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Abstract. Much of the inter-individual variability in drug efficacy and risk of adverse
reactions is due to polymorphisms in genes encoding proteins involved in drug pharmaco-
kinetics and pharmacodynamics or immunological responses. Pharmacogenetic research has
identified a multitude of gene-drug response associations, which have resulted in genetically
guided treatment and dosing decisions to yield a higher success rate of pharmacological
treatment. The rapid technological developments for genetic analyses reveal that the number
of genetic variants with importance for drug action is much higher than previously thought
and that a true personalized prediction of drug response requires attention to millions of rare
mutations. Here, we review the evolutionary background of genetic polymorphisms in drug-
metabolizing enzymes, provide some important examples of current use of pharmacogenomic
biomarkers, and give an update of germline and somatic genome biomarkers that are in use
in drug development and clinical practice. We also discuss the current technology
development with emphasis on complex genetic loci, review current initiatives for validation
of pharmacogenomic biomarkers, and present scenarios for the future taking rare genetic
variants into account for a true personalized genetically guided drug prescription. We
conclude that pharmacogenomic information for patient stratification is of value to tailor
optimized treatment regimens particularly in oncology. However, the routine use of
pharmacogenomic biomarkers in clinical practice in other therapeutic areas is currently
sparse and the prospects of its future implementation are being scrutinized by different
international consortia.

KEY WORDS: precision medicine; cytochrome P450; oncology; clinical implementation;
pharmacogenetics.

INTRODUCTION

Differential response to pharmacological treatment con-
stitutes a major source of patient morbidity and mortality.
Between 5 and 13% of in- and outpatient experience adverse
drug-related events, mostly adverse drug reactions (ADRs)
and sub-therapeutic effects of drug therapy [1, 2]. Various
patient-specific factors, including age, polypharmacy, concom-
itant diseases, and diet as well as heritable factors contribute
to these inter-individual differences with genetic polymor-

phisms explaining around 20–30% of the inter-individual
variability in drug response [3, 4].

The liver as the central organ of drug metabolism is
involved in the clearance of around 70% of drugs [5]. Enzymes
encoded by the cytochrome P450 (CYP) superfamily of genes
are responsible for > 75% of phase 1 drug metabolism and thus
constitute major modulators of drug response [6]. Importantly,
CYP genes are highly polymorphic between individuals and
across populations, which can have important implications for
the bioactivation and/or detoxification of medications [7].

Pharmacogenomic biomarkers that can predict drug
response have been attributed great promise for the improve-
ment of molecular diagnostics in routine clinical care. It is
helpful to distinguish between (i) germline biomarkers, which
can influence systemic drug pharmacokinetics and pharmaco-
dynamics and (ii) biomarkers in the somatic cancer genome,
which modulate how cancer cells respond to drugs. Besides
genetic factors, epigenetic modifications of DNA or histones
have been linked to differences in drug response. In oncology,
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epigenetic alterations in cancer cells have been linked to
increased expression of drug efflux transporters, mediating
resistance to chemotherapy. Detection of epigenetically
modified DNA in the blood stream can be used for tumor
stratification and presents an emerging tool for monitoring
treatment efficacy as well as development of drug resistance
[8, 9]. Moreover, pharmacological modulators of the epige-
netic machinery have been successfully used in oncological
treatment, mostly as adjuvants to sensitize tumors to
standard-of-care chemotherapy. For a comprehensive update
of this field, we refer to recent reviews [10, 11].

In this review, we provide an overview of genomic bio-
markers that predict drug response and guide choice and dosage
of drug treatment. Furthermore, we review recent technological
advances that facilitate biomarker discovery and utilization.

DEVELOPMENTAL BACKGROUND FOR THE
GENETIC POLYMORPHISM

The establishment of genetic polymorphisms in a specific
population is the result of selection and genetic drift. In case of
genes encoding drug absorption, distribution, metabolism, and
excretion (ADME), a major selection occurred about 450
million years ago when animals became terrestrial and had to
adapt to the novel dietary environment including plant toxins
[12]. Among insects several examples are evident where genetic
alterations ofCYP genes have enabled the animals to adapt to a
new environment caused by the presence of insecticides or a
shift of host from one plant to another (Table 1). In humans, a
similar adaptation occurred 10,000 to 5000 years ago when a
strong selection favored survival of individuals carrying multiple
copies of the CYP2D6 gene in Northeast Africa. The mecha-
nism behind the assertion of these duplication alleles is believed
to be the resulting increased capability for detoxification of
alkaloids in plants allowing a more diversified plant diet during
the starvation periods in these areas. The subsequent migration
of the respective populations has resulted in an infiltration of
these alleles into the Mediterranean area but not to Asia South
Africa, or West Africa [19]. Positive selection for gain-of-
function alleles is however very rare among ADME genes. By

contrast, loss-of-function mutations in ADME genes are often
not selected against due to the relatively minor role in
endogenous process of the genes, thus constituting the basis
for inter-individual differences in drug pharmacokinetics.

PHARMACOGENOMIC GERMLINE BIOMARKERS

Differences in the response to exogenous substances
have already been described more than two millennia ago by
the Greek philosopher Pythagoras who noticed in the sixth
century before Christ that individuals responded very differ-
ently to the ingestion of fava beans with some experiencing
severe hemolytic anemia [20]. Excitingly, only in the last
decades, technological advances have shed light on the
molecular bases underlying these differences and discovered
the responsible genetic polymorphisms (in the case of
hemolytic responses to fava beans, genetic variants in G6PD
were found to be responsible for the inter-individual differ-
ences in toxicity). By now a whole arsenal of genetic variants
has been identified that mechanistically link alterations in
structure or functionality of the gene product to differences in
drug response or toxicity. Pharmacogenomic biomarkers are
mostly located in genes encoding drug-metabolizing enzymes,
transporters, drug targets, or HLA alleles and predict drug
efficacy or inform about the risk to develop ADRs (Tables 2
and 3). Furthermore, genetic biomarkers have revolutionized
the therapy of cystic fibrosis (CF) and we refer the interested
readers to some of the recent excellent reviews that cover the
field of genetically guided, targeted CF therapy [47, 48].

Genetic variation in genes encoding proteins of importance
for drug response andADRs, herein called pharmacogenes, can
cause (i) too high or too low exposure of the drug, (ii) increased
formation of toxic metabolites, (iii) increased or decreased
interactions with the drug target, or (iv) activation of the
immune system which in turn can lead to idiosyncratic drug
toxicity (Fig. 1). In the following, we highlight selected
pharmacogenomic examples that impact clinical practice and
refer to the primary references provided in Tables 2 and 3 aswell
as to comprehensive recent reviews for further information on
the topic [49–51].

Table 1. Examples of Environmentally Induced Genetic Selection of CYP Gene Amplifications in Animals and Humans

Species Gene Causative agent Effect Reference

Drosophila mettleri CYP6, CYP28 Isoquinolone
alkaloids

Resistance developed due to induction of
these genes

[13]

Fruit fly
(Drosophila melanogaster)

CYP6G1 DDT Amplification of the CYP6G1 gene
causes insecticide resistance

[14]

Green house whitefly
(Trialeurodes vaporariorum)

CYP4G61 Pyriproxyfen Resistance due to 81-fold induction
of CYP4G61 expression

[15]

Honey bee (Apis mellifera) CYP9Q1, CYP9Q2, CYP9Q3 Tau-fluvalinate
and coumaphos

Resistance due to CYP9Q induction [16]

Pollen beetle (Meligethes aeneus) CYP6BQ23 Pyrethroid Up to 900-fold overexpression of
CYP6BQ23 conveys pyrethroid resistance

[17]

Green peach aphid
(Myzus persicae)

CYP6CY3 Nicotine 100-fold amplification of the CYP6CY3
gene allows the insect to feed on
the tobacco plant

[18]

Homo sapiens CYP2D6 Plant alkaloids Dietary selection for alleles with
amplifications of the functional
CYP2D6 gene

[19]
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CLINICALLY IMPORTANT EXAMPLES
OF ASSOCIATIONS BETWEEN GENETIC VARIANTS
AND DRUG RESPONSE OR TOXICITY

The Effect of CYP2D6 Genotype on Codeine Efficacy
and Toxicity

Codeine, an analgesic and antitussive opium alkaloid, isO-
demethylated byCYP2D6 to its activemetabolite morphine and
CYP2D6 activity constitutes the determining factor for codeine
pharmacokinetics. Patients homozygous for loss-of-function
haplotypes in CYP2D6, including the *4, *5, and *6 alleles,
experience drastically reduced morphine formation and lack of
analgesia. Consequently, in such poor metabolizers (PM),
alternative medications that are not metabolized by CYP2D6
should be considered, such as buprenorphine, morphine,
fentanyl, methadone, or non-opioid analgesics. In contrast, in
ultrarapid metabolizers (UM), in which the active CYP2D6
gene is duplicated, morphine formation is increased and
standard codeine doses can result in serummorphine levels that

substantially exceed the therapeutic range, resulting in severe
toxicity. The risk is highest in pediatric patients who receive
codeine following adenotonsillectomy and multiple cases of life-
threatening respiratory depression or death due to codeine
therapy have been reported [52]. These severe adverse drug
reactions (ADRs) prompted the FDA to require boxed
warnings on all codeine-containing medications to highlight
the risks for pediatric patients. Furthermore, these cases
resulted in a change in routine clinical practice for pain control
after tonsillectomy, away from codeine towards other analgesic
agents that are not at risk for catastrophic events (e.g.,
acetaminophen or rofecoxib and hydrocodone) [53].

Warfarin Pharmacogenetics

Warfarin is the most commonly used oral anticoagulant for
the treatment and prevention of thromboembolic events. How-
ever, a narrow therapeutic window combined with substantial
inter-individual variation in warfarin pharmacokinetics and phar-
macodynamics poses severe clinical challenges. Warfarin inhibits

Table 2. Genetic Germline Variants Associated with Adverse Drug Reactions

Class Genetic variant Drug Type of adverse reaction Odds ratio Refs

Phase I CYP2B6 reduced function
alleles

Efavirenz Neurological symptoms Odds ratio for plasma
concentration above
therapeutic levels:
48.1

[21]

CYP2D6 duplications Codeine Symptoms associated
with opioid overdose

1.4 [22]

CYP2D6 deficiency Metoclopramide Acute dystonic reactions Only case reports [23]
Perhexiline Neurotoxicity Only case reports [24]

DPYD reduced function
alleles

Fluoropyrimidines
(capecitabine,
fluorouracil and
tegafur)

Severe systemic toxicity,
mainly diarrhea,
neutropenia,
thrombocytopenia
and cardiotoxicity

*2A: 15.2; D949V: 9.1 [25]

Phase II GSTM1 null Isoniazid DILI 2.2 [26]
GSTT1 null DILI 2.6 [27]
UGT1A1*28 Irinotecan Myelosuppression and

neutropenia
9.3 [28]

UGT2B7*2 Diclofenac DILI 8.5 [29]
TPMT deficiency Mercaptopurine Myelosuppression het: 4.6; hom: 18.6 [30]

Transporter Reduced SLCO1B1
activity (rs4149056)

Simvastatin (80 mg daily) Myopathy and
rhabdomyolysis

het: 4.5; hom: 16.9 [31]

Major
histocompatibility
complex

HLA-B*57:01 Flucloxacillin DILI 80.6 [32]
DRB1*07:01
and DQA*02:01

Ximelagatran DILI 4.4 [33]

DRB1*15:01 and
HLA-A*02:01
and HLA-B*18:01

Amoxicillin-
clavulanate

DILI 10.1 [34]

HLA-A*33:03 Ticlopidine DILI 36.5 [35]
DRB*15:01 and DQA*01:02 Lumiracoxib DILI 5 [36]
HLA-B*57:01 Abacavir HSS 117 [37]
HLA-B*15:02 and HLA-A*31:01 Carbamazepine HSS and SJS/TEN 10.8 [38]
HLA-B*15:02 Phenytoin SJS/TEN 25.2 [39]
HLA-B*58:01 Allopurinol SJS/TEN 394 [40]
HLA-B*58:01 Nevirapine DILI 3.5 [41]
HLA-DRB1*01 DILI 2.9 [41]
HLA-C*04:01 SJS/TEN 17.5 [42]

DILI drug-induced liver injury, HSS hypersensitivity syndrome, SJS Stevens-Johnson syndrome, TEN toxic epidermal necrolysis

The AAPS Journal (2018) 20: 4 Page 3 of 16 4



the VKORC1 subunit of epoxide reductase, thereby disrupting the
formation of the vitamin K-dependent clotting factors. Warfarin is
a racemic mixture of R- and S-enantiomers with the latter being
around 5 times more potent. S-warfarin is inactivated by CYP2C9
and eliminated predominantly via the urine.

Genetic variants in VKORC1 and CYP2C9 have been
reproducibly linked to differences in warfarin dose require-
ments. Reduced functionality polymorphisms in VKORC1
(mostly VKORC1*2) and CYP2C9 (particularly CYP2C9*2
and *3) have been associated with lower (1–2 mg/day
reduction per allele) warfarin dose requirements [54–57]. In
addition, the reduced functionality variant rs2108622 in the
CYP4F2 gene whose gene product metabolizes vitamin K
shows an additional minor contribution [43].

While the molecular mechanisms behind warfarin phar-
macogenetics have been extensively analyzed, the advantages
of preemptive genetic testing remain unclear and random-
ized, multi-center, controlled trials reported discrepant re-
sults. While the CoumaGen-II and EU-PACT trials indicated
significant improvements in the percentage of time within the
therapeutic international normalized ratio (INR) range and
time to reach therapeutic INR with genotype-guided dosing
[58, 59], the COAG trial did not show significant differences
in the time within the therapeutic range or the incidence of
bleeding complications [60]. Likely reasons for the mixed
outcomes include differences in reference (usual care in EU-
PACT vs. dosing algorithm guided by clinical variables in
COAG), the use of loading dose (loading dose given in EU-
PACT vs. no loading dose in COAG) or the diversity of the
trial population (homogeneous European population in EU-
PACT vs. 27% Africans and 6% Hispanics in COAG). Thus,
while all trials suggest numerical, but not necessarily signif-
icant, benefits of genotype-guided dosing, the clinical utility of
preemptive warfarin genotyping appears limited.

The Role of HLA-Alleles in Hypersensitivity to Abacavir

The antiretroviral guanoside analogue abacavir is com-
monly used for the treatment of HIV infections in adults and

pediatric patients older than 3 months. While the drug is
generally well tolerated, around 4% of patients experience
hypersensitivity syndrome (HSS) that manifest as fever and
gastrointestinal and respiratory problems as well as dermato-
logical symptoms that range from rashes to Stevens-Johnson
syndrome or toxic epidermal necrolysis [61]. Prospective,
randomized clinical trials demonstrated that HSS is strongly
associated with the presence of the HLA-B*57:01 allele with a
negative predictive value of 100% and a positive predictive
value of 47.9% [62]. Mechanistically, HSS is caused by activated
abacavir-specific CD8+ T cells that are triggered by the abacavir
parent molecule bound toHLA-B*57:01 [63]. This non-covalent
binding is highly specific and can be abrogated by a single point
mutation of the S116 residue, which results in a lack of T cell
activation [64]. Following identification and clinical implemen-
tation of this pharmacogenomic biomarker, abacavir prescrip-
tions drastically increased and indeed this biomarker might be
one of the best examples where genotyping for one mutation
can completely prevent the occurrence of compound toxicity.
Prior to initiating abacavir therapy, screening for the HLA-
B*5701 allele is recommended by the FDA, the Clinical
Pharmacogenetics Implementation Consortium (CPIC), and
the Dutch Pharmacogenetics Working Group (DPWG) and in
case the allele is detected, alternative therapy is mandated [65,
66].

Associations Between TPMT Genotype and Thiopurine
Toxicity

The thiopurine mercaptopurine (6-MP) and its prodrug
azathioprine (AZA) are used for the treatment of acute
lymphoblastic leukemia (ALL) and are also widely prescribed
off-label for their immunosuppressive effects in the treatment of
Crohn’s disease and ulcerative colitis. AZA is rapidly metabo-
lized into 6-MP in the liver, which is further either bioactivated
by hypoxanthine-guanine-phosphoribosyltransferase (HPRT)
to form thioguanine nucleotides or inactivated by either
thiopurine-S-methyltransferase (TPMT) or xanthine oxidase
(XO) to 6-methylmercaptopurine or thiouric acid, respectively.

Table 3. Genetic Germline Variants that Modulate Drug Efficacy

Drug Phenotype / Genetic variant Mechanism Effect size (R2) Refs

Codeine CYP2D6 deficiency Reduced metabolism to active substance (morphine) Expected to be very
high

Warfarin Decreased CYP2C9
activity (CYP2C9*2)

Reduced inactivation of warfarin. Thus, reduced
VKORC1 inhibition

3.8% [43]

Decreased CYP2C9
activity (CYP2C9*3)

8%

Decreased CYP4F2 activity
(CYP4F2*3)

Increased levels of vitamin K dihydroquinone, which
is necessary for carboxylation of coagulation factors

1.1%

Reduced VKORC1
activity (VKORC1*2)

Reduced levels of vitamin K dihydroquinone, which
is necessary for carboxylation of coagulation factors

28.3%

Clopidogrel Reduced CYP2C19
activity (CYP2C19*2)

Reduced bioactivation of the prodrug 12% [44]

Proton pump
inhibitors

Increased CYP2C19
activity (CYP2C19*17)

Increased inactivation to 5-hydroxyomeprazole in
H. pylori eradication therapy

Eradication 72.7% in
UM and 97.8% in PM

[45]

Atorvastatin LPA (rs10455872); APOE
(rs445925, rs4420638)

Decreased reduction in low-density lipoprotein cholesterol 4% combined [46]

PM poor metabolizer, UM ultrarapid metabolizer
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Myelosuppression is the most common adverse reaction
to thiopurine therapy and patients with reduced TPMT
activity are at substantially increased risk. Importantly,
TPMT genotype is a strong predictor for TPMT activity and
even patients heterozygous for the TPMT loss-of-function
alleles *2A or *3 showed significantly higher incidences of
dose reductions due to toxicity [67, 68]. Due to the substantial
body of evidence that links TPMT genotype to thiopurine
treatment outcomes and adverse events, TPMT genotyping is
already widely applied in clinical practice [69, 70]. The cost-
effectiveness of preemptive TPMT genotyping remains how-
ever inconclusive [71, 72] and data from randomized con-
trolled trials is currently lacking.

The Role of SLCO1B1 Variants in Simvastatin-Induced
Myopathy

Severe toxicity has been observed in patients receiving
the blockbuster drug simvastatin for treatment of dyslipid-
emia, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A

(HMG-CoA) reductase, the rate-limiting enzyme of choles-
terol biosynthesis. Importantly, the SNP rs4149056 located in
SLCO1B1 (SLCO1B1*5), the gene encoding the hepatic
simvastatin transporter OATP1B1, causes impaired hepatic
import of the drug which prevents the interaction with its
hepatic target HMG-CoA reductase and results in increased
plasma concentration due to impaired hepatic clearance.
Patients are at 2.6- or 4.5-fold increased risk per variant
allele of developing myopathy when taking normal (40 mg
daily) or high doses (80 mg daily) of simvastatin, respectively
[31]. Due to these risks, particularly in the high dose group,
the FDA issued a warning that high dose regimens of
simvastatin should only be used in patients who have already
received high doses for more than 12 months without muscle-
related adverse effects [73].

DPYD Variants and Fluoropyrimidine Toxicity

Combinatorial therapies that include fluorouracil, such as
the chemotherapeutic regimens FOLFOX and FOLFIRI
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Fig. 1. Possible effects of genetic variations in pharmacogenes. Mutations in ADME genes can impact drug exposure. a In
case of a pharmacologically active parent compound (red hexagons), increased functionality alleles can result in decreased
drug exposure and reduced efficacy due to increased inactivation to inactive metabolites (black hexagons). One clinically
relevant example is the increased metabolic inactivation of omeprazole in patients with the increased functionality allele
CYP2C19*17 during Helicobacter pylori eradication therapy. In contrast, alleles with reduced functionality result in lower
clearance and higher exposure, as exemplified by increased number of bleeding complications due to standard warfarin
doses in patients with deficient CYP2C9 enzyme. b Conversely, when the administered compound is a prodrug (black
circles), alleles with increased functionality results in elevated formation of active metabolites (red circles), higher exposure,
and potentially toxicity. One prominent case of this class is morphine intoxication upon codeine treatment in patients
with multiplicated active alleles of CYP2D6. Reduced metabolic activation of a prodrug generally results in lack of efficacy.
Examples are the lack of analgesia due to codeine treatment in CYP2D6 poor metabolizers or treatment failure of
clopidogrel in patients with reduced CYP2C19 activity. c Multiple drugs only bind to specific variant forms of the respective
target protein, particularly in oncology (see Table 5). d During oncological treatment, drug targets frequently mutate
entailing a lack of response to formerly very potent drugs. e Some drugs, such as abacavir and flucloxacillin, elicit immune-
mediated toxicity reactions by binding to specific variants of the major histocompatibility complex either directly or
conjugated to a protein carrier as a hapten, which in turn facilitates activation of T cells and triggers an immune response
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represent the first-line treatment for various solid tumors.
Fluorouracil (5FU) and other fluoropyrimidines, such as
capecitabine, tegafur, and floxuridine, inhibit thymidylate
synthase, which catalyzes the rate-limiting step in
deoxythymidine triphosphate (dTTP) biosynthesis, thereby
inhibiting DNA replication [74]. Fluoropyrimidines have a
narrow therapeutic window and dose-adjustments based on
therapeutic drug monitoring (TDM) resulted in increased
response-rate and decreased toxicity [75]. Dihydropyrimidine
dehydrogenase (DPD), the enzyme encoded by DPYD,
inactivates around 80% of 5FU and genetic polymorphisms
in DPYD have been consistently linked to inter-individual
differences in fluoropyrimidine response and toxicity [25, 76].
Importantly, a recent study in 2038 patients demonstrated
that 5FU dosing guided by prospective genotyping for the
reduced functionality allele DPYD*2A resulted in signifi-
cantly lower incidences of severe toxicities (73% in historic
controls vs. 28% in genotype-guided cohort) and appeared to
reduce costs for the health care system [77]. Thus, implemen-
tation of DPYD genotyping for 5FU therapy in routine
clinical care might be a promising next step in reducing
patient morbidity while at the same time allocating health
care resources more efficiently.

RARE GENETIC VARIANTS AND POPULATION-
SPECIFICITY

Genetic variants can be classified as common (> 1%
allele frequency, also called genetic polymorphisms) or rare
(< 1% frequency) depending on their prevalence in the
overall population. Recent twin studies indicated that the
contribution of genetic factors to drug response differs
drastically between medications. While genetic factors con-
tributed only to a minor extent to differences in talinolol
pharmacokinetics, heritable factors were responsible for 80–
90% of the differences in the pharmacokinetics of metoprolol
and torsemide; importantly, however, the analyzed common
genetic polymorphisms only explained around 40% of this
variability [78, 79]. These results indicate that additional
factors, such as rare genetic variants can be important
modulators of drug pharmacokinetics. Indeed, recent
population-scale sequencing projects revealed that ADME
genes harbor vast numbers of rare genetic variants that are
not assessed by conventional genotyping arrays [80, 81]. Rare
variants are more likely to have deleterious effects with an
estimated odds ratio of 4.2 compared to variants with MAF >
0.5% [82, 83] and combined are estimated to account for 30–
40% of the functional variability in ADME genes [81].

Importantly, variant and haplotype frequencies differ
majorly between populations (Table 4). Thus, while a variant
may be rare globally, frequencies of a minor allele might be
substantial in specific populations. One such example is the
prevalence of the reduced functionality allele CYP2C8*2,
which is not found in individuals of European or East Asian
ancestry but is common in Africans (MAF = 15.9%) [7].
Similarly, the loss-of-function CYP3A4*20 allele causing
increased risk of adverse reactions to, e.g., paclitaxel, was
not found in Asian, African, South American, and most
European populations but reached frequencies of 3.8% in
specific regions of Spain [86]. Combined, these findings
suggest that ethnic origin is an important parameter in

pharmacogenomic research and understanding of the geo-
graphical distribution of genetic variability builds the funda-
ment for precision public health approaches.

The treatment with antiretrovirals in Zimbabwe provides
an impressive case for the benefit of such approaches: When
the national ministry of health implemented a WHO recom-
mendation to change the first-line treatment of HIV to
efavirenz, unexpectedly many Zimbabweans experienced
ADRs associated with efavirenz overdose. Importantly, in
Zimbabwe, 20% of the population are homozygous for the
reduced functionality allele CYP2B6*6 which entails that
efavirenz plasma concentrations exceed the recommended
therapeutic levels, resulting in the local failure of a globally
established dosing regimen [87]. Thus, in order to prevent
such public health crises, selection of first-line treatment
should be evaluated for each population separately, consid-
ering the specific genetic landscapes in the geographic region
of interest [88, 89].

RARE VARIANTS AND PRECISION MEDICINE

With decreasing sequencing times and costs, it is
envisioned that precision medicine will increasingly utilize
NGS technologies to derive predictions of drug response.
Such analyses should be tailored to the drug in question and
encompass genes likely to affect its kinetics, response, or risk
of adverse reactions. In this concept, a pre-defined panel of
genes is sequenced using NGS and genetic variants in the
patient of interest are identified (Fig. 2). Analysis of the
sequencing results will yield (i) non-sense mutations, such as
frameshift, stop-gain, or start-lost variants; (ii) silent (also
called synonymous) mutations; and (iii) missense mutations
that result in amino acid exchanges. While exceptions from
the rule exist, synonymous variants rarely have a functional
effect, whereas the vast majority of non-sense variants result
in a loss-of-function of the gene product. Missense variants
however are more heterogenous: while some variants result
in reduced functionality alleles, others do not have any
functional effects. Overall, around 70% of genetic variants
within coding sequences have no pronounced effect on the
functionality of the gene product, whereas 30% of the
mutations unveiled by exome sequencing result in reduced
function or loss-of-function alleles.

Due to the vast number of rare genetic variants, it is not
feasible to experimentally characterize the functional effects
of all such mutations, thus posing a significant challenge for
the clinical interpretation of genetic variability and hampering
the translation of genomic data into actionable advice. In the
absence of experimental data, in silico algorithms can provide
some guidance regarding the predicted functional conse-
quences of the genetic variant [90]. Ideally, the results of
multiple such computational methods are integrated that base
their conclusions on diverse and complementing sets of
criteria, including evolutionary conservation, physiochemical
properties, secondary structure, variant effects on protein
stability, and protein domain information [91]. The predictive
power of algorithms to detect functional alterations in the
gene product is however relatively low, particularly in ADME
genes. Current computational tools have been trained on
disease-causing genetic variants and use evolutionary con-
straints as the main parameter to predict functional effects of
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the mutations in question. Such an approach poses problems
for the assessment of pharmacogenetic variants as ADME
genes are often only poorly conserved. Consequently, while
computational tools correctly classify disease-causing variants
with accuracies between 70 and 90% [92–95], a comprehen-
sive assessment of their performance for ADME missense
variants revealed only much lower predictive accuracies.
ADME-specific optimization of computational prediction
models is thus necessary, which will provide an important
step forward to allow the rapid translation of exome
sequencing data into a compendium of functionally altered
genes of relevance for the specific drug therapy in question
for each patient, adding relevant information for
pharmacogenetically guided drug therapy.

There is evidently a need to improve both in silico and
experimental methods for functional prediction of missense
mutations. However, already today NGS-based approaches
provide more accurate and more individualized information
for pharmacogenomic predictions of drug action than the
current array based techniques that focus solely on common

genetic variants. To facilitate the translation of this perception
into clinically actionable information and to fully harness the
added value of clinical NGS, overcoming the indicated
limitations thus constitutes one of the most important
frontiers of future pharmacogenomic research.

GENETIC BIOMARKERS IN THE SOMATIC CANCER
GENOME

Currently, cancer affects around 90 million individuals
and causes nearly 1 in 6 deaths worldwide [96]. Underlying
the formation of neoplasms is the accumulation of somatic
mutations that activate the so-called oncogenes and inactivate
tumor suppressors. Every tumor harbors a unique combina-
tion of acquired genetic variants and cancer genomics, i.e., the
analysis of genetic differences between tumor and non-tumor
cells aims to unveil the genetic basis that confers cancer cells
their proliferative capacity and the ability to escape apoptosis.
By revealing its molecular underpinnings and identifying
clinically actionable variants that can be targeted by approved

Table 4. Overview of Important Pharmacogenetic Variant and Allele Frequencies Across Major Human Population

Allele frequencies in indicated populations (in
%)

Allele Defining variants Variant type EUR AFR EAS SAS AMR Functional
consequence

CYP2B6*6 rs2279343, rs3745274 Missense (K262R, Q172H) 3.4 5.8 2.7 15.8 3 Decreased
CYP2B6*16 rs2279343 and rs28399499 Missense (I328T) 0 6.5 0 < 0.1 0.3 Decreased
CYP2C8*2 rs11572103 Missense (I269F) 0 15.9 0 1.9 0.9 Decreased
CYP2C8*3 rs10509681, rs11572080 Missense (K399R, R139K) 11.2 2.1 < 0.1 4 6.7 Decreased
CYP2C8*4 rs1058930 Missense (I264M) 6.0 1.1 0 1.5 2.3 Decreased
CYP2C9*2 rs1799853 Missense (R144C) 11.7 2.4 < 0.1 4.6 6.6 Inactive
CYP2C9*3 rs1057910 Missense (I359L) 5.6 1.3 3.4 11.3 3.6 Decreased
CYP2C9*8 rs7900194 Missense (R150H) 0 5.6 < 0.1 < 0.1 0.2 Decreased
CYP2C9*11 rs28371685 Missense (R335W) 0.5 2.1 < 0.1 0.2 0.2 Decreased
CYP2C19*2 rs4244285 Splicing defect 18.3 18.1 31.0 34.0 10.1 Inactive
CYP2C19*3 rs4986893 Stop-gain (W212X) < 0.1 < 0.1 6.7 0.4 < 0.1 Inactive
CYP2C19*17 rs12248560 Regulatory 22.4 23.5 1.5 13.6 12.0 Increased
CYP2D6*1xN Amplification of CYP2D6*1 1 3.3 1 0.5 0.5 Increased
CYP2D6*2xN Amplification of CYP2D6*2 1.3 6 1 1 0.5 Increased
CYP2D6*3 rs35742686 Frameshift 4.1 0.3 0 0.1 0.3 Inactive
CYP2D6*4 rs3892097 Splicing defect 15.5 11.9 0.4 11.6 15.7 Inactive
CYP2D6*5 CYP2D6 deleted 3 4 6.5 2 3 Inactive
CYP2D6*6 rs5030655 Frameshift 2.2 0.3 0 0.1 0.4 Inactive
CYP2D6*29 rs16947, rs1135840,

rs61736512, rs59421388
Missense (R296C, S486 T,
V136I, V338M)

0 9.2 < 0.1 < 0.1 < 0.1 Decreased

CYP3A5*3 rs776746 Splicing defect 94.3 18.0 71.3 66.8 79.7 Inactive
CYP3A5*6 rs10264272 Splicing defect 0.3 15.4 0 0 2.3 Inactive
DPYD*2A rs3918290 Splicing defect 0.6 < 0.1 0 0.5 < 0.1 Inactive
DPYD*13 rs55886062 Missense (I560S) < 0.1 0 0 0 0 Inactive
DPYD rs67376798 Missense (D949V) 0.4 < 0.1 0 < 0.1 0.2 Inactive
SLCO1B1*5 rs4149056 Missense (V174A) 16 2.8 12.6 5 10.6 Decreased
TPMT*2 rs1800462 Missense (A80P) 0.2 < 0.1 0 0 0.2 Strongly decreased
TPMT*3A rs1142345, rs1800460 Missense (A154T, Y240C) 2.9 0 0 0 4 Inactive
TPMT*3C rs1142345 Missense (Y240C) 0 6.4 2.2 1.3 1.7 Decreased
UGT1A1*28 rs8175347 Regulatory 38.7 42.6 16 12.2 40 Decreased

Data for CYP alleles is obtained from ref. [7]. Non-CYP variants with pharmacogenetic importance in SLCO1B1, TPMT, or DPYD were
obtained from ExAC [84] or the 1000 Genomes project [85]
EUR Europeans, AFR Africans, EAS East Asians, SAS South Asians, AMR ad mixed Americans
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drugs, this approach allows to tailor therapy to the specific
tumor, opening new avenues for personalized oncology
(Table 5).

To date, the most commonly identified oncogenic variants
affect signal transduction systems, cell cycle genes, metabolic
enzymes, the epigenetic machinery, or factors involved in
transcription, splicing, or translation (Fig. 3). Prominent exam-
ples of such mutations result in the constitutive activation of
growth factor signaling. Approved targeted therapies are
available for variants in receptor tyrosine kinases, such as
EGFR (also termed HER1), ERBB2 (also termed HER2),
PDGFRA,KIT,ALK, and JAK2 that are commonlymutated in
various cancers. Furthermore, targeting activating mutations,
amplifications, or gene fusion events of FGFRs represents
promising therapeutic opportunities for various solid tumors
with multiple clinical trials currently ongoing [104].

Depending on the cancer type and nature of these
polymorphisms, the use of targeted therapies is indicated that
interfere with specificmutated gene products found exclusively in
cancer cells. For instance, treatment with the EGFR inhibitors
afatinib, erlotinib, and gefitinib improves progression-free sur-
vival of non-small cell lung cancer (NSCLC) patients that harbor
deletions in exon 19 of EGFR or EGFRL858R substitution
mutations [105–107]. In contrast, EGFR inhibition did not
result in improved clinical outcomes in glioblastoma patients
compared to conventional chemo- and radiation therapy [108].
However, even in patients that are initially responsive to targeted
therapy, drug resistance can arise most commonly due to the
acquisition of additional mutations. In NSCLC patients, the
EGFRT790M variant decreases the affinity of tyrosine kinase
inhibitors (TKIs) to bind to the ATP binding pocket of EGFR
and represents the most common mechanism of EGFR inhibitor
resistance [109]. To counter this acquired drug resistance, the
FDA-approved osimertinib, which demonstrated significantly
increased efficacy in T790M-positive NSCLC patients compared
to conventional platinum-based therapy [110].

In addition to point mutations, cancer cells often
undergo genomic rearrangements that can result in the

deletion of entire exons or the formation of functional fusion
proteins. Chronic myeloid leukemia (CML) is characterized
by a specific genomic translocation event between chromo-
somes 9 and 22 that gives rise to a functional BCR-ABL1
fusion protein that exhibits constitutive kinase activity. The
TKI imatinib inhibits the phosphorylation of downstream
targets of BCR-ABL1 and in addition blocks various other
kinases, such as PDGFRA and KIT. While response rates to
imatinib are very high (hematologic remission in 97% of
CML patients), 51–88% of late stage patients developed
imatinib resistance [111, 112]. Mechanisms of imatinib resis-
tance include point mutations in BCR-ABL1, amplifications
of the chimeric gene as well as BCR-ABL1-independent
mechanisms, such as overexpression of efflux transporters or
downregulation of the imatinib importer OCT1 [113]. By
now, a variety of therapeutic options is available for the
treatment of imatinib-resistant CML. Nilotinib and dasatinib
are effective against most imatinib-resistant point mutants
with the exception of cells with the T315I mutation [114]. For
BCR-ABL1T315I-positive CML, the recently approved TKI
ponatinib (full FDA approval in 2016) demonstrated a major
cytogenetic response in 56% of patients irrespective of BCR-
ABL1 mutation status and thus significantly improves clinical
outcomes for the respective patients [115].

The examples provided above give an impression of the
complexity of genetic variability in cancer cells. Due to
increasing throughput and decreasing costs of sequencing,
genetic information of primary cancers as well as metastases
becomes progressively more available. This massive amount of
data can be accessed at central data hubs, such as the Genomic
Data Commons (GDC; https://gdc.cancer.gov/) provided by the
National Cancer Institute that currently provides genomic
information of 14,551 cases and the Catalog Of Somatic
Mutations In Cancer (COSMIC; http://cancer.sanger.ac.uk/cos-
mic) hosted by the Sanger Institute, which constitutes the largest
database of somatic cancer mutations. However, the translation
of this unveiled landscape of oncogenetic variability into clinical
advice remains difficult despite the multitude of computational
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tools that assist in detection and interpretation of cancer genome
alterations [116]. There is thus an urgent need for methods that
support the identification of causative mutations that drive
tumorigenesis and select alterations that may be therapeutically
actionable. The recently launched Cancer Genome Interpreter
(http://www.cancergenomeinterpreter.org) provides a versatile
tool to estimate the biological significance of observed muta-
tions and to predict their clinical relevance. However, prospec-
tive randomized trials of sufficient scale that demonstrate a
clinical benefit of genomic profiling-guided off-label use for
advanced cancer patients are still lacking [117].

The rapid progress in method development enabled the
screening of hundreds of genes in the somatic and germline
genome. Many platforms are by now commercially available
and are increasingly used in clinical trials in which genomic
DNA of different tumors is comprehensively analyzed using
NGS for associations between genetic variability and thera-
peutic success of the anticancer therapy in question. Such an
approach is mainly warranted for drugs for which the
presence of mutations in genes encoding the signal transduc-
ers and modulators will determine the clinical success of the
inhibitor in question, such as new antibodies that interfere in
receptor-mediated signal transduction. We thus anticipate

that pharmacogenetically guided anticancer therapy will
increasingly utilize biomarkers consisting of a set of mutations
in critical genes.

EMERGING TECHNOLOGIES FACILITATING
BIOMARKER DISCOVERY

The knowledge we have gained about pharmacogenomic
biomarkers, particularly regarding the importance of rare and
population-specific variants, can be attributed to the increase in
speed and accuracy of NGS technology, combined with
decreasing prices. However, certain challenges of short-read
sequencing remain and particularly the mapping of structural
variants, copy number variations (CNVs) and of large (> 1 kb)
repetitive elements remains problematic [118]. Filtering variants
called using standard filters for short-read sequencing results in
the removal of low complexity regions, segmental duplications
and variable number tandem repeats. As a consequence, the
pharmacogenetic variability in important genes, such as
CYP2A6, CYP2B6, CYP2D6, CYP3A4, GSTM1, HLA-B,
UGT2B15, and UGT2B17 cannot be interrogated by standard
paired-end 150 bp sequencing (Fig. 4). Similarly, a substantial
proportion of variants cannot be called with high confidence for

Table 5. Approved Targeted Cancer Drugs

Drug family Drug Indication Biomarker

ERBB2 inhibitor Lapatinib BRCA ERBB2 overexpression
ERBB2 mAb Pertuzimab

Trastuzumab
EGFR inhibitor Erlotinib NSCLC EGFR mutations except T790M, EGFR exon 19 deletions

Gefitinib NSCLC, EC Some EGFR mutations except T790M, EGFR exon 19 deletions,
EGFR amplification

Osimertinib NSCLC EGFR T790M mutation
EGFR mAb Cetuximab CRC EGFR overexpression
ERBB2 and EGFR
inhibitor

Afatinib NSCLC EGFR mutations, EGFR exon 19 deletions

BCR-ABL inhibitor Bosutinib CML BCR-ABL1 fusion, ABL1 mutations
Dasatinib ALL, CML
Imatinib ALL, CML, GSC, MDS,

melanoma
BCR-ABL1 fusion, PDGFRA fusion, PDGFRA mutation, KIT
mutations

Nilotinib CML BCR-ABL1 fusion, ABL1 mutations
Ponatinib ALL, CML BCR-ABL1 fusion, ABL1 T315I mutation

BRAF inhibitor Dabrafenib Melanoma BRAF V600E mutation
Vemurafenib

ALK inhibitor Ceritinib NSCLC ALK fusion
Crizotinib

MTOR inhibitor Everolimus BRCA, GCA, RA ERBB2 expression and ESR1 overexpression, TSC1 or TSC2
mutations

PARP inhibitor Olaparib OVC BRCA1 or BRCA2 mutations
CDK4/6 inhibitor Palbociclib BRCA ERBB2 expression and ESR1 overexpression
Retinoid Tretinoin GC PML-RARA fusion
SHH inhibitor Vismodegib BCC, MB PTCH1 mutations
JAK inhibitor Ruxolitinib Myelofibrosis JAK2 V617F mutation
MEK inhibitor Trametinib Melanoma BRAF V600E or V600K mutations
Pan-TK inhibitor Regorafenib GSC KIT or PDGFRA mutations

Sunitinib
Vandetanib THC RET mutations

AML acute lymphoblastic leukemia, BCC basal cell carcinoma, BRCA breast cancer, CML chronic myeloid leukemia, CRC colorectal cancer,
EC endometrial cancer, GCA giant cell astrocytoma, GC gastric cancer, GSC gastrointestinal stromal cancer, MB medulloblastoma, MDS
myelodisplasic syndrome, NSCLC non-small cell lung cancer, OVC ovarian cancer, RA renal angiomyolipoma, THC thyroid carcinoma
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genes containing repeats larger than 1 kilobase (kb), including
ABCB1, SLC19A1, and SLC22A1.

Long-read sequencing technologies aspire to enhance the
recovery of reads that cannot be unambiguously mapped by
short-read sequencing. In recent years, multiple long-read
sequencing approaches have been presented (Fig. 5). Pacific
Biosciences (PacBio) offers platforms for single-molecule
real-time (SMRT) sequencing that have been successfully
applied to medical genotyping as well as to the sequencing of
human genomes [119–121]. The long reads allow for accurate
variant calling as well as phasing of multiple heterozygous
variants whose genomic location might be several kilobases
apart. As such, SMRT provides an excellent technology for
the sequencing of complex CYP loci and, using CYP2D6 as
an example, has been demonstrated to allow the simultaneous

detection of SNVs and CNVs in multiplexed samples [122,
123]. In addition to genomic sequencing, SMRT allows direct
decoding of epigenetic marks [124].

Nanopore sequencing developed by Oxford Nanopore
Technologies offers an alternative to the PacBio platform.
Recent progress towards higher throughput, including whole
genome sequencing (WGS), as well as detection of DNA
methylation, also makes it well suited for biomarker discov-
ery in complex regions of the genome [125, 126]. Further-
more, long-read sequencing combined with target capture
methods based on the hybridization of biotinylated baits
offers the possibility to focus on specific genomic regions of
interest [127, 128]. A recent elegant approach demonstrated
the utility of direct selection of DNA fragments in real-time
by dynamic time warping and matching reads to the reference
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genome [129]. Thus, its portability, flexibility, and speed in
data production make nanopore sequencing suitable for real-
t ime applicat ions, including direct point-of-care
pharmacogenomic testing.

Besides long-read sequencing, various approaches to
generate synthetic long-reads have been presented. The main
advantage of synthetic methods is that they can leverage the
low cost and high accuracy of short-read sequencing.
Illumina’s TruSeq Synthetic Long-Read technology, previ-
ously referred to as Moleculo, is based on fragmenting
genomic DNA to approximately 10 kb fragments, their clonal
amplification, shearing, and indexing with a unique barcode.
Similarly, contiguity preserving transposase sequencing from
Illumina provide in vitro means of generating libraries
comprised of thousands of indexed pools, each containing

thousands of sparsely sequenced long fragments, ranging
from 5 kb up to 1 megabase [130]. The Chromium platform
(10× Genomics) provides synthetic long reads by partitioning
and barcoding the genome, followed by sequencing on any
NGS platform. The barcoded linked reads can be aligned
using Bread clouds,^ thereby overcoming the complexities of
mapping reads in repetitive regions of the genome. All linked
reads for a single barcode are aligned simultaneously, with
the prior knowledge that the reads arise from a small number
of long (10–200 kb) molecules [131].

In summary, Breal^ as well as synthetic long-range
sequencing represent promising emerging technologies that
allow the phasing of variants, which can refine pharmacoge-
netic genotype calls and thus improve the phenotypic
prediction regarding drug response.
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CLINICAL IMPLEMENTATION OF
PHARMACOGENOMICS

The clinical implementation of pharmacogenomic bio-
markers is increasing and information about the importance
of genetic variation has been included in the labels of 190 and
155 drugs approved by the US Food and Drug Administra-
tion (FDA) and the European Medicines Agency (EMA),
respectively (https://www.fda.gov/Drugs/ScienceResearch/
ResearchAreas/Pharmacogenetics/ucm083378.htm) [132].

A central question is to what extent the preemptive use of
pharmacogenomic biomarkers results in increased benefits for
patients and society. So far, results of prospective randomized
trials have been presented only for a very limited number of
drugs [133]. In Europe, a large prospective trial called PRE-
PARE (PREemptive pharmacogenomic testing for Preventing
Adverse drug REactions) has been initiated by the EU-financed
Ubiquitous Pharmacogenomics project (http://upgx.eu/) that
a ims to implement and evaluate the impact of
pharmacogenomic testing on therapeutic outcomes in seven
European clinical centers [134]. In total, 8100 patients will be
enrolled and 40 clinically relevant PGx markers across 13
important pharmacogenes will be analyzed. In one arm of the
trial, patients will receive treatment based on standard physio-
logical and clinical parameters, whereas patients in the other
armwill receive pharmacogenetically guided therapy. Outcomes
of this interesting trial are expected in 2020.

In the USA, the NIH-funded eMERGE project has
entered the final stage, which aims at analyzing the impor-
tance of rare genetic variants on patient phenotypes, devel-
oping technical and regulatory solutions to integrate genomic
information into Electronic Health Records (EHR), assessing
physician and patient attitudes towards the value of
pharmacogenomic data, developing educational programs,
and increasing the knowledge and awareness of clinically
significant genetic variants. Additional programs conducted in
the USA have been reviewed recently [135].

POINTS TO CONSIDER FOR STUDIES OF CLINICAL
PHARMACOGENOMICS

Importantly, certain pitfalls should be considered when
evaluating the clinical importance of pharmacogenomic
associations. The problems include the analysis of populations
that are heterogenous regarding ethnicity or disease classifi-
cation, the inappropriate pooling of data derived from non-
compatible studies, the use of inappropriate methods for
isolation or sequencing of genomic DNA, use of somatic
DNA instead of germline DNA, and vice versa, concluding
on the basis of inaccurate proxy polymorphisms and errone-
ous haplotype identification based on a set of genetic variants.
Furthermore, the choice of genotyping methodology, includ-
ing appropriate selection of interrogated SNPs or genomic
intervals as well as an assessment of the analytical validity of
the chosen method, constitutes important aspects during the
project planning phase. In case NGS-based approaches are
used for genotyping, strategies should be in place to interpret
encountered rare genetic variants with unknown functional
consequences [136]. Thus, in order to assist the design and
interpretation of studies of pharmacogenomic biomarkers,
the EMA has released a draft guideline (http://

www.ema.europa.eu/docs/en_GB/document_library/
Scientific_guideline/2016/05/WC500205758.pdf).

CONCLUSIONS

Pharmacogenomic information provides an important tool
for patient stratification and the selection of optimal drug and
dosing regimens, particularly in oncology. However, in other
therapeutic areas, the routine use of pharmacogenomic bio-
markers in clinical practice is currently sparse primarily due to the
lack of convincing data that show the added value for patient and
health care providers. Importantly, the large prospective trials
that are currently conducted in EU and the USAwill shed light
on the overall benefits of this technology and provide answers to
how and where the implementation of preemptive
pharmacogenomically guided drug treatment should be
recommended.
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