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Abstract

For designers of large-scale parallel computers, it is greatly desired
that performance of parallel applications can be predicted at the
design phase. However, this is difficult because the execution time
of parallel applications is determined by several factors, including
sequential computation time in each process, communication time
and their convolution. Despite previous efforts, it remains an open
problem to estimate sequential computation time in each process
accurately and efficiently for large-scale parallel applications on
non-existing target machines.

This paper proposes a novel approach to predict the sequential
computation time accurately and efficiently. We assume that there
is at least one node of the target platform but the whole target sys-
tem need not be available. We make two main technical contribu-
tions. First, we employ deterministic replay techniques to execute
any process of a parallel application on a single node at real speed.
As a result, we can simply measure the real sequential computa-
tion time on a target node for each process one by one. Second, we
observe that computation behavior of processes in parallel appli-
cations can be clustered into a few groups while processes in each
group have similar computation behavior. This observation helps
us reduce measurement time significantly because we only need to
execute representative parallel processes instead of all of them.

We have implemented a performance prediction framework,
called PHANTOM, which integrates the above computation-time ac-
quisition approach with a trace-driven network simulator. We vali-
date our approach on several platforms. For ASCI Sweep3D, the er-
ror of our approach is less than 5% on 1024 processor cores. Com-
pared to a recent regression-based prediction approach, PHANTOM

presents better prediction accuracy across different platforms.

Categories and Subject Descriptors D.2.8 [Software Engineer-
ing]: Metrics—Complexity Measures, Performance Measures

General Terms Performance, Measurement

Keywords Performance Prediction, Parallel Application, Deter-
ministic Replay, Trace-driven Simulation

1. Introduction

1.1 Motivation

Today, large-scale parallel computers consist of thousands of pro-
cessor cores and cost millions of dollars which take years to design
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and implement. For designers of these computers, it is critical to
answer the following question at the design phase:

What is the performance of application X on a parallel
machine Y with 10000 nodes connected by network Z?

Accurate answer to the above question enables designers to
evaluate various design alternatives and make sure that the design
can meet the performance goal. In addition, it also helps application
developers to design and optimize applications even before the
target machine is available.

However, accurate performance prediction of parallel applica-
tions1 is difficult because the execution time of large parallel ap-
plications is determined by sequential computation time in each
process, the communication time and their convolution. Due to the
complex interactions between computation and communications,
the prediction accuracy can be hurt significantly if either computa-
tion or communication time is estimated with notable errors.

In this paper, we focus on how to acquire sequential compu-
tation time accurately for large-scale parallel applications. This is
because existing approaches address the communication time esti-
mation and the convolution issues fairly well, such as BigNetSim
and DIMEMAS [6, 9]. The bottleneck of current prediction frame-
work is to estimate sequential computation time in each process
accurately and efficiently for large-scale parallel applications on
non-existing target parallel machines.

A lot of approaches have been proposed to estimate sequential
computation time for parallel applications. For model-based meth-
ods [13, 19], the application signatures, including the number of in-
teger and floating-point instructions, memory access patterns, etc.,
are collected on a host platform through instrumentation or hard-
ware performance counters. Then a parameterized model is con-
structed to estimate the time for each of these operations according
to the parameters of target platform and give the estimation for each
sequential computation unit.

However, with rising architecture and software complexity, the
accuracy of model-based approaches is becoming increasingly
compromised. For example, an out-of-order issue super-scalar pro-
cessor can execute multiple instructions in parallel. Contention for
shared resources, such as shared cache and memory bus, on the
multi-core platform can result in complex program behavior. These
factors make model-based approaches difficult to acquire accurate
sequential computation performance.

Some researchers [8, 20] measured the time of sequential com-
putation for weak-scaling parallel applications through executing
the application on a prototype system, which has fewer processors
than the target system. For weak-scaling applications, where prob-
lem size is fixed for each processor and the sequential computation

1 Because Message Passing Interface (MPI) is the dominant programming
model in large-scale high performance computing, we use parallel applica-

tions to indicate parallel applications written in MPI in this paper. However,
our approach is applicable to other message passing programming models.
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does not change with the number of processors, a prototype system
is sufficient to acquire accurate computation performance.

However, measurement-based approaches do not work for
strong-scaling applications where the whole problem size is fixed
and the sequential computation workload varies with the number
of processors. For strong-scaling applications, a few work [4, 21]
uses regression-based approaches to extrapolate computation per-
formance of large problem size. Unfortunately, extrapolation is not
always applicable due to the non-linear behavior in real applica-
tions [3].

To conclude, current approaches are not able to perform accu-
rate sequential computation time estimation at affordable cost and
time, especially for large strong-scaling parallel applications.

1.2 Our Approach and Contributions

In this paper, we propose a novel approach based on deterministic
replay techniques to solve the problem. For readers who are not
familiar with deterministic replay, please refer to Section 4.1 and
[5, 10, 14, 24]. Our paper makes two main contributions:

1. Employing deterministic replay techniques to measure sequen-
tial computation time of strong-scaling applications without full-
scale target machines The biggest challenge of measurement-
based prediction approaches is unable to execute large strong-
scaling applications on full-scale target machines because they are
not available yet. We address this issue by employing deterministic
replay techniques which enable us to execute any single process of
a parallel application separately on a single node at real speed with-
out the full-scale target machine. So we can simply measure the real
sequential computation time on a target node for each process one
by one.

It is obvious that this approach still requires long measurement
time since we need to execute all processes on this single node
one by one. However, the execution time can be reduced almost
proportionally to the number of nodes used for performance pre-
diction because we can replay any number of processes at the same
time given sufficient number of target nodes. In fact, even in one
node, we usually replay number-of-cores processes simultaneously
instead of one process to gain accurate sequential computation time
due to the effects of shared resources in modern computers.

Also it should be emphasized that the replayed processes are
executed at full speed, which is at least three orders of magnitude
faster than cycle-accurate simulation.

2. Employing representative replay to reduce measurement time
Although with the approaches proposed above, we can accurately
measure the sequential computation time for each process at an
unprecedented speed, we still hope to reduce the measurement
time further because target platforms may have thousands of nodes
which can be translated into significant slowdown if we replay all
processes on a small number of available target nodes. Given the
fact that some applications execute for several days on thousands
of nodes, there is still a great desire to reduce the measurement time
notably further.

In this paper, we observe that computation behavior of processes
in parallel applications can be clustered into a few groups while
processes in each group have similar computation behavior. This
observation helps us to reduce the measurement time significantly
because we only need to replay representative parallel processes
instead of all of them.

Our approach is based on the following two assumptions:
1. Message logs of the whole parallel application that will be

used during the replay phase are available. In fact, this assumption
is a limitation of our approach, since we need to run the parallel
application on an existing system to collect the required message
logs. If we want to predict an application’s performance on a next-

generation machine, we may not be able to find large enough
existing systems to collect the logs for it.

Even with this limitation, we still believe that our approach is a
solid step ahead of existing work because it can do cross-platform
performance prediction. This is a greatly desired feature for HPC
system vendors and customers when they design or purchase new
parallel computers that are in the scale of current largest machine.
Our technique can be employed by acquiring message logs from the
existing large machines and predict the performance of the other
one in the same or smaller scale, perhaps with different processors,
interconnect and memory size/speed.

2. At least one node of the target platform is available. One
node of the target platform is needed for our approach although
the whole target system may not be available yet. We believe this
assumption is reasonable because target-platform nodes are usually
available several months earlier than the whole system.

We have implemented a performance prediction framework,
called PHANTOM, which integrates the above computation-time ac-
quisition approach with a trace-driven network simulator. We vali-
date our approach on several platforms. For ASCI Sweep3D, the
error of our approach is less than 5% on 1024 processor cores.
We compare the prediction accuracy of PHANTOM with a recent
regression-based prediction approach [4]. The results show that
PHANTOM has better prediction accuracy across different plat-
forms than the regression-based approach.

This paper is organized as follows. Section 2 gives our base per-
formance prediction framework. In Section 3, we give two key def-
initions used in our approach. In Section 4 and 5, we present our
idea that how we acquire sequential computation time. Section 6
describes the implementation of PHANTOM. Our experimental re-
sults are reported in Section 7. We discuss limitations and extension
of our work in Section 8. The related work is discussed in Section 9.
Finally, we conclude in Section 10.

2. Base Prediction Framework

We use a trace-driven simulation approach for the performance pre-
diction. In our framework, we split the parallel applications into
computation and communication two parts, predict computation
and communication performance separately and finally use a sim-
ulator to convolute them to get the execution time of whole parallel
applications. The framework includes the following key steps:

1. Collecting computation and communication traces We gen-
erate communication traces of parallel applications by intercepting
all communication operations for each process, and mark the com-
putation between communication operations as sequential compu-
tation units. The purpose of this step is to separate communica-
tions and computation in parallel applications to enable us to pre-
dict them separately. Figure 1 shows a simple MPI program and
its computation and communication traces are given in Figure 2a
when the number of processes is 2 (The elapsed time for the kth

computation unit of process x is denoted by CPU Burst(x,k).).
It should be noted that we only need the communication infor-

mation (e.g. message type, message size, source and destination
etc.) and the interleave of communication/computation in this step.
All temporal properties are not used in later steps of performance
prediction. A common approach of generating these traces is to
execute parallel applications with instrumented MPI libraries. To
further reduce the overhead in this step, we employ the FACT tech-
nique [26] which can generate traces of large-scale applications on
small-scale systems fast.

2. Obtaining sequential computation time for each process The
sequential computation time for each MPI process is measured
through executing each process separately on a node of the target
platform with deterministic replay techniques. We will elaborate it
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1 real A(MAX,MAX), B(MAX,MAX), C(MAX,MAX), buf(MAX,MAX)

2 call MPI_INIT(ierr)

3 call MPI_COMM_RANK(MPI_COMM_WORLD,myid...)

4 DO iter=1, N

5 if (myid .gt. 0) then

6 call MPI_RECV(buf(1, 1),num,MPI_REAL,myid-1,...)

7 endif

8 DO i=1, MAX

9 DO j=1, MAX

10 A(i,j)=B(i,j)*C(i,j)+buf(i,j)

11 END DO

12 END DO

13 if (myid .lt. numprocs-1) then

14 call MPI_SEND(A(1, 1),num,MPI_REAL,myid+1,...)

15 endif

16 END DO

17 call MPI_FINALIZE(rc)

Figure 1: An example of Fortran MPI program.

in Sections 4 and 5. For now, we just assume that we obtain the ac-
curate computation time for each MPI process which can be filled
into the traces generated in step 1. Figure 2b shows obtained se-
quential computation time for process 0 of the program in Figure 1.

3. Use a trace-driven simulator to convolute communication
and computation performance Finally, a trace driven simula-
tor, called SIM-MPI [22], is used to convolute communication and
computation performance. As shown in Figure 2c, the simulator
reads trace files generated in step 1, the sequential computation
time obtained in step 2, and network parameters of target plat-
forms, to predict the communication performance of each com-
munication operation and convolute it with sequential computation
time to predict the execution time of the whole parallel applica-
tion on the target platform. SIM-MPI is similar to DIMEMAS [9],
but with a more accurate communication model, called LogGPO,
which is an extension of LogGP model [1]. It can model the over-
lap between computation and communication more accurately than
existing communications models. Details of LogGPO model and
SIM-MPI simulator can be found in [22].

MPI_Init
MPI_Rank(id=0)
CPU_Burst(id,0)
MPI_Send(id+1,size)
CPU_Burst(id,1)
MPI_Send(id+1,size)
CPU_Burst(id,2)

MPI_Init
MPI_Rank(id=1)
CPU_Burst(id,0)
MPI_Recv(id-1,size)
CPU_Burst(id,1)
MPI_Recv(id-1,size)
CPU_Burst(id,2)

Process 0 Process 1

(a) MPI traces

id=0

CPU_Burst(id,0)=2sec

CPU_Burst(id,1)=1sec

CPU_Burst(id,2)=7sec

CPU_Burst(id,3)=2sec

Process 0

(b) Computation time

MPI_Init
MPI_Rank(id=0)
CPU_Burst(id,0)
MPI_Send(id+1,size)
CPU_Burst(id,1)

id=0

CPU_Burst(id,0)=2sec

CPU_Burst(id,1)=1sec

Obtained Computation TimeMPI Traces

Latency  =1.6 usec
Bandwidth=1.5GB/sec
Topology =2D Mesh

SIM-MPI Simulator

Predicted Performance

Network Parameters

(c) Prediction framework

Figure 2: Base performance prediction framework.

3. Definitions

In order to illustrate our idea more clearly, we define two key con-
cepts for MPI applications in this section. One is communication
sequence, the other is sequential computation vector.

3.1 Communication Sequence

Communication sequence is first introduced by Shao et al. [17],
which describes the intrinsic communication characteristics of par-
allel applications.

DEFINITION 1 (Communication Sequence). Communication se-
quence is a representation of communication pattern for a given
parallel program, which records message type of each communica-

tion operation in temporal sequence for each parallel process.

Figure 3 gives an example of MPI program. The left part is the
source code of program and the right part shows communications,
computation and their interleave for this program with two pro-
cesses: P0 and P1. c0, c1(i), c2(i) and c3(i) mean the sequential
computation time between communication operations. The com-
munication sequence literal representation for processes P0 and
P1 in Figure 3 is shown below (Square brackets means a loop of
communication operations.). In this program, the processes with
the same parity have identical communication sequence.

C(P0) = {Init, Barrier, [Send, Recv], Fina}.
C(P1) = {Init, Barrier, [Recv, Send], Fina}.

MPI_Init

c0    // Means computation

MPI_Barrier

for(i=0; i<N; i++){

if(myid%2 == 1){

MPI_Recv(..., myid-1, ...)

    c1(i)

    MPI_Send(..., myid-1, ...)

}

  c2(i)

  if(myid%2 == 0){

MPI_Send(..., myid+1, ...)

    c3(i)

    MPI_Recv(..., myid+1, ...)

  }

}

MPI_Fina

c0

MPI_Init

MPI_Barrier

MPI_Send

MPI_Recv

MPI_Send

MPI_Init

MPI_Barrier

MPI_Send

MPI_Recv

MPI_Recvc2(0)

c3(0)

c2(1)

c3(1)

c0

c1(0)

c2(0)

c1(1)

MPI_Send

P0 P1

Figure 3: An example of MPI program and its execution model.

3.2 Sequential Computation Vector

DEFINITION 2 (Sequential Computation Vector). Sequential com-
putation vector is a time vector which is used to record the se-
quential computation performance for a given process of parallel
application. Each element of the vector is the elapsed time of cor-
responding computation unit.

The sequential computation vector for process x is denoted by
cx:

c
x = [t0, t1, . . . , tm] (3)

where tk = (Bk+1 − Ek), k ≥ 0, Bk and Ek are the time-

stamps of entry and exit points for the kth communication opera-
tion respectively in process x. The dimension of the computation
vector represents the number of the segmenting computation units
for a given process, denoted by dim(c). The computation pattern
for the application A with n processes can be described with a n-
tuple, denoted by C(A):

C(A) = (c0
, c

1
, . . . , c

n) (4)

For example, the sequential computation vectors for processes
0 and 1 in Figure 3 are listed below.

c0 = [c0, c2(0), c3(0), c2(1), c3(1), ..., c3(N − 1)].
c1 = [c0, c1(0), c2(0), c1(1), c2(1), ..., c2(N − 1)].
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4. Obtaining Sequential Computation Time

In this section, we present the basic approach that how we acquire
the sequential computation time for a parallel application with the
deterministic replay technique.

4.1 Deterministic Replay

Deterministic replay [5, 10, 14, 24] is a powerful technique for
debugging parallel applications. Replay tools include two phases:
record phase and replay phase. In the record phase, replay tools
record orders and/or return values of irreproducible function calls,
such as incoming messages, during the application execution. In the
replay phase, they can replay the faulty processes to any state of the
recorded execution. Data replay [5, 14] is an important type of de-
terministic replay technique for parallel applications. It records all
incoming messages to each process during the application execu-
tion. With this approach, developers can execute any single process
for debugging during the replay phase rather than having to execute
the entire parallel application. The weakness of data replay is that
replay tools must record all inter-process communications for each
process.

4.2 Acquire Sequential Computation Time

In contrast to previous methods, our approach is based on data-
replay techniques to acquire sequential computation time. Our ap-
proach of replay-based requires two platforms. One is the host plat-
form, which is used to collect the message logs of applications like
traditional data-replay techniques. The other is one single node of
the target platform on which we want to predict performance. For
homogeneous HPC systems, just one node of the target platform is
sufficient for our approach. More nodes of the target platform can
be used to replay different processes in parallel. If the target plat-
form is heterogeneous, at least one node of each architecture type
is needed.

P0

Parallel Application

P1 Pn
comm

record record record

(a) Build message-log database

P0

Read Log

Pn

Read Log

P1

Read Log

(b) Replay each process separately

Figure 4: Acquire the sequential computation time.

As shown in Figure 4, the main steps of our approach to acquire
sequential computation time of applications include:
(1) Building message-log database: Record all necessary informa-
tion as in the data-replay tools when executing the application on
the host platform and store these information to a message-log
database. This step is only done once and the message-log database
can be reused in the future prediction.
(2) Replaying each process separately: Replay each process of the
application on the single node separately and collect the elapsed
time for each sequential computation unit.

Building Message-log Database This step is the same as the
record phase in the data replay. All irreproducible information
must be recorded during the application execution. We maintain
a message-log database to record these data for different applica-
tions, which can be reused in the future prediction. This step can
be also done during the development of the application, which is
reasonable when data-replay techniques are used for debugging.

In our data-replay system, we record the data using MPI pro-
filing interface (PMPI), which requires no modifications of either

applications or MPI libraries. In the logging execution, our sys-
tem intercepts each MPI computation operation, and then records
the returned values and memory changes to log files, including all
incoming messages to each process. For receiving communication
operations, we record the contents of receiving messages, the re-
turn values from the function and the MPI status. For sending op-
erations, only the returned values are recorded. For non-blocking
receiving operations, we maintain a table to map the request han-
dle to the receiving buffer corresponding to it and record real mes-
sage contents at the invocation of MPI Wait or MPI Waitall

routines. Figure 5 gives an example to record logs for MPI Recv

routine.

int MPI_Recv (buf, count, type, src, tag, comm, status){

int retVal = PMPI_Recv (buf, count, type, src,

tag, comm, status)

Write retVal to log

Write buf to log

Write status to log

return retVal

}

Figure 5: An example of recording logs for MPI Recv routine.

Replaying Each Process Separately When we want to acquire
the sequential computation time for a given process, we just need to
execute that process rather than execute a full-scale parallel appli-
cation. The data-replay technique makes it practical to execute par-
ticular process during the replay phase. The message-log database
records the necessary information for replaying each process. To
acquire the sequential computation time, we insert two timing func-
tions at the entry and exist points of communication operations in
the replay engine. A simple program is used to calculate the final
sequential computation time for each process. Figure 6 shows an
example for replaying MPI Recv routine and recording the time-
stamps. Bk and Ek are the time-stamps of entry and exist points
for the kth communication operations.

int MPI_Recv (buf, count, type, src, tag, comm, status){

Record time-stamp(Bk)

Read log to retVal

Read log to buf

Read log to status

Record time-stamp(Ek)

return retVal

}

Figure 6: Replay MPI Recv routine and record time-stamps.

4.3 Concurrent Replay

In current multi-core platforms or SMP (Symmetric Multi-Processor)
servers, resource contention can affect the application performance
significantly. To accurately measure the effects of resource con-
tention on application performance, we propose the strategy of
concurrent replay in PHANTOM. During the replay phase, we re-
play multiple processes simultaneously according to the number of
processes running on one node of the target platform. Thus, the ef-
fects of resource contention can be captured during the concurrent
execution.

To reduce overhead for recording message logs, we employ the
SRR (Subgroup Reproducible Replay) technique [24] in PHAN-
TOM. We treat the processes executing on the same node as a
replay subgroup. Only the contents of communications crossing
nodes are recorded, while the communications within a node are
not recorded. During the replay phase, the processes on the same
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node are executed simultaneously. Besides reducing logging over-
head, another advantage of using SRR technique is that the execu-
tion mode during SRR replay is more close to the real execution.
Because during the SRR replay the intra-node communications are
the same with the real execution and only the inter-node communi-
cations need to be read from the message-log files.

On the accuracy of replay-based computation time collec-
tion Although the concurrent replay technique partially reproduces
the cache/bus contentions occurred in the real execution of parallel
applications, there are still sources for errors. For example, during
the replay phase, all incoming messages crossing nodes are read
from message logs directly without waiting for other processes to
send them out. This may cause different resource contention pat-
terns from the real execution. From our experiments, we find that
the errors introduced by replay are acceptable for benchmarks we
have evaluated.

5. Representative Replay

In this section, first we propose the challenges with the approach
proposed in Section 4 when processing large-scale applications.
Second, we present the attributes of computation similarity existing
in most parallel MPI applications. At last, we present representative
replay technique to address these challenges.

5.1 Challenges for Large-Scale Applications

Basic approach can already acquire accurate sequential computa-
tion time for a strong-scaling application on a small-scale system.
However, there are two main challenges for large-scale applica-
tions:

• Large time overhead: For a parallel application with n pro-
cesses, assuming that we replay one process at a time and the
average time for replaying one process is T , thus it will take
nT to obtain all the computation performance. In fact, this time
complexity is impractical for an application with thousands of
processes.

• Huge log size: As data replay requires recording all incoming
messages for each process, the log size will become more and
more huge with rising of the number of processes.

5.2 Computation Similarity

An important inspiration in this paper is that in parallel MPI ap-
plications computation behavior of different processes represents
great similarity. Due to the SPMD (Single Program Multiple Data)
nature of MPI programs, the program representation for each pro-
cess is not necessarily distinct but rather most processes execute
the same program with unique data. Such computation patterns
are reasonable for most MPI applications. A number of studies
for analyzing MPI applications have shown that most processes
perform the same calculations and have the similar computation
behavior [3, 7, 8, 15, 20]. For example, in the NPB MG pro-
gram (CLASS=C) with 16 processes, the computation behavior of
a group of processes 0-3, 8-11 represents great similarity, and that
of another group of processes 4-7, 12-15 also represents great sim-
ilarity. The computation behavior of processes between two groups
has significant difference. For the purpose of clear presentation, we
just list the computation behavior of processes 10, 11 in Figure 7a
and processes 11, 13 in Figure 7b.

To measure the similarity degree of computation behavior be-
tween two processes, we use the distance of sequential computation
vectors to characterize it. There are several ways of calculating the
distance of two vectors, such as Euclidean distance and Manhattan
distance. In this paper, we adopt Manhattan distance to compare
two vectors. The Manhattan distance between two vectors is the
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Figure 7: Sequential computation vectors for NPB MG program
(CLASS=C, NPROCS=16). The computation behavior of pro-
cesses 10, 11 represents great similarity, while the computation be-
havior of processes 11, 13 has great difference.

sum of absolute values of the differences of their corresponding
elements, which has the advantage that it weights more heavily dif-
ferences in each dimension. Thus, it is consistent with our aim of
finding the processes that have the similar computation behavior as
far as possible. For processes x and y, the distance is computed as:

Dist(cx
, c

y) =

8

>

<

>

:

m
X

i=1

|cx
i − c

y
i | if C(x) = C(y)

∞ if C(x) �= C(y)

(5)

where cx and cy are the sequential computation vectors for
processes x and y. cx

i and c
y
i are the ith vector elements. m is the

dimension of the vectors. C(x) and C(y) are the communication
sequences. For processes with different communication sequences,
we set their distance infinity, since the dimension of their sequential
computation vectors may be not identical.

5.3 Select Representative Processes

Based on the key observation, we propose representative replay
to address the challenges listed in Section 5.1. Our idea is to
partition processes of applications into a number of groups so the
computation behavior of processes in the same group are as similar
as possible, and choose a representative process from the group to
record and replay, whose sequential computation performance will
be used instead of other processes in the same group.

To identify the similar processes, we employ clustering tech-
nique, which is an effective technique to analyze complex nature
of multivariate relationships. There are two commonly used clus-
tering techniques called K-means clustering and hierarchical clus-
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tering. K-means clustering is computationally efficient, but it re-
quires an a priori known number of classes. It is suitable for the
users who know much about the computation patterns of the ap-
plication. Hierarchical clustering is general method for most users
who know little about the application. It forms the final class by hi-
erarchically grouping sub-clusters according to predefined distance
metric. Both clustering techniques are supported in PHANTOM.

Algorithm 1 Hierarchical Clustering in PHANTOM

1: procedure CLUSTERING

2: Assign each process to its own cluster

3: Compute the inter-cluster distance matrix by Formula 5
4: repeat

5: Find the most closest pair of clusters (have minimal distance)

and merge them into a new cluster

6: Re-compute the distance matrix between new cluster with each
old cluster using complete linkage

7: until Only a single cluster is left

8: end procedure

The algorithm of hierarchical clustering used in PHANTOM is
listed in Algorithm 1. Complete linkage is used to measure the
inter-cluster distance in hierarchical clustering (The distance be-
tween two clusters is the distance between the furthest points in
those clusters). The output of hierarchical clustering can be repre-
sented by a dendrogram, where each level indicates the merging
of two closest sub-clusters. Figure 8 illustrates the dendrogram for
NPB MG program with 16 processes. Depending on the expected
accuracy of final prediction, a horizontal line can be drawn in the
dendrogram to partition the processes into a number of groups. We
use a k% factor to compute the linkage distance. Assuming that
there are n processes of applications having identical communica-
tion sequence, the dimension of their sequential computation vec-
tors is m. Hence, k%-linkage distance, L, is given by Formula 6.

L = k%
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Figure 8: Dendrogram for NPB MG program (CLASS=C,
NPROCS=16).

Representative process replay implemented in PHANTOM in-
volves the following key steps:

1. Collecting the communication sequence and computation pat-
terns for a given parallel application. The communication se-
quence described in Section 3 can be also acquired with FACT

technique [26] on a small-scale system. The computation pat-
terns for each process are represented with sequential compu-
tation vectors which can be collected on a host platform. The
overhead in terms of time and space of this step is relatively
little, since only a small quantity of data is collected.

2. Clustering the processes based on the degree of computation
similarity. First, the processes that have identical communica-
tion sequence are put into the same group. Second, for each
process group, the clustering technique is used to group similar

processes further. Finally, all the processes are partitioned into
a number of clusters.

3. Selecting representative processes and building the message-
log database. For each cluster, the process that is closest to the
center of the cluster is selected as the representative process.
During the record phase, PHANTOM only records the message
logs for these select processes.

4. Replaying representative processes on one node of the target
platform. During the replay phase, the sequential computation
time of these select processes are collected, which will be used
instead of other processes in the same cluster for predicting
application performance.

The main idea in representative replay is that for each process
group, only the representative process should be recorded and re-
played for performance prediction. Moreover, to capture the effects
of resource contention, the processes executing on the same node
with representative processes should be also recorded.

6. Implementation

In this paper, we implement a performance prediction framework
for parallel applications based on representative replay, called
PHANTOM. In fact, representative replay can be used in other
prediction framework for improving prediction accuracy, such as
PERC and macro-level simulation[19, 21]. PHANTOM is an auto-
matic tool chain which requires little manpower for understanding
the algorithm and implementation of the parallel application. Fig-
ure 9 gives an overview of PHANTOM. PHANTOM consists of three
main modules, CompAna, CommAna and NetSim.
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Figure 9: Overview of PHANTOM.

CompAna module is responsible for analyzing the computa-
tion similarity of parallel applications and building the message-log
database on the host platform. When the users want to predict the
application performance, at least one node of the target platform
is used to replay representative processes. The collected sequential
computation time for each process is stored with computation trace
files as described in Section 2. CommAna module takes advantage
of FACT technique [26] to collect the communication traces of par-
allel applications. The communication trace files record the mes-
sage type, message size, message source and destination, etc. for
each communication operation. More details about FACT can be
found in [26]. In the NetSim module, the computation and commu-
nication traces generated by previous two modules are fed into a
network simulator, SIM-MPI [22]. The SIM-MPI outputs the final
performance prediction result of the application.
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7. Evaluation

7.1 Experiment Platforms and Benchmarks

Table 1 gives a description of parallel platforms used in our evalu-
ation. Explorer platform serves as the host platform used to collect
message logs of applications. The other three platforms are used to
validate the prediction accuracy of our approach.

Table 1: Parallel platforms used in the evaluation.

System Explorer Dawning DeepComp-F DeepComp-B

CPU type Intel E5345 AMD 2350 Intel X7350 Intel E5450
CPU speed 2.33 GHz 2.0 GHz 2.93 GHz 3.0 GHz
#cores/node 8 8 16 8

#nodes 16 32 16 128
mem/node 8 GB 16 GB 128 GB 32 GB
Network Infiniband InfiniBand InifiniBand InfiniBand

Shared FS NFS NFS StorNext StorNext
OS Linux Linux Linux Linux

We evaluate our approach with 6 NPB programs [2], BT, CG,
EP, LU, MG, SP and ASCI Sweep3D (S3) [12]. The version of
NPB is 3.3 and input data set is Class C. For Sweep3D, both
execution modes are used, strong-scaling and weak-scaling modes.
For strong-scaling mode (S3-S), the total problem size of 512 ×
512 × 200 is used. For weak-scaling mode (S3-W), the problem
size is 100 × 100 × 100 which is fixed for each process.

7.2 Grouping Results

Table 2 shows the results of the number of process groups that have
the similar computation behavior for each program with different
numbers of processes (For BT and SP, the number of processes
is 16, 36, 64, 144 and 256.). The grouping strategy is described
in Section 5.3 and the factor used in hierarchical clustering is
10%. The computation patterns of the applications are collected
on DeepComp-B platform. The results can be classified into three
categories: 1) For BT, CG, EP and SP, all the processes have almost
similar computation behavior for different numbers of processes.
For BT and SP with 36 processes, due to load imbalance the
number of groups is 2. 2) For LU and Sweep3D (both strong-
scaling and weak-scaling modes), the number of groups keeps
constant with the number of processes. 3) For MG, the number
of groups increases as the number of processes. However, the
number of groups grows slower than the number of processes. The
experimental results confirm our observation that most processes in
parallel programs have the similar computation behavior.

An interesting finding observed in our experiments is that, the
processes that have identical communication sequence always have
similar computation behavior. This finding gives us a hint that
we can only use the communication sequence to group parallel
processes in MPI applications approximately.

Table 2: The number of process groups that have similar computa-
tion behavior.

Proc. # BT CG EP LU MG SP S3-S S3-W

16 1 1 1 9 2 1 9 9
32 2 1 1 9 4 2 9 9
64 1 1 1 9 8 1 9 9

128 1 1 1 9 12 1 9 9
256 1 1 1 9 18 1 9 9

7.3 Performance Prediction

7.3.1 The accuracy of sequential computation performance

We have compared the sequential computation performance ac-
quired using our approach with the real sequential computation per-
formance on several platforms. The results show that our approach

can get accurate sequential computation performance. Figure 11
gives a comparison result for process 0 of S3-S with 256 processes
on Dawning platform. The main difference between replay-based
execution with normal execution is that where the incoming mes-
sages are received. During the replay-based execution, the receiv-
ing messages are read from message-log files instead of network.
We find that the operations of reading logs has little effect on the
application performance. At the following section, we will give the
detailed results of prediction accuracy using our acquired sequen-
tial computation time.
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Figure 11: The real sequential computation performance vs. ac-
quired with representative replay for process 0 of S3-S with 256
processes on Dawning platform.

7.3.2 Prediction results

Comparison In this paper, we compare the predicted time using
PHANTOM with a recent prediction approach proposed by Barnes et
al.: regression-based model [4]. This model predicts the execution
time T of a given parallel application on p processors by using
several instrumented runs of this program on q processors, where
q ∈ {2, ..., p0}, p0 < p. Through varying the values of the input
variables (x1, x2, ..., xn) on the instrumented runs, this model aims
to calculate coefficients (β0, ..., βn) by linear regression fit for
log2(T ):

log2(T ) = β0+β1log2(x1)+β2log2(x2)+...+βnlog2(xn)+
g(q) + error

where in this model g(q) can be either a linear function or a
quadratic function for the number of processors, q. Once these
coefficients are determined, above equation can be used to predict
the application performance on p processors. In this paper, we
use three different processor configurations for training set: p0 =
16, p0 = 32 and p0 = 64. For each program, we predict the
performance with two forms of g(q) function given by the authors,
and the best results are reported.

In PHANTOM, all the sequential computation time of representa-
tive processes is acquired using a single node of the target platform.
The network parameters needed by SIM-MPI are measured with
micro-benchmarks on the network of the target platform. In this
paper, error is defined as (measured time-predicted time)/(measured
time*100) and all the experiments are conducted for 5 times.

Figure 10 demonstrates the prediction results with both PHAN-
TOM and the regression-based approach for seven programs on the
dawning platform. As shown in Figure 10, the agreement between
the predicted execution time with PHANTOM and the measured
time is remarkably high. The prediction error with PHANTOM is
less than 8% on average for all the programs. Note that EP is an
embarrassing parallel program, which does not need communica-
tions. Its prediction accuracy actually reflects the accuracy of se-
quential computation time acquired with our approach. For EP, the
prediction error is only 0.34% on average. Table 3 also lists the pre-
diction errors with PHANTOM and the regression-based approach
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Figure 10: Predicted time with PHANTOM compared with that with Regression-based approach on Dawning Platform. Measured means the
real execution time of applications. Error bars in predicted time of PHANTOM show the 90% confidence interval.

(Due to the limitations of the regression-based approach, only the
performance of applications with p processes (p > p0) can be pre-
dicted.). The prediction accuracy with PHANTOM is much higher
than that with the regression-based approach for most programs.

Table 3: Prediction errors(%) with PHANTOM (P.T.) vs. Regression-
Based approach (R.B.) on Dawning platform.

Proc. # BT CG EP LU MG SP S3-S S3-W

128
P.T. 2.22 -7.60 -0.34 -3.95 0.97 -2.29 -6.54 -0.15
R.B. 6.32 -2.22 0.01 -15.02 20.58 17.72 1.30 -4.75

256
P.T. -3.27 -2.65 -0.27 -14.28 -0.97 5.97 -0.52 -0.27
R.B. 9.50 -8.95 0.76 53.20 45.32 34.38 13.41 -0.28

Figure 12 gives the breakdown of predicted execution time of
process 0 for each program with 256 processes on Dawning plat-
form. comp is the sequential computation cost, comm is the com-
munication overhead and syn is the synchronization cost. We can
find that synchronization overhead accounts for a large proportion
of execution time for most of programs.

Figure 12: Breakdown of predicted time of process 0 (listed on the
x-axis in second) for each program with 256 processes.

We predict the performance for Sweep3D on three target plat-
forms. The real execution time is measured on each target plat-
form to validate our predicted results. All the message logs are col-
lected on Explorer platform. As shown in Figure 13, PHANTOM

can get high prediction accuracy on these platforms. Prediction er-
rors on Dawning, DeepComp-F and DeepComp-B platforms are on
average 2.67%, 1.30% and 2.34% respectively, with only -6.54%
maximum error on Dawning platform for 128 processes. PHAN-
TOM has a better prediction accuracy as well as greater stability

across different platforms compared to the regression-based ap-
proach. For example, on the DeepComp-B platform, the prediction
error for PHANTOM is 4.53% with 1024 processes, while 23.67%
for regression-based approach (p0 = 32, 64, 128 used for training).
Note that while Dawning platform has lower CPU frequency and
peak performance than DeepComp-F platform, it has better appli-
cation performance before 256 processes. DeepComp-B platform
presents the best performance for Sweep3D among three platforms.

Figure 13: Performance prediction for Sweep3D on Dawning,
DeepComp-F and DeepComp-B platforms (M means the real ex-
ecution time, P means predicted time with PHANTOM, R means
predicted time with Regression-based approach).

7.4 Message-Log Size and Replay Overhead

In PHANTOM, we just record the message logs for representative
processes and those processes executing on the same node with
them. As the number of process groups is far smaller than the
number of processes presented in Section 7.2, the message-log
size is reasonable for all the programs. As shown in Table 4, SP
has the largest message logs while EP has the least due to little
communication.

Figure 14 shows the replay-based execution time compared with
normal execution for each program with 256 processes. Because
most of the incoming messages are read from the log files and lit-
tle synchronization overhead is introduced, the replay-based execu-
tion time is less than normal execution for most of programs. For
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Table 4: Message-log size (in Giga-Byte except EP in Kilo-Byte).

Proc. # BT CG EP LU MG SP S3-S S3-W

16 3.01 2.12 1.03K 1.39 0.3 5.49 0.39 0.14
32 6.14 1.59 1.03K 2.79 0.62 11.2 0.78 0.55
64 3.5 1.85 1.03K 2.79 0.46 6.38 0.78 0.55
128 2.6 1.85 1.04K 3.32 0.58 4.75 0.92 1.29
256 1.99 1.99 1.06K 3.06 0.72 3.65 0.84 1.28

example, in weak-scaling Sweep3D with 256 processes, both com-
munication cost and synchronization cost account for more than
46% of execution time, about 32.62 seconds. While the overhead
introduced during the replay is 8.28 seconds. As a result, the replay-
based execution time is much smaller than normal execution time.

Figure 14: The elapsed time of replay-based execution compared
with normal execution for each program with 256 processes.

7.5 Performance of SIM-MPI Simulator

SIM-MPI simulator has high efficiency since only the communi-
cation operations need to be simulated. All the simulation in this
paper is executed on a server node equipped with 2-way quad-
core Xeon E5504 processors (2.0GHz), 12GB of memory size. Ta-
ble 5 gives the performance of SIM-MPI simulator for different
programs. For most of programs, the simulation time is less than
1 minute. Among these programs, LU has the longest simulation
time due to frequent communication operations.

Table 5: Performance of SIM-MPI simulator (in Second).

Proc. # BT CG EP LU MG SP S3-S S3-W

16 0.49 0.79 0.04 4.17 0.20 0.93 0.36 0.19
32 1.51 1.98 0.09 8.57 0.60 2.82 0.79 0.43
64 3.24 4.20 0.15 17.33 0.75 6.21 1.62 0.92
128 9.97 11.27 0.25 34.19 1.35 19.36 2.75 1.97
256 30.38 21.19 0.49 66.47 2.73 39.41 5.24 4.24

8. Limitations and Discussions

Problem size A critical limitation of our approach is that the
problem size we can deal with is limited by the scale of host
platforms since we need to execute the parallel applications with
the same problem size and the same number of parallel processes
on them to collect message logs that are required at the replay
phase.

It should be noticed that neither the CPU speed nor the intercon-
nect performance of host platforms are relevant to the accuracy of
performance prediction on target platforms in our framework. This
implies that we can even generate message logs on a host platform
with fewer number of processors/cores than the target platform.
The only hard requirement for the host platform is its memory size.

There are several potential ways to address this limitation. One
is to use Grid computing techniques through executing applications
on Grid systems which provide larger memory size than any single
host platform. Another promising way is to use SSD (Solid State

Drive) devices and virtual memory to trade speed for cost. Note
that the message logs only need to be collected once for one appli-
cation for a given problem size, which is a favorable feature of our
approach to avoid high cost for message log collection.

Node of target platforms We assume that we have at least one
node of target platforms which enables us to measure computation
time at real execution speed. This rises a problem of how we can
predict performance of target platforms even without a single node.

Our approach can apply with a single node simulator which
is usually ready years before the parallel machine. It is clearly
that this will be much slower than measurement. Thanks to the
representative replay technique we proposed in this paper, we only
need to simulate a few representative processes and the simulation
can be also performed in parallel.

I/O operations Our current approach only models and simulates
communication and computation of parallel applications. However,
I/O operations are also an important factor of parallel applications,
especially in real large applications instead of kernel benchmarks
we used in this paper. We think the framework of our approach can
be extended to cope with I/O operations although there are many
pending issues to investigate further.

Non-deterministic applications As a replay-based framework,
PHANTOM has limitations in predicting performance for applica-
tions with non-deterministic behavior. PHANTOM can only predict
the performance of one possible execution of a non-deterministic
application. However, we argue that for well-behaved parallel ap-
plications, non-deterministic behaviors should not cause signifi-
cant impact on their performance because it means poor perfor-
mance portability. So we believe it is acceptable to use predicted
performance of one execution to represent the performance of well-
behaved applications.

9. Related Work

Performance prediction of parallel applications has a large body of
prior work. There are two well-known approaches for performance
prediction. One approach is to build an analytical model for the
application on the target platform [3, 7, 8, 15, 20]. The main ad-
vantage of analytical methods is low-cost. However, constructing
analytical models of parallel applications requires a thorough un-
derstanding of the algorithms and their implementations. Most of
such models are constructed manually by domain experts, which
limits their accessibility to normal users. Moreover, a model built
for an application cannot be applied to another one. PHANTOM is
an automatic framework which requires little user intervention.

The second approach is to develop a system simulator to exe-
cute applications on it for performance prediction. Simulation tech-
niques can capture detailed performance behavior at all levels, and
can be used automatically to model a given program. However, an
accurate system simulator is extremely expensive, not only in terms
of simulation time but especially in their memory requirements. Ex-
isting simulators, such as BigSim, MPI-SIM [16, 23, 27], are still
inadequate to simulate the very large problems that are of interest
to high-end users.

Trace-driven simulation [9, 19] and macro-level simulation [21]
have better performance than detailed system simulators, since they
only need to simulate the communication operations. The sequen-
tial computation time is usually acquired by analytical methods or
extrapolation in previous work. We have discussed their limitations
in the Section 1. In this paper, our proposed representative replay
technique can acquire more accurate computation time, which can
be used in both trace-driven simulation and macro-level simulation.
Our prototype system, PHANTOM, is also a trace-driven simula-
tor integrated with the representative replay. Moreover, PHANTOM
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adopts the FACT technique, which makes it feasible to collect the
communication traces needed by the trace-driven simulator on a
small-scale system.

Yang et al. propose a cross-platform prediction method based
on relative performance between target platforms without program
modeling, code analysis, or architecture simulation [25]. Their ap-
proach works well for iterative parallel codes that behave pre-
dictably. In order to measure partial iteration performance, their
approach requires a full-scale target platform available, while our
approach only requires a single node of the target platform. Lee et
al. present piecewise polynomial regression models and artificial
neural networks that predict application performance as a function
of its input parameters [11]. Barnes et al. [4] employ the regression-
based approaches to predict parallel program scalability and their
method shows good accuracy for some applications. However, the
number of processors used for training is still very large for better
accuracy and their method only supports load-balanced workload.

Statistical techniques have been used widely for studying pro-
gram behaviors from large-scale data [18, 28]. Our approach is in-
spired by these previous work and also adopts statistical clustering.

10. Conclusion

For designers of large-scale parallel computers, it has been long
desired to predict performance of parallel applications on various
design alternatives at the design phase.

In this paper, we extend existing trace-driven simulation frame-
work by using deterministic replay techniques to measure compu-
tation time process by process on prototype of target systems. We
further propose representative replay scheme which employs simi-
larity of computation pattern in parallel applications to reduce time
of prediction significantly. We verify our approach on several plat-
forms and the prediction error is less than 5% for Sweep3D on 1024
processor cores.

The approach proposed in this paper is a combination of oper-
ating system and performance analysis techniques. We expect this
paper will motivate more interactions between these two fields in
the future.
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