time
for heapify and all inserts is smaller than the time the entire
path read takes. Since inserts take d+3 cycles per block, for
an ORAM tree with [levels and a bucket size of 4, we need
to ensure that heapify takes at most tmaz = 4(32 — (d+ 3))
cycles.

Heapify performs a k + 1 cycle operation for each node
in the heap but the ones on the last level, where k is the
distance of the node to the leaves. Hence heapify takes

d—1 d—1
th=> 27N d—i+1) <) 272" = (d—1)2*"
i=1 i=1

cycles. Now if we set d < 8,1 > 13, then ¢, < 7-27 = 896
while tmae =4-13- (32— (8+3)) = 1,092. Hence tn < tmax
and therefore heapify and inserts overlap as described in
Section 5.4. Note that this bound is not very tight (for
d < 8, t, = 374) and sorting can be further optimized.

