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Abstract——Quantitative variation in response to
drugs in human populations is multifactorial; genetic
factors probably contribute to a significant extent.

Identification of the genetic contribution to drug re-
sponse typically comes from clinical observations and
use of classic genetic tools. These clinical studies are
limited by our inability to control environmental fac-
tors in vivo and the difficulty of manipulating the in
vivo system to evaluate biological changes. Recent
progress in dissecting genetic contribution to natural
variation in drug response through the use of cell lines
has been made and is the focus of this review. A gen-
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eral overview of current cell-based models used in
pharmacogenomic discovery and validation is in-
cluded. Discussion includes the current approach to
translate findings generated from these cell-based
models into the clinical arena and the use of cell lines
for functional studies. Specific emphasis is given to
recent advances emerging from cell line panels, in-
cluding the International HapMap Project and the
NCI60 cell panel. These panels provide a key resource
of publicly available genotypic, expression, and phe-

notypic data while allowing researchers to generate
their own data related to drug treatment to identify
genetic variation of interest. Interindividual and in-
terpopulation differences can be evaluated because
human lymphoblastoid cell lines are available from
major world populations of European, African, Chi-
nese, and Japanese ancestry. The primary focus is
recent progress in the pharmacogenomic discovery
area through ex vivo models.

I. Introduction

A. Overview of Pharmacogenomics

Pharmacogenetics is the study of variability in drug
response, in terms of either drug efficacy or adverse drug
reactions, due to variation in genetics. Pharmacogenet-
ics originally evolved from observational studies of rare
metabolic abnormalities, particularly within families or
between ethnic groups. For example, it was observed
that, of soldiers given primaquine for malaria during
World War II, approximately 10% of African Americans
developed acute hemolytic crises, compared with a very
small number of white persons (Clayman et al., 1952).
This led to the discovery of genetic deficiencies in glu-
cose 6-phosphate dehydrogenase, an enzyme that alters
metabolism in erythrocytes.

Before the advent of the Human Genome Project,
pharmacogenetic studies primarily examined candidate
genes within well known pharmacokinetic pathways af-
ter a clinical observation. A classic example of a success-
ful use of this approach was the discovery of the role of
genetic variation in TPMT1 in thiopurine metabolism.
TPMT encodes the enzyme thiopurine methyltrans-
ferase that metabolizes thiopurines via S-methylation
(Weinshilboum and Sladek, 1980). Differences in en-
zyme activity between individual subjects were first
identified in 1980 and were consequently determined to
be heritable (Weinshilboum and Sladek, 1980). Almost a
decade later, a series of clinical studies showed this
activity to be inversely correlated with levels of thiopu-
rine metabolites in red blood cells and drug-induced
myelosuppression (Lennard et al., 1987, 1989, 1990;
Evans et al., 1991). Subsequent advances in molecular

biology led to the cloning of the TPMT locus and identi-
fication of polymorphisms in the sequence (Szumlanski
et al., 1996; Tai et al., 1996). In white persons, three of
these polymorphisms (*3A, *3C, and *2) account for 95%
of inherited TPMT deficiencies (McLeod et al., 2000).
Consequently, TPMT is a major predictor of therapeutic
success and has been incorporated into the dosing pa-
rameters for this drug (Lennard et al., 1990; Wang et al.,
2005; Schmiegelow et al., 2009).

These results led the FDA to approve use of TPMT
genotyping as a biomarker in clinical practice in 2003.
Because the term “pharmacogenetics” was first coined
50 years ago, it is surprising that only a handful of
examples of incorporation of genetic information into
dosage algorithms in clinical practice exist today. In
addition to TPMT, variants in UGT1A1, CYP2D6, and
VKORC1 have begun to be introduced into clinical prac-
tice for dosing of irinotecan, tamoxifen, and warfarin
(http://warfarindosing.org), respectively (Maitland et al.,
2006; Ratain, 2006; Young, 2006; International Warfa-
rin Pharmacogenetics Consortium et al., 2009). Even
with the advances coincident with the genomic era, iden-
tification and validation of relevant pharmacogenetic
markers has been a slow process for a variety of reasons.

B. Rationale for Use of Cell-Based Models in
Pharmacogenomic Discovery

These early pharmacogenetic discoveries were based
on observations in clinical populations and were limited
to phenotypes in which a single candidate gene variant
had a large effect on drug activity. However, this is not
a practical approach for pharmacogenetic analysis of
most drugs for multiple reasons. First, variation in re-
sponse to most clinically administered drugs is depen-
dent on the combined contribution of multiple genes
with small, independent effects. Comprehensive phar-
macogenomic studies of pharmacokinetic and pharma-
codynamic genes important in drug response typically
precludes use of clinical trials as a means of discovery
because these studies are expensive, time-consuming,
and require large numbers of patients and infrastruc-
ture to obtain reliable clinical phenotype data. Estab-
lishing a prospective cohort can take years because of
the time required to meet regulatory requirements, to
accrue a population of sufficient size, and to conduct
follow-up analysis. Although samples from retrospective

1 Abbreviations: ABCB, ATP-binding cassette transporter, sub-
family B; ALL, acute lymphoblastic leukemia; AML, acute myeloid
leukemia; AraC, cytarabine; CEPH, Centre d’Etude du Polymor-
phisme Humain; CEU, CEPH from Utah; CNV, copy number varia-
tion; DCK, deoxycytidine kinase; EBV, Epstein-Barr virus; EGFR,
epidermal growth factor receptor; eQTL, expression quantitative
trait locus; GWA, genome-wide association; HMGCR, HMG-CoA re-
ductase; LCL, lymphoblastoid cell line; LDL, low-density lipoprotein;
LOD, logarithm of the odds; MAF, minor allele frequency; NCI,
National Cancer Institute; siRNA, short interfering RNA; SLC, sol-
ute carrier; SMARCB1, switch/sucrose nonfermentable-related, ma-
trix-associated, actin-dependent regulator of chromatin, subfamily
B, member 1; SNP, single nucleotide polymorphism; t-AML, therapy-
related acute myeloid leukemia; TPMT, thiopurine methyltrans-
ferase; YRI, Yoruba people from Ibadan, Nigeria.
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clinical trials require fewer resources, they generally have
neither sufficient statistical power nor the appropriate de-
sign to answer specific pharmacogenetic questions. This
problem is further compounded by the need for multiple
large patient cohorts, to enable both discovery and replica-
tion studies. Another complication of clinical pharmacoge-

netic studies is separating genomic contributions to varia-
tion in drug response from confounding factors such as
comorbidities, dosage, timing, and diet. Uncontrolled con-
founders, including population stratification or admixture,
can also bias measured effect estimates of genotype-phe-
notype relationships. Furthermore, pharmacogenetic dis-
covery for highly toxic drugs, such as chemotherapeutics
and certain antiviral agents, poses additional challenges
that require the development of ex vivo models. For all of
the reasons mentioned above, studies have turned to the
use of human cell-based models for pharmacogenetic dis-
covery and validation studies. Table 1 summarizes some of
the advantages and limitations of pharmacogenetic studies
in humans and cell-based models.

Although cell-based models have been used in preclin-
ical drug development for years as a means to evaluate
drug-induced cell growth inhibition or apoptosis or to
identify interactions of target compounds with drug-
metabolizing enzymes and transporter proteins, their
use in pharmacogenetics is relatively recent. Cell lines
are useful because they can be perturbed easily with
drug treatment to examine changes in gene expression
and cell growth in response to drugs. Cell lines also
facilitate examination of molecular and cellular biomar-
kers or intermediate phenotypes, which can help eluci-
date the mechanism of action of the drug and/or etiology
of the clinical phenotypes under study. However, there
are a limited number of choices of cell types. Although
hepatocytes are often the most relevant tissue to identify
variant gene function in drug-metabolizing enzymes for
many pharmaceutical agents, this tissue is notoriously
inaccessible and expensive to obtain. Molecular pheno-
typing in more accessible cell types, such as red blood
cells or lymphocytes, has proven to be a successful alter-
native but requires that drug response pathways are
active within the sampled tissue.

In recent years, there has been increasing utilization
of lymphoblastoid cell lines (LCLs) as a model to assess
the contribution of genetic or epigenetic variation to

FIG. 1. Analysis methods for cell-based models in pharmacogenomics.
Schema of how cell models can be applied to pharmacogenomics research.
Each circle describes variables that can be measured within cell lines and
the overlap describes the methods applied to finding relationships between
the two variables. The use of cell lines within pedigrees will allow for
heritability and linkage analysis. In addition, candidate gene or genome-
wide association (GWA) studies can be used for examining genotype-
phenotype relationships in cells of both unrelated and related persons.
Gene expression data can be analyzed with pharmacological endpoints in
cells to determine expression profiles that are associated with sensitivity
or resistance to a drug. The role of genetic variants in regulating gene
expression, regardless of drug sensitivity, can also be examined in eQTL
and allelic imbalance studies in cell-based models. Integrating genetic,
expression, and pharmacological phenotypes can be combined in a “tri-
angle model” to determine genetic markers that are associated with
cellular phenotype through their effect on gene expression.

TABLE 1
Advantages and limitations of human and cell models

Clinical Studies Cell Models

Advantages

� Most relevant study system � Ease of experimental manipulation
� Pharmacokinetic as well as pharmacodynamic testing possible
� Ability to analyze effects of interactions of multiple tissues
� Allows investigation of environmental factors and drug-drug interactions

� Controlled testing system free of in vivo confounders
� Ability to test drugs with narrow therapeutic index
� Genetic and expression data publicly available for hundreds of
established cell lines

� Cost-effective
� Unlimited resource

Limitations

� Difficult to collect large cohorts of patients for discovery and replication
� Can be difficult to parse effects of environment from genetic effects
� Ethical issues with studying drugs with narrow therapeutic indices
� Not all cohorts will have detailed pharmacological data, especially
retrospective cohorts

� Phenotype may not recapitulate in vivo system
� Subject to in vitro confounders that may affect phenotype
� Cell lines can be generated from only a limited number of
tissues

� Cells may not express important metabolic enzymes relevant to
pharmacology, such as the cytochrome P450 family

� Establishing cell lines from tumor may alter characteristics of
tumor
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drug response (Watters et al., 2004; Shukla and Dolan,
2005; Huang et al., 2007a,b, 2008b,c; Medina et al.,
2008). LCLs are typically generated by Epstein-Barr
virus (EBV) transformation of peripheral blood mononu-
clear cells, resulting in a population of immortalized B
lymphocytes (Ling and Huls, 2005). One of the first large
banks of commercially available LCLs was from the
Centre d’Etude du Polymorphisme Humain (CEPH) and
Coriell Institute for Medical Research, containing exten-
sive pedigree information of approximately 60 families
from France, Utah, and Venezuela, as well as one of
Amish origin (Dausset et al., 1990; Cann, 1992). These
LCLs, as well as those belonging to the International
HapMap project, have been widely studied in genetic
and expression analyses and, more recently, in pharma-
cogenetics. In addition, cell lines from diseased tissue,
such as the NCI60 bank of cancer cell lines, have proved
to be useful models in pharmacogenetics for examining
the direct effects of a drug on a variety of tumor tissue
types. Although other publicly available cell panels ex-
ist, the extensive genetic data that is publicly available
on these two cell collections have made them the pri-
mary focus of studies in pharmacogenomics. Therefore,
they will also be the focus of discussion in this review.

II. Cell-Based Models for Pharmacogenomic
Discovery

A. Developing a Cell-Based Model System

Developing a cell-based system that is most relevant
to the clinical phenotype of interest is challenging. One
of the most important considerations is whether the cell
lines express the relevant pharmacokinetic and pharma-
codynamic pathways associated with the drug of inter-
est. Other considerations are the appropriate in vitro
assay or phenotype that is measured, the population
from which the cell lines are derived, and the relevance
of the tissue of origin. Considerations and limitations
with the cell-based system must also be taken into
account.

1. Selection of Cell System. The use of cell-based
models for pharmacogenomic analysis of drug classes
requires consideration of the pathways intact within the
system. Many pharmaceutical agents work through
modulation of biological pathways that interact only in
specialized cell types such as neurons or pancreatic �
cells, and these pathways may not be represented within
all cell types. In contrast, some drugs act through bio-
logical pathways that are universally represented across
all cell types. For example, statins act by lowering
plasma LDL-cholesterol through competitive inhibition
of HMG-CoA reductase (HMGCR) within the liver,
blocking endogenous cholesterol biosynthesis. Many cell
types, including lymphocytes, express the cholesterol
biosynthesis pathway and have been useful models for
pharmacogenomic discovery for statins (Medina et al.,
2008). Therefore, the cell-model system employed will

depend on the expression of genes within pathways most
relevant to the drug of interest.

Hepatic cells are often the best model system to study
the pharmacogenetic effects of metabolic enzymes like
the cytochrome P450 family of enzymes (Zhou et al.,
2009). This family of genes, as well as other metabolic
enzymes, is crucial for the initial processing of many
toxins and drugs in the body. Microsomes from human
livers have been used extensively in pharmacogenetics
to determine activity of various enzymes in poor metabo-
lizers and extensive metabolizers of a particular drug.
For example, microsomes from livers of persons that
express low levels of CYP3A5 as a result of the genetic
variant CYP3A5*3 metabolized the drug alfentanil
poorly compared with those that produce higher levels of
CYP3A5 (Klees et al., 2005). Likewise, formation of the
8-hydroxylated form of the antiviral efavirenz, the pri-
mary drug metabolite, was associated with both the
presence of the CYP2B6*6 allele and CYP2B6 protein
levels in a panel of liver microsomes (Desta et al., 2007).
Hepatocytes have also been useful in determining ge-
netic control of expression and splicing differences in
drug-metabolizing genes. For example, primary hepato-
cytes from human livers were used to determine that
mRNA levels of CYP2A6 were significantly lower in
those possessing a deletion polymorphism (CYP2A6*4)
or a polymorphism in the TATA box (CYP2A6*9) com-
pared with hepatocytes expressing wild-type CYP2A6
(Kiyotani et al., 2003). These CYP2A6 genotypes were
also significantly correlated with decreased protein lev-
els and enzymatic activity in vitro. As useful as primary
hepatocytes and microsomes are in pharmacogenetics of
cytochrome P450s, they have a finite lifespan with
changes occurring with days in culture.

For some drugs, metabolic conversion does not occur;
therefore, the PD pathway is more relevant. There are
also examples, such as cancer drugs that target EGFR,
in which the target gene plays a prominent role in drug
activity. Many tumors acquire activating mutations in
EGFR, and patients with these tumors respond better to
EGFR-targeting drugs, such as erlotinib or gefitinib
(Lynch et al., 2004; Paez et al., 2004; Ji et al., 2006a,b).
To study how alterations at this gene locus affect sensi-
tivity to these drugs, tumor cells would be the most
relevant model system. Tumor cell lines from patients
with non–small-cell lung cancer and from patients with
head and neck squamous cell carcinoma have been used
to determine which mutations in EGFR, as well as
EGFR gene amplification and expression, were strong
predictors of gefitinib sensitivity (Gandhi et al., 2009;
Rogers et al., 2009). Therefore, selection of a cell system
requires consideration of the drugs and pathways of
interest.

2. Phenotyping Cells. The selection of endopheno-
types, as measured in cell lines after treatment with
drug, that accurately reflect clinical drug response is a
major challenge. The appropriate phenotype is usually
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dependent on the mechanism of action of the drug, as
well as the clinical phenotype of interest. For example,
anticancer drugs are intended to cause growth inhibi-
tion, cell death, or apoptosis; therefore, measures of cel-
lular apoptosis or inhibition of cellular proliferation
across a range of drug dosages are a reasonable pheno-
type (Shukla and Dolan, 2005). Another phenotype to
consider is measurement of conversion of parent drug to
active metabolite. This has been effectively analyzed in
the case of methotrexate glutamation (Masson et al.,
1996) and the chemotherapeutic AraC, in which the
amount of active metabolite (AraCTP) was associated
with a specific genotype within an important drug-me-
tabolizing gene (Hartford et al., 2009).

In certain cases, especially when using a candidate
gene approach, the nature of the gene-drug relationship
may dictate the molecular phenotype that should be
evaluated. Promoter SNPs may be tested for allelic im-
balance phenotypes, or nonsynonomous coding polymor-
phisms may be analyzed for changes in substrate affin-
ity or enzymatic activity (Kuehl et al., 2001; Erdman et
al., 2006; Ramírez et al., 2006). However, not all clinical
phenotypes are amenable to cell-based model systems;
for example, certain HIV drugs, such as efavirenz, nevi-
rapine, and abacavir, often cause drug-induced hyper-
sensitivity in patients (Tozzi, 2009); this results from
complex interactions between multiple cell types that
would be difficult to recapitulate ex vivo.

3. Population of Persons from Whom Cells Are De-
rived. Geographic region is becoming increasingly recog-
nized as an important factor accounting for variation in
drug response (Huang and Temple, 2008; O’Donnell and
Dolan, 2009). For example, there is consistent evidence
that persons from East Asia are particularly sensitive to
the effects of platinating agents (Millward et al., 2003;
Watanabe et al., 2003). Similar differences have been ob-
served in efficacy of statins in African Americans com-
pared with white persons, as well as between Asians,
whites, and African Americans in dosing of warfarin (Lee
et al., 2005; Engen et al., 2006; Simon et al., 2006). Because
studying a population enriched for a particular phenotype
(i.e., drug sensitivity) is thought to enhance one’s ability to
identify genetic variants associated with that phenotype,
choosing to study cells derived from an informative popu-
lation would be helpful in pharmacogenomic discovery.

The International HapMap cell lines representing 11
different ethnic groups have been used to study inter-
ethnic differences in drug sensitivity. Pharmacogenomic
differences in drug response across ethnicities may rep-
resent differences in prevalence of causative polymor-
phisms and may also act through differences in gene
expression. Extensive differences have been described in
the genomic regulation of global gene expression be-
tween LCLs derived from European versus African do-
nors (Price et al., 2008; Zhang et al., 2008a). Further-
more, genomic regulation of alternatively spliced
transcripts is significantly different in LCLs from these

two groups (Zhang et al., 2009). Although race plays an
important role in drug response and expression pheno-
types, race alone is not predictive of genetic heterogene-
ity (Yen-Revollo et al., 2008), thus specific genetic vari-
ants must be examined concomitantly with race. These
data suggest that the cell-based model is a meaningful
system to assess genomic contributions to differences in
cellular response to drugs within and among ethnic pop-
ulations. Furthermore, ethnicity of the population from
which cells are derived is an important consideration
when developing a cell-based model system.

4. Experimental Artifacts and Confounders. To prop-
erly assess drug phenotypes and the genetic factors as-
sociated with them in cell lines, artifacts of the experi-
mental system must be considered. One study recently
attempted to determine some of these factors in LCL
model systems and reported that EBV copy number,
ATP levels, and growth rate are all nongenetic confound-
ers of response of certain drugs, including 5-fluorouracil,
methotrexate, simvastatin, suberoylanilide hydroxamic
acid, and 6-mercaptopurine (Choy et al., 2008). Our lab-
oratory found no relationship between EBV copy num-
ber or ATP levels and cellular sensitivity to drugs (A. L.
Stark, W. Zhang, S. Mi, S. Duan, P. H. O’Donnell, R. S.
Huang, M. E. Dolan, submitted). However, we did ob-
serve a significant correlation between cellular growth
rate and sensitivity to chemotherapy that is not surpris-
ing, because many chemotherapeutic drugs are designed
against rapidly growing cells (Huang et al., 2008c; Hart-
ford et al., 2009). Therefore, genetic variants associated
with sensitivity to chemotherapeutic agents may act
through their association with growth rate. More inves-
tigation into this area is necessary to properly determine
the role of cellular growth rate in drug responses both in
vitro and in vivo.

Studies in keratinocytes and B-cell lymphomas have
shown that EBV alters apoptosis in response to certain
drugs, such as bleomycin, gemcitabine, and doxorubicin,
but this was not true of all drugs (i.e., cisplatin, 5-flu-
orouracil, and 5�-azacytidine) (Feng et al., 2004; Liu et
al., 2004). Thus, the effects of EBV seem dependent on
cell type, drug, and disease state, and all of these factors
should be considered when using EBV-immortalized cell
models in pharmacogenetic studies. In addition, it has
also been reported that LCLs contain nongermline mu-
tations, including changes in copy number of mitochon-
drial DNA (Jeon et al., 2007). Because these mutations
may alter cellular phenotypes of interest, it is important
to check for evidence of Mendelian inheritance of the
SNPs of interest in the publicly available HapMap data.

5. Statistical Considerations. The ability to control
some important sources of environmental variation, and
the presence of family structure does allow detection of
greater differences in drug effect than would be possible
in patients or animal models. However, many cell-based
pharmacogenomic studies use cell lines derived from
fewer than 200 subjects, with resulting limitations in
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statistical power, particularly when performing genome-
wide association studies. Because of this, there is a
movement toward studies in larger cell line collections
when a priori statistical planning indicates a need for
larger sample sizes to increase the power to detect ge-
netic associations.

B. Lymphoblastoid Cell Line Model Systems

Despite the limitations described above, many phar-
macogenomic studies have employed LCLs (Table 2).
Lymphocytes can be easily obtained by drawing blood,
and cell lines can then be established by EBV transfor-
mation. In addition, LCLs express approximately half of
the known genome (Cheung et al., 2003; Zhang et al.,
2008a), allowing for interrogation of many potentially
relevant biological pathways.

1. Application of Lymphoblastoid Cell Line Models in
Pharmacogenomics in the Pregenomic Era. Before the
full sequencing of the human genome, pharmacogenetic
discoveries within LCLs were made using cell lines es-
tablished from targeted clinical populations (e.g., dis-
eased persons). For example, LCLs derived from pa-
tients who were genetically predisposed to Wilms’ tumor
showed increased sensitivity to the chemotherapeutic
drug mitomycin C, indicating a genetic component to
drug sensitivity (Imray et al., 1984). Likewise, LCLs
from patients with multiple sclerosis showed signifi-
cantly higher sensitivity to ionizing radiation compared
with normal controls, a trait that showed autosomal-
dominant inheritance when examining unaffected first-
degree relatives (Gipps and Kidson, 1984). Another
study that used lymphocytes from relatives of patients

TABLE 2
Application of LCL models to pharmacogenomics

LCL-Based Model Genetic Approach Endophenotype Phenotype Reference

Pregenomic era (before 2003)
Patients with HNSCC and

unaffected family members
Heritability Drug sensitivity Cloos et al., 1999

Patients with MS and
unaffected family members

Heritability Sensitivity to ionizing
radiation

Gipps and Kidson, 1984

Patients with Wilms’ tumor Candidate gene Drug sensitivity Imray et al., 1984
Patients with Werner

syndrome
Candidate gene Drug sensitivity Poot et al., 1999

Postgenomic era (2003 to present)
CEPH Pedigrees Heritability, linkage analysis Expression Morley et al., 2004
HapMap trios eQTL Expression Cheung et al., 2005;

Stranger et al., 2005;
Spielman et al., 2007;
Storey et al., 2007;
Stranger et al., 2007a,b;
Duan et al., 2008;
Huang et al., 2008d;
Zhang et al., 2008, 2009;
Kudaravalli et al., 2009

CEPH Pedigrees Heritability, linkage analysis Drug sensitivity Dolan et al., 2004;
Watters et al., 2004

CEPH Pedigrees/HapMap trios Heritability, linkage-directed
association studies

Drug sensitivity Duan et al., 2007;
Shukla et al., 2008, 2009;
Bleibel et al., 2009

CEPH pedigrees Linkage analysis, association
studies

Expression Response to ionizing
radiation

Smirnov et al., 2009

Human Variation Panel Transcriptional profiling Drug sensitivity Li et al., 2008
Patients with breast cancer,

with and without BRCA1/2
mutations

Transcriptional profiling Response to ionizing
radiation

Waddell et al., 2008

HapMap trios Transcriptional profiling Drug sensitivity Fry et al., 2008
Subjects with HNSCC and

control subjects
Transcriptional profiling Drug sensitivity Cloos et al., 2006

SOPHIE population Candidate gene Allelic imbalance Urban et al., 2006;
Tahara et al., 2009

Polymorphism Discovery
Resource

Candidate gene Allelic imbalance Poonkuzhali et al., 2008

HapMap trios Candidate gene Allelic imbalance Johnson et al., 2008
Subjects with type 2 diabetes

and control subjects
Candidate gene Allelic imbalance Elbein et al., 2007

HapMap trios Candidate gene Drug sensitivity Hartford et al., 2009
Human Variation Panel Candidate gene Drug sensitivity Wang et al., 2008
Human Variation Panel/CEPH

unrelateds
Candidate gene Drug sensitivity Innocenti et al., 2009

Schizophrenia case-control
study

Candidate gene Expression Chagnon et al., 2008

HapMap trios GWAS Expression Drug sensitivity Huang et al., 2007a,b,
2008b,c,; Hartford et
al., 2009

HNSCC, head and neck squamous cell carcinoma; MS, multiple sclerosis.
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with head and neck squamous cell carcinoma found that
approximately 75% of the total variance in rate of bleo-
mycin-induced chromatid breaks was due to genetic fac-
tors (Cloos et al., 1999). Finally, LCLs with genetic al-
terations in the WRN (Werner syndrome ATP-
dependent helicase) gene have increased camptothecin-
induced apoptosis compared with those with wild-type
WRN sequences (Poot et al., 1999), indicating that this
gene contributes to drug sensitivity. Most importantly,
these initial studies, through the use of LCLs derived
from diseased persons, were able to establish links be-
tween genetic variation and sensitivity to drug-induced
damage or cell kill.

2. Application of Lymphoblastoid Cell Line Models in
Pharmacogenomics in the Postgenomic Era. The post-
genomic era has allowed a more comprehensive evalua-
tion of the full spectrum of human genetic variation and
its role in disease and drug pharmacology (Fig. 1). Of
particular relevance was the initiation of the Interna-
tional HapMap project, which uses a large repository of
LCLs from a variety of ethnic backgrounds, with a rich
set of publicly available genotypic data. These resources
have recently been leveraged for discovery and valida-
tion of new pharmacogenomic markers.

a. International HapMap lymphoblastoid cell lines for
pharmacogenomic discovery. The International Hap-
Map LCLs constitute an important commercially avail-
able resource for genetic studies. These cell lines are
used for the study of genotype-phenotype relationships,
including pharmacologic phenotypes. The HapMap
project was initiated in 2003 to identify common DNA
variation across the human genome and to form a hap-
lotype map of these variants (The International Hap-
Map Consortium et al., 2003). In the initial phases I and
II of the HapMap project, four populations of apparently
healthy persons were included: 30 family trios (father,
mother, child) of Yorubas from Ibadan, Nigeria (YRI), 30
family trios of Utah residents of northern and western
European descent (CEU), 45 unrelated Han Chinese
persons from Beijing, China, and 45 unrelated persons
from Tokyo, Japan.

The first phase of the project resulted in genotype data
on more than 1 million SNPs in the samples (The Inter-
national HapMap Consortium et al., 2005); phase II
expanded to more than 2 million additional SNPs in
each population, with minor allele frequency (MAF) �
0.05 (International HapMap Consortium et al., 2007).
This constitutes approximately 25 to 35% of the esti-
mated 9 to 10 million common SNPs thought to exist in
the human genome. HapMap phase III is currently un-
der way and will extend the project with genotype infor-
mation on 11 new ethnically diverse populations (http://
ccr.coriell.org/Sections/Collections/NHGRI/hapmap.aspx?
PgId�266&col�HG).

In addition to genotype data on more than 4 million
SNPs that are currently available for all 270 HapMap
LCLs using multiple genotyping platforms (reviewed

in Zhang et al., 2008c), copy number variation (CNV)
data are also publicly available from the Wellcome
Trust Sanger Institute (Stranger et al., 2007a). More
recently, data from the international sequencing effort
known as the 1000 Genomes Project (http://www.
1000genomes.org), with the most detailed catalog of hu-
man genetic variation, are emerging on the 270 HapMap
LCLs. In addition, basal gene expression data are avail-
able for a portion of the 270 LCLs from Affymetrix Focus
array (Spielman et al., 2007; Storey et al., 2007), Af-
fymetrix Human Exon 1.0 ST array (exon array) (Duan
et al., 2008; Zhang et al., 2009), and Illumina BeadChips
(Stranger et al., 2007a,b). Thus, with genotypic and ex-
pression data, the HapMap LCLs are a rich resource
that requires only pharmacological phenotyping to eval-
uate genotype-phenotype, expression-phenotype, or gen-
otype-expression-phenotype relationships. In addition,
ethnic diversity of the populations from which the cell
lines are derived allows for studies of interethnic varia-
tion in cellular phenotypes.

b. Candidate gene approaches. Candidate gene stud-
ies continue to have utility in the postgenomic era. This
approach has been applied to many pharmacogenetic
investigations of membrane transporters, which are im-
portant mediators of drug absorption and elimination
and are also targets of many drugs. Significant effort has
been invested in resequencing transporter genes in
LCLs from the Studies of Pharmacogenetics in Ethni-
cally Diverse Populations participants, followed by func-
tional characterization using in vitro assays in Xenopus
laevis oocytes or human cell lines such as human em-
bryonic kidney 293 cells (Osato et al., 2003; Gray et al.,
2004; Badagnani et al., 2005, 2006; Fujita et al., 2005;
Owen et al., 2005, 2006; Urban et al., 2006b, 2007; Abla
et al., 2008; Huang et al., 2008a; Sorani et al., 2008;
Chen et al., 2009; Miller et al., 2009; Yee et al., 2009).
More recently, these LCLs, along with HapMap LCLs,
have been used in functional studies as well, particu-
larly involving allelic expression imbalance. Studies of
Pharmacogenetics in Ethnically Diverse Populations
samples were used to phenotype the consequences of
carriers of the promoter SNP �207G�C in the novel
organic cation transporter 2 (OCTN2/SLC22A5). LCLs
from �207 C/C subjects had lower total and specific
substrate transport as well as reduced OCTN2 gene
expression (Urban et al., 2006a). This study was later
followed up using HapMap LCLs from four ethnically
diverse populations, which found a SNP in the neighbor-
ing OCTN1/SLC22A4 gene that is in strong linkage dis-
equilibrium with the �207G�C SNP contributing to
racial differences in OCTN2 expression (Tahara et al.,
2009). Similar studies of allelic expression imbalance in
the CEU and Polymorphism Discovery Resource sam-
ples led researchers to find a genetic variant in the
drug-metabolizing enzyme NQO2 (Johnson et al., 2008)
and promoter and intron 1 polymorphisms in the trans-
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porter BCRP (Poonkuzhali et al., 2008) that alter ex-
pression of each of these genes.

In addition to examining the pharmacogenomics of
membrane transporters, the candidate gene approach in
LCLs has been used to elucidate significant associations
between genes and sensitivity to drugs used to treat a
variety of diseases. Examples of these relationships in-
clude deoxycytidine kinase (DCK) and AraC used to
treat acute myeloid leukemia (AML) (Hartford et al.,
2009), TCF7L2 and insulin used to treat diabetes (El-
bein et al., 2007), and dystrobrevin binding protein 1
(DTNBP1) and neuregulin 1 (NRG1) and the antipsy-
chotic olanzapine for treatment of schizophrenia (Chag-
non et al., 2008). Each of these examples found variants
in a candidate gene that operated through alterations in
gene expression. In addition, they demonstrate the ap-
plicability of LCL models to many different diseases
involving tissue types throughout the body. However,
association studies using biologically plausible candi-
date genes have shown variable success. This may be
due to the fact that many of the polymorphisms within
candidate genes and the surrounding genomic regions
are relatively common in the population and are be-
lieved to function as low-penetrance alleles influencing
response to therapy.

c. Expression quantitative trait loci studies. LCLs
have successfully been applied to the study of genetic
regulation of gene expression as well. Gene expression
often acts within the causal pathway between genetic
variants and more complex phenotypes, such as drug
toxicity and efficacy. One study mapped the genomic
regions that regulate quantitative expression differ-
ences, or expression quantitative trait loci (eQTLs), us-
ing 14 CEPH pedigrees and found that gene expression
is heritable (Morley et al., 2004). Later studies revealed
gene expression varied between populations by evaluat-
ing LCLs derived from white persons, Africans, and
Asians (Spielman et al., 2007; Storey et al., 2007; Price
et al., 2008; Zhang et al., 2008a). These differences in
gene expression patterns among populations may have
important implications for pharmacogenetics, because
there is ample clinical evidence that patients’ historical
geographic ancestry is often a strong predictor of their
response to certain cytotoxic agents (McCollum et al.,
2002; Millward et al., 2003; Watanabe et al., 2003;
O’Donnell and Dolan, 2009). The eQTL studies in LCLs
have found both cis- and trans-acting SNPs associated
with gene regulation (Morley et al., 2004; Cheung et al.,
2005; Stranger et al., 2005, 2007a; Duan et al., 2008;
Zhang et al., 2008a). Potential pharmacogenetic eQTLs
have been identified in the HapMap CEU and YRI LCLs
as well. Expression of “Very Important Pharmacogenes”
as listed on the Pharmacogenomics Knowledge Base
(http://www.pharmgkb.org/), was evaluated for associa-
tion with genetic variants (Huang et al., 2008d). Expres-
sion of 12 genes showed association with SNPs consti-
tuting eQTLs, two of which were cis-regulated, GSTM1

and GSTT1. Given the importance of these genes to
pharmacokinetics and pharmacodynamics, their associ-
ated regulatory SNPs may also have potentially impor-
tant roles in regulating response to drugs.

A limitation inherent to LCL models is the possibility
that gene expression (or drug sensitivity) may be altered
by EBV-mediated transformation. However, the recent
observation that variation in gene expression profiles in
LCLs cluster by families (Cheung et al., 2003) indicates
that genetic factors drive gene expression, at least to
some extent.

d. Heritability and linkage analyses. In addition to
gene expression (Cheung et al., 2003), drug-induced cy-
totoxicity has also been demonstrated to be heritable
and amenable to genetic dissection (Dolan et al., 2004;
Watters et al., 2004). Drug-induced cytotoxicity was
measured using short-term assays of cell growth inhibi-
tion after treatment with increasing drug concentrations
(Watters et al., 2004). Cell lines derived from persons
within multigenerational, large CEPH pedigrees were
used to show that a significant genetic component (38–
47%) contributed to cisplatin-induced cytotoxicity
(Dolan et al., 2004), as well as docetaxel (26–65%) and
5-fluorouracil (21–70%) toxicity (Watters et al., 2004).
Follow-up studies included more pedigrees to provide
greater power (Shukla et al., 2008) and additional drugs
such as daunorubicin (Duan et al., 2007), etoposide
(Bleibel et al., 2009), and carboplatin (Shukla et al.,
2009). Table 3 summarizes the estimated heritability of
drug-induced cytotoxicity for each of these drugs.

With extensive data on microsatellites and SNPs in
the public domain for these cell lines, linkage analysis
was used to identify genomic regions harboring genetic
variants important in drug sensitivity (Dolan et al.,
2004; Watters et al., 2004). Even though a LOD score
greater than 3 is considered genome-wide significant,
drug sensitivity traits are likely multigenic; therefore,
peaks with LOD scores above 1.5 were thought to be
suggestive of regions harboring genes that contributed
to the trait (Dolan et al., 2004; Watters et al., 2004;
Duan et al., 2007; Shukla et al., 2008; Bleibel et al.,
2009; Shukla et al., 2009). It is noteworthy that in sev-
eral of these studies there was an inverse relationship
between the height of the peak and the concentration of
drug used to obtain the phenotype (cell growth inhibi-
tion) indicative that some regions of the genome harbor
genes that are involved in the delicate balance between
cell survival and cell death (low drug concentrations)

TABLE 3
Range of heritability measures of drug cytotoxicity

Drug Heritability (h2) Reference

Carboplatin 0.17–0.36 Shukla et al., 2009
Cisplatin 0.32–0.43 Shukla et al., 2008
Daunorubicin 0.18–0.63 Duan et al., 2007
Docetaxel 0.21–0.70 Watters et al., 2004
Etoposide 0.17–0.25 Bleibel et al., 2009
5-Fluorouracil 0.26–0.65 Watters et al., 2004
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while others may be involved in cellular apoptosis
(higher concentrations of drug).

Many of the linkage regions were unique to each drug;
interestingly, however, some were common to multiple
drugs. There are likely genes within these regions im-
portant in cell survival that are not dependent on the
drug used to cause cellular damage. For instance, chro-
mosomes 4q28.2–q32.3, 8q24–24.2, 11p14.3–13, and
16q23.1–24.1 showed strong linkage with percentage
survival at different concentrations of cisplatin and eto-
poside (Duan et al., 2007; Shukla et al., 2008). In addi-
tion, 5-FU and docetaxel shared linkage to chromosome
9q13-q22 (Watters et al., 2004). Some analyses included
follow-up association studies under the suggestive link-
age peaks (Dolan et al., 2004; Duan et al., 2007; Shukla
et al., 2009), resulting in identification of novel candi-
date pharmacogenes, such as INPP4B on chromosome 4
and CDH13 on chromosome 16 contributing to daunoru-
bicin cytotoxicity (Duan et al., 2007).

Similar linkage studies were performed on LCLs from
the CEPH pedigrees to analyze gene expression changes
in response to ionizing radiation to determine radiation-
responsive genes (Smirnov et al., 2009). eQTLs control-
ling these responsive genes were identified, trans-regu-
lators dominating. Some of these pairs were previously
identified, such as TP53BP2 regulating BAX (Samuels-
Lev et al., 2001), whereas most others were novel regu-
lators. Functional analyses validated the roles of some of
these new pharmacogenes, demonstrating the utility of
cell-based models in identifying novel target genes
linked to drug-induced expression changes.

There is ample evidence for reasonable LOD scores
from linkage analysis of chemotherapeutic-induced cy-
totoxicity (Dolan et al., 2004; Duan et al., 2007; Shukla
et al., 2008, 2009; Bleibel et al., 2009); however, linkage
peaks typically cover a large genomic region that con-
tains many genes that require follow-up analysis. Using
linkage-directed association studies or evaluating mul-
tiple phenotypes for a given drug may narrow the gene
list to a reasonable number for follow-up studies.

e. Expression profiling. Advances in microarray
technology have made it possible to examine expression
levels across the genome simultaneously, enabling phar-
macogenomic researchers to perform eQTL studies as
described above but also to determine expression “sig-
natures” that could be predictive of drug sensitivity. For
example, Cloos et al., (2006) used LCLs to show that
changes in expression of only 37 genes, including many
involved in cell growth and maintenance, could be used
to distinguish between persons sensitive to bleomycin
and those resistant to bleomycin. Likewise, gene expres-
sion signatures in response to ionizing radiation were
distinct in LCLs from patients with breast cancer who
had pathogenic BRCA1 or BRCA2 mutations and those
without (Waddell et al., 2008). In some cases, such as the
alkylating agent N-methyl-N�-nitro-N-nitrosoguanidine,
almost all (94%) of the variation in sensitivity to drug in

LCLs can be explained by basal expression levels of a
relatively small number of genes (Fry et al., 2008).

Because microarrays interrogate the entire genome,
these analyses allow for identification of novel pathways
in drug response. LCLs from the Human Variation
Panel were used examine the transcription profiles as-
sociated with sensitivity to two cytidine analogs, gem-
citabine and AraC, and found that basal transcription of
genes within the cytidine metabolic pathway, as well as
novel genes, was significantly associated with toxicity
(Li et al., 2008). Just as gene expression signatures in
disease tissue have been associated with disease prog-
nosis (Bauer et al., 2009; Kim et al., 2009; Walther et al.,
2009), these LCL-based studies have shown that tran-
scription profiles have the potential to be equally useful
in prediction of drug sensitivity.

f. Integrating genetics, expression, and pharmacologic
phenotypes. With the high-density genotype data
available for the HapMap samples, genome-wide associ-
ation studies to search for novel pharmacogenomic
markers can easily be performed. One approach that has
evaluated these novel markers for those that are also
eQTLs is termed a “triangle” approach, the first arm of
the triangle being an evaluation of significant associa-
tions between SNPs and drug sensitivity to a specific
drug. Then, from this list of SNPs, eQTL analysis is
performed to find the subset of SNPs associated with
expression of transcripts (second arm of the triangle). In
the final arm, the expression of the list of target genes is
evaluated for significant linear correlation to drug sen-
sitivity. This type of genome-wide analysis has been
successfully used to identify novel genetic variants pre-
dicting sensitivity to a variety of chemotherapeutics,
including etoposide (Huang et al., 2007a), cisplatin
(Huang et al., 2007b), carboplatin (Huang et al., 2008c),
daunorubicin (Huang et al., 2008b), and cytarabine
(Hartford et al., 2009). However, genome-wide associa-
tion studies are susceptible to false positives because of
the large number of comparisons that are made using
data on SNPs or expression across the genome. To ad-
dress this problem, stringent p values are used, and
relationships found in the discovery set have been rep-
licated in an independent set of LCLs (Table 4) (Huang
et al., 2008b; Hartford et al., 2009). The ability to repli-
cate these findings in independent sets of cells greatly
decreases the likelihood that these associations are spu-
rious but instead could be potentially useful pharmaco-
genetic markers in a clinical setting.

In the postgenomic era, LCLs have helped to advance
our understanding of how genetic variation alters drug
responses. Beyond just candidate gene studies, the ex-
tensive genetic variation and gene expression data that
are publicly available for these cells, particularly the
HapMap cell lines, have enabled interrogation of the
entire genome for the discovery of novel pharmaco-
genomic targets. These model systems have been useful
in determining the genetic regulation of expression, as
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well as in developing sensitivity profiles based on gene
expression. Although there are limitations to LCL-based
systems, they have the potential to advance the field of
pharmacogenomics immensely.

C. NCI-60 Cell-Based Models

Cell lines derived from persons with disease are an-
other important tool for pharmacogenetic discovery. For
example, the NCI60 cell line panel has publicly available
data on cytotoxicities associated with over 40,000 com-
pounds in a series of 60 cancer cell lines derived from
nine different human organs (Shoemaker, 2006). As
with the HapMap cell lines, mRNA expression (Ross et
al., 2000; Scherf et al., 2000), CNV (Garraway et al.,
2005), and SNP genotype data (Garraway et al., 2005)
are available for these cell lines. In addition, extensive
data on microRNA expression (Blower et al., 2007; Gaur
et al., 2007) and proteomic data (Nishizuka et al., 2003)
are available (http://discover.nci.nih.gov/cellminer/).

Application of this cell-based disease model to phar-
macogenetics discovery has resulted in determination of
transcription profiles predicting sensitivity to chemo-
therapeutics (Weinstein et al., 1997; Staunton et al.,
2001; Blower et al., 2002; Huang et al., 2005a; Dai et al.,
2006; Salter et al., 2008) as well as proteomic (Ma et al.,
2006; Shankavaram et al., 2007; Stevens et al., 2008)
and microRNA (Blower et al., 2008; Salter et al., 2008)
profiles predicting drug response. Studies using these
cells have successfully identified polymorphisms in can-
didate genes associated with drug response in vitro (Le
Morvan et al., 2006; Jarjanazi et al., 2008; Puyo et al.,
2008; Sasaki et al., 2008). Methylation of certain pro-
moter CpG islands predicts toxicity to antimetabolites
and alkylating agents in the NCI-60 lines (Shen et al.,
2007; Sasaki et al., 2008). Like HapMap LCLs, the
NCI-60 panel has been important in examining the role
of genetic variation in membrane transporters on sensi-
tivity to chemotherapeutics (Huang et al., 2004, 2005b;
Szakács et al., 2004; Liu et al., 2007a; Okabe et al., 2008;
Pham et al., 2009).

This panel of tumor cell lines can facilitate analysis of
the roles of acquired genetic variants in drug responses.
For example, one study has assessed the roles of EGFR
amplification, mutation, SNPs, a repeat polymorphism,
and EGFR mRNA expression in determining resistance

or sensitivity to a panel of EGFR inhibitors (Liu et al.,
2007b). Other studies have incorporated CNV with gene
expression in determining drug sensitivity (Bussey et
al., 2006) as well as gene expression and proteomic pro-
files (Lee et al., 2007; Ma et al., 2009). A combination of
SNP and gene expression data for this panel found that
cytotoxicity to the alkylphospholipid analog perifosine is
associated with MAPK and apopotosis pathways (Zhang
et al., 2008b).

As with LCLs, the immense amount of publicly avail-
able genetic and expression data for the NCI60 tumor
cell line panel have made them an important pharma-
cogenomic resource. They are tumor cell lines and there-
fore carry somatic mutations as well, making them quite
valuable for studying the effects of chemotherapeutic
agents. Beyond the ability to perform transcriptional
profiling, candidate gene, and GWA analyses using
pharmacological phenotypes in this panel, these cells
have the added ability to examine the roles of acquired
mutations in drug response.

D. Functional Follow-Up of Genes Identified in Cell-
Based Association Studies

A crucial step in bringing genetic variants found in
pharmacogenomic studies from the laboratory into clin-
ical practice is functional validation. Functional valida-
tion has been used to confirm the GWA results of some
cell-based pharmacogenetic studies (Table 4). For exam-
ple, the role of CD44 in altering sensitivity to carbopla-
tin was functionally validated using siRNA to knock
down its expression and sensitize resistant cells (Shukla
et al., 2009). Similar siRNA strategies were used to
confirm the roles of 5�-nucleotidase, cytosolic III and
FK506-binding protein 5 in altering sensitivity to gem-
citabine and AraC (Li et al., 2008). The role of SLC29A1/
ENT1 in sensitivity to azacytidine and inosine-glycodi-
aldehyde, two nucleoside analogs, was also functionally
validated using nitrobenzylmercaptopurine ribonucleo-
side, a specific, tight-binding inhibitor to SLC29A1/
ENT1. Inhibition of this transporter led to reduced sen-
sitivity to both drugs (Huang et al., 2004). In this same
study, the roles of other transporters, including ABCB1
and ABCB5, in sensitivity to multiple drugs were func-
tionally confirmed using siRNA (Huang et al., 2004).

TABLE 4
Discovery and validation of novel genes associated with drug sensitivity using cell-based models

Drugs Target Gene Effect Ref

AraC SLC25A37 1 expression leads to 1 drug sensitivity Hartford et al., 2009
Daunorubicin CYP1B1 2 expression leads to 1 drug sensitivity Huang et al., 2008b
Gemcitabine, AraC NT5C3 2 expression leads to 1 sensitivity Li et al., 2008
Gemcitabine, AraC FKBP5 2 expression leads to 2 sensitivity Li et al., 2008
Carboplatin CD44 2 expression leads to 1 sensitivity Shukla et al., 2009
Azacytidine, Inosine-glycodialdehyde SLC29A1/ENT1 Treatment with tight binding inhibitor

reduces drug sensitivity
Huang et al., 2004

Paclitaxel, bisantrene, geldanamycin
analog, Baker’s antifol

ABCB1 2 expression leads to 1 drug sensitivity Huang et al., 2004

Camptothecin ABCB5 2 expression leads to 1 drug sensitivity Huang et al., 2004
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Functional studies may be a focal point of future cell
model research in pharmacogenetics. Cell lines can be
used to functionally validate findings from genome-wide
association studies that result in many genes with some
false positives. They are also useful as a means to vali-
date clinical observations.

III. Combining Cell-Based Models and Clinical
Findings

Traditional approaches to validating clinical genetic
associations require identification of the same genotype-
to-phenotype relationship in multiple independent pop-
ulations. Although this standard is also applied to phar-
macogenetic associations, these relationships are much
more difficult to replicate given the requirement for
large clinical studies of patients treated with the same
drug regimen. Combined usage of data generated by
LCLs and from clinical trials provides a unique oppor-
tunity to provide strong evidence for these genotype-
phenotype relationships. Examples of such studies are
summarized in Table 5.

A. Cytarabine and Deoxycytidine Kinase

Clinical studies have shown that low intracellular
concentrations of the chemotherapeutic cytarabine in
leukemia cells predict poorer outcome to therapy (Estey
et al., 1987; Raza et al., 1992). Likewise, low mRNA
levels of DCK, an enzyme involved in the rate-limiting
step of cytarabine metabolism, in blast cells predict
shorter disease free survival as well as overall survival

in an AML population treated with cytarabine (Galma-
rini et al., 2003). Ex vivo models using LCLs were able to
associate these two observations to SNPs in DCK. Ex-
amination of LCLs from HapMap populations deter-
mined that SNPs within DCK resulted in altered
enzyme kinetics, increased ara-CTP intracellular con-
centrations, higher basal levels of DCK, and increased
sensitivity to cytarabine (Lamba et al., 2007; Hartford et
al., 2009). Additional SNPs in the 3�untranslated region
of DCK (positions �36113 and �35708) were also asso-
ciated with DCK basal expression and cytarabine sensi-
tivity in the HapMap cell lines and ara-CTP levels leu-
kemic cell samples from patients with AML, respectively
(Lamba et al., 2007; Hartford et al., 2009). Thus, for
cytarabine pharmacogenomics, clinical studies were
successful in identifying a biomarker (ara-CTP levels)
and candidate gene (DCK), whereas cell-based models
identified candidate SNPs associated with these pheno-
types that could be potentially useful in clinical dosing
algorithms.

B. 6-Mercaptopurine and Thiopurine Methyltransferase

The ability of GWA studies in cell-based models to
recapitulate clinical pharmacogenetic findings has been
examined using a classic pharmacogenetics example,
TPMT. Past clinical studies have established a strong
link between TPMT genotype, enzyme activity, and he-
matopoietic toxicity in patients receiving thiopurine
treatment (Relling et al., 1999; Evans et al., 2001). To
determine whether LCLs were useful in recapitulating

TABLE 5
Combining clinical and cell models

Clinical Problem
Evidence

Clinical Cell Model

Use of AraC in AML therapy regimens has
increased overall survival, but some
patients are resistant

Low DCK mRNA levels predict poor survival
in patients with AML treated with AraC;
low intracellular concentrations of AraC in
leukemia cells also predict poorer outcome
to therapy

SNPs in DCK are associated with basal
expression and drug sensitivity in the
HapMap cell lines as well as low
intracellular AraC concentrations

Development of t-AML occurs in some
patients with ALL after etoposide
treatment

Presence of MLL translocations that cause
t-AML is not associated with etoposide
dosage administered to patients with ALL
or to toxicity; basal differences in the focal
adhesion pathway are associated with
etoposide-induced leukemias

No association exists between sensitivity
to etoposide and frequency of MLL
translocations in HapMap cells; GWAS
using HapMap samples also found
enrichment of SNPs in the focal
adhesion pathway associated with
levels of etoposide-induced MLL
translocations

Reduced response to statins has been
observed in some patients

Haplotype H7 (containing rs2846662) and
rs2846662 alone associate with reduced
response to 2 statins; statin-induced
HMGCR13(�) expression inversely
correlated with blood lipid measurements
after statin treatment

rs2846662 associated with statin-
induced expression of alternatively
spliced transcript HMGCR13(�);
specific siRNA knockdown of full-
length HMGCR results in reduced
sensitivity to statins

About 20% of childhood ALL patients are
resistant to therapy, which includes
prednisolone

Expression of SMARCB1 contributes to
prednisolone sensitivity in leukemic cells

�228 G�T SNP identified which
controls SMARCB1 expression via
altered binding of PARP1;
prednisolone IC50 associated with
SMARCB1 expression in cell lines

Trimodal distribution of degree of
myelosuppression in patients being
treated with 6-mercaptopurine

TPMT genotypes are associated with TPMT
enzymatic activity and myelosuppression
in clinical studies

GWAS performed with HapMap cell
lines found TPMT SNPs to be in the
top 0.5% of SNPs associated with
enzymatic activity
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the relationship between TPMT polymorphisms and
TPMT activity, HapMap cell lines were phenotyped for
TPMT activity, and both candidate gene analysis and
genome-wide association analysis were performed to de-
termine how well SNPs within TPMT predicted enzyme
activity relative to other SNPs (Jones et al., 2007). Using
the candidate gene approach, five SNPs and four haplo-
types predicted TPMT phenotype, two of which were in
complete linkage disequilibrium with the known, func-
tional 719A�G SNP in TPMT. Although the genome-
wide approach also revealed that a known TPMT hap-
lotype predicted TPMT activity at the p � 0.05 level,
haplotypes of 96 other genes ranked higher. Further
examination of several of these higher ranked trans-
acting variants has confirmed functional links to varia-
tion in TPMT activity (M. V. Relling, W. E. Evans, per-
sonal communication), providing evidence that some of
these are novel variants that regulate TPMT activity.
Although TPMT haplotypes were among the top �0.5%
of genes that predicted TPMT activity, this study points
out that GWA studies identify many previously unsus-
pected genetic associations, probably along with false
positives, that require further sifting to determine the
true positives. The associations between genetic vari-
ants and cell survival after exposure to 6-mercaptopu-
rine, as well as other antileukemic agents, are being
tested in these HapMap cell lines as well.

C. Statins and HMG-CoA Reductase

In clinical studies, a haplotype within HMGCR, H7,
has been associated with reduced response to both prav-
astatin and simvastatin in two independent populations
(Chasman et al., 2004; Krauss et al., 2008). The mech-
anism underlying the H7 association was investigated
using LCLs derived from participants in The Cholesterol
and Pharmacogenetics study. In this particular case, one
of the three SNPs contained within the H7 haplotype,
rs2846662, was associated with statin-induced expres-
sion in LCLs of an alternatively spliced transcript of
HMGCR lacking exon 13, HMGCR13(�) (Medina et al.,
2008), which was later independently confirmed via ex-
pression construct (Burkhardt et al., 2008). Moreover,
the magnitude of statin-induced HMGCR13(�) mea-
sured ex vivo in the immortalized LCLs was directly
correlated with the percentage change of total choles-
terol, LDL-cholesterol, apolipoprotein B, and triglycer-
ides measured in vivo in the donor subject after 6 weeks
of simvastatin treatment at 40 mg/day (Medina et al.,
2008). Furthermore, artificial enrichment of cells with
the HMGCR13(�) mRNA via siRNA knockdown of the
full-length HMGCR transcript produced an HMGCR en-
zyme with attenuated sensitivity to statin inhibition,
thus identifying a direct mechanism by which rs2846662
might be associated with reduced LDL-cholesterol re-
sponse to statins (Medina et al., 2008). Indeed, H7 car-
riers who were also homozygous for rs2846662 had the
smaller LDL-C response to statin compared with those

who only carried one copy of the variant allele (Krauss et
al., 2008). Consequently, this particular case not only
exemplifies the utility of the LCLs in functional studies
of pharmacogenetically relevant SNPs but also demon-
strates their value in the identification of molecular
markers of drug response, which may ultimately be
tagged by multigenic haplotypes.

D. Etoposide and Myeloid/Lymphoid Leukemia
Translocations

LCLs have been used to examine sensitivity to a to-
poisomerase II-directed agent, etoposide, for treatment
of acute lymphoblastic leukemia (ALL) and risk of de-
veloping therapy-related AML (t-AML) (Yang et al.,
2008). A clinical study found no association between
presence of oncogenic translocations that cause t-AML
and cumulative etoposide dose or host toxicity. Further
validation used LCLs to determine that there was no
relationship between inherent sensitivity to etoposide
and frequency of translocations. Another study found
basal differences in the focal adhesion pathway (i.e.,
SNPs, CNV, loss of heterozygosity, or expression levels)
in patient samples were associated with etoposide-in-
duced leukemias (Hartford et al., 2007). Pathway-based,
genome-wide analysis of SNPs in HapMap cell lines with
high versus low levels of MLL chimeric fusions after
etoposide treatment confirmed this association with
the focal adhesion pathway. Thus, cell-based modeling
in pharmacogenetics can be useful in recapitulating
results found in vivo and providing some insight into
mechanism.

E. Prednisolone and Switch/Sucrose Nonfermentable-
Related, Matrix-Associated, Actin-Dependent Regulator
of Chromatin, Subfamily B, Member 1

Genes responsible for prednisolone resistance were
identified using an ex vivo screen of leukemic cells from
newly diagnosed ALL cases (Holleman et al., 2004). Ap-
proximately 33 genes were differentially expressed be-
tween sensitive and resistant ALL cells, and this was
confirmed in a clinical validation cohort. One of these
genes, SMARCB1, was examined further in the CEPH
cell lines to determine its role in prednisolone sensitiv-
ity. DNA from 90 HapMap cell lines was sequenced to
find variants associated with SMARCB1 expression, and
a promoter SNP (�228 G�T) was identified that modi-
fied basal expression via altered binding of the nuclear
protein PARP1 (Pottier et al., 2007). Prednisolone IC50
was inversely related to SMARCB1 expression in CEU
cell lines. The �228 SNP was also significantly associ-
ated with SMARCB1 mRNA levels (p � 0.046) and pro-
tein levels (p � 0.012).

The above studies are excellent examples of how cell-
based models can be used to further understand the
molecular and cellular underpinnings of pharmacoge-
netic discoveries made in a clinical setting. LCLs provide
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a much easier means by which to study the implications
of pharmacogenetic findings from clinical studies.

IV. Public Databases for Cell-Based
Pharmacogenomic Data

Just as baseline expression (http://www.ncbi.nlm.nih.
gov/geo/) and genetic information (http://www.hapmap.
org/) is publicly available through large databases for
the HapMap samples, so too is important pharmacolog-
ical and pharmacogenetic data (Table 6). The Pharma-
cogenetics and Pharmacogenomics Knowledge Base
(http://www.pharmgkb.org/) is a central repository for
pharmacologic, genomic, and clinical data collected as
part of a multitude of pharmacogenomic studies. Orga-
nized by the National Institutes of Health Pharmacoge-
netics Research Network, this database curates primary
genotype and drug phenotype data, as well as the gene-
drug interactions that are determined by pharmacoge-
netics research. The site contains information on more
than 600 genes in almost 60 pathways and their associ-
ations with more than 500 drugs and 500 diseases. Al-
though the immediate purpose of this database is to
stimulate pharmacogenetic discovery, the long-term
goal is to inform the field of personalized medicine.

Another expansive, publicly available source of phar-
macological data is the NCI-60 cancer drug screen (for
review, see Shoemaker, 2006). This cell panel currently
consists of 59 cell lines (formerly 60) from nine different
organ types: breast, colon, central nervous system, leu-
kemia, lung, melanoma, ovarian, prostate, and renal.
Originally established to screen for tumor cell growth
inhibition of newly identified compounds, this database
has evolved into an important resource for pharmacoge-
netics discovery and validation. More than 40,000 com-
pounds have been characterized in vitro with these cell
lines for cytotoxicity, and these data, as well as gene
expression, SNP genotypes, and CNV, are publicly avail-

able (http://dtp.nci.nih.gov). In addition, helpful bioin-
formatics software and data mining tools are freely
available for use with this data (http://discover.nci.nih.
gov), further aiding in application of this data set to
advancing pharmacogenetics research.

Because gene expression is often an intermediate phe-
notype of interest for pharmacogenetic outcomes, a da-
tabase, called the SNP and CNV Annotation database,
or SCAN (http://www.scandb.org), has been developed
that catalogs relationships between genetic variants and
transcript expression. The data curated in SCAN are the
results of GWA studies between Affymetrix Human
Exon Array data collected on greater than 13,000 tran-
script clusters from the 86 CEU and 89 YRI HapMap cell
lines and genotype data from the publicly available Hap-
Map resource (release 23a). Additional information on
location, linkage disequilibrium, and HapMap frequen-
cies are available for each SNP.

To augment the genetic variation data available
through the HapMap Project, the 1000 Genomes Project
was initiated to obtain more detailed sequencing of the
genomes of 1000 people from all over the world. Rather
than focus only on more common variation like HapMap,
1000 Genomes aims to identify �95% of the variants
with a MAF �1% in parts of the human genome that can
be sequenced, as well as to identify �95% of the variants
with a MAF �0.1 to 0.5% in exons (The 1000 Genomes
Project, 2007). To assist in applying this new resource to
pharmacogenomic research, the “Very Important Phar-
macogenes” Genes and 1000 Genomes database (http://
genemed1.bsd.uchicago.edu/pharmacodb/thougen/main.
php) has emerged to compile the data generated from
this project for the “Very Important Pharmacogenes”
genes determined by the Pharmacogenetics and Phar-
macogenomics Knowledge Base (Gamazon et al., 2009).
These data should help inform pharmacogenomic re-

TABLE 6
Useful databases for cell-based pharmacogenetics

Database URL Description

HapMap http://www.ncbi.nlm.nih.gov/geo/ Basal expression data for HapMap samples using various
microarray expression platforms

http://www.hapmap.org/ Genetic variation data of �4 million SNPs
PharmGKB http://www.pharmgkb.org/ Genotype and drug phenotype data for �600 genes, 500

drugs, and 500 diseases
NCI60 https://dtp.nci.nih.gov/ SNP, expression, and CNV data on 59 cell lines from

various tissues, as well as cytotoxicity data for over
40,000 compounds

http://discover.nci.nih.gov/ Free bioinformatics and data mining tools for use with
the genetic and drug phenotype data

SCANdb http://www.SCANdb.org Results of genomewide association studies between basal
expression of over 13,000 transcripts and genotypes of
hundreds of thousands of SNPs in the HapMap CEU
and YRI samples

Cancer Genome Project http://www.sanger.ac.uk/genetics/CGP/ Collection of somatically acquired mutations and other
sequence variants in genes that drive oncogenesis

VIP Genes and 1000 Genomes http://genemed1.bsd.uchicago.edu/pharmacodb/
thougen/main.php

Organizes the results of high-coverage, deep
resequencing of 39 VIP genes in four subjects from the
1000 Genomes project, as well as lower coverage
resequencing of 57 other subjects
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search and introduce novel, potentially relevant vari-
ants to be interrogated in association studies.

V. Summary and Future Direction

Interindividual variation in response to drugs among
human populations is multifactorial, genetic factors of-
ten contributing significantly. Rapid advances in under-
standing human genetic variation as well as the matu-
ration of high-throughput, cost-effective methods for
genotyping and the assay of gene expression continue to
provide more powerful research tools for identifying the
genetic variants that contribute to drug response. Be-
cause of the difficulties in studying drug response in
humans, cell-based models have been developed as a
means to identify and characterize genetic markers as-
sociated with sensitivity to drugs. In particular, with the
availability of extensive genotypic (e.g., SNPs and
CNVs) and phenotypic (e.g., gene expression) data for
the International HapMap cell lines, investigators have
begun to analyze pharmacological endpoints within cell
lines in efforts to identify clinically important genotype-
phenotype relationships. Over the past several years,
there has been significant growth in the number of in-
vestigators employing cell-based models as a component
of their pharmacogenomic research program. Some re-
searchers have used the International HapMap or the
Polymorphism Discovery Panel LCLs, whereas other
groups have created their own cell lines from individuals
with a specific disease for study. There are some nu-
ances of the model system that include the effect of EBV
transformation and cellular proliferation rate on gene
expression and response to drugs.

The potential utility of stem cell lines remains unex-
plored, but differentiation into cell types of interest (i.e.,
hepatocytes or renal cells) could facilitate advances in
pharmacogenetics. Furthermore, recent pharmacog-
enomic studies suggest that common variants can ex-
plain only a fraction (�50%) of the variation in drug
response (Dolan et al., 2004; Watters et al., 2004). Al-
though other types of genetic variations (e.g., CNVs) and
nongenetic factors (e.g., environment) could be respon-
sible for the remaining variation, the unknown, untyped
common or rare variants could contribute to the drug
response variation. Several large-scale deep resequenc-
ing projects such as the SeattleSNPs Project (http://
pga.gs.washington.edu/) are working to comprehen-
sively catalog genetic variations, including those
relatively rare ones in certain target genes. In contrast,
a more recent international sequencing effort, the 1000
Genomes Project (http://www.1000genomes.org) has an
ambitious goal to establish a most detailed catalog of
human genetic variation in at least 1000 human ge-
nomes from world-wide populations using the next-gen-
eration sequencing technologies (Mardis, 2008). Once
integrated with other public resources, the 1000 Ge-
nomes Project data have the potential to greatly benefit

pharmacogenomic researches using these samples.
Equally important are epigenetic studies or studies in-
corporating microRNA to add depth to the current phar-
macogenomic studies. Most importantly, evaluation of
genetic variants, identified originally in cell lines, in
large prospective clinical trials will be important to in-
crease confidence in cell-based models.
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