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ABSTRACT 

 

Colorectal cancer (CRC) is one of the leading causes of cancer death worldwide. Over the 

last decades, several studies have shown that tumor-related genomic alterations predict 

tumor prognosis, drug response and toxicity. These observations have led to the 

development of a number of precision therapies based on individual genomic profiles. As 

part of these approaches, pharmacogenomics analyses genomic alterations that may predict 

an efficient therapeutic response. Studying these mutations as biomarkers for predicting 

drug response is of a great interest to improve precision medicine. Here we conduct a 

comprehensive review of the main pharmacogenomics biomarkers and genomic alterations 

affecting enzyme activity, transporter capacity, channels and receptors, and therefore the 

new advances in CRC precision medicine to select the best therapeutic strategy in 

populations worldwide, with a focus on Latin America. 
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INTRODUCTION 

 

Colorectal cancer (CRC) is one of the leading causes of cancer death worldwide
1
. In the last 

decade, numerous exciting advances have been made to treat patients even with metastatic 

CRC
2
. However, patient-tailored therapies are still needed to overcome this disease. The 

advance of precision medicine requires the accurate identification of mutations driving each 

patient’s tumor
3
. In this regard, genetic mutations may have a great impact on disease 

prognosis and therapy response. Germline mutations are heritable alterations found in 

individuals while somatic mutations appear after an oncogenic insult within the tumoral 

tissue
4
. As part of CRC precision medicine, pharmacogenomics allows tailoring drug 

therapy based on these mutations
5
. Thus, personalized therapy not only maximizes the drug 

therapeutic effects but also reduces the possibility of experiencing adverse drug reactions
6
. 

In this review, we focus primarily on the current status of pharmacogenomics in CRC, its 

biomarkers and allele frequencies worldwide, with a focus on Latin American populations 

in order to improve precision medicine.  

 

Colorectal cancer oncogenomics 

 

CRC was one of the first solid tumors to be molecularly characterized, in whose 

pathogenesis several signaling pathways intervene
7
. Vogelstein et al., described the model 

of progressive step-wise accumulation of epigenetic events of CRC
8–11

. This model 

provides information about the role of driver mutations whose objective is to give a 

selective advantage for tumor progression
12

. In addition, the accumulation of pathogenic 
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mutations in the transforming growth factor-β (TGFβ), WNT-β-catenin, PI3K, EGFR and 

downstream MAPK pathways induces CRC
11,13–15

. 

 

On the other hand, the development of CRC also occurs when chromosomal instability 

(CIN) occurs, progress due to defects in telomere stability, chromosomal segregation and 

mutations in TP53 gene
16

. The 15% of early-stage colorectal tumors present mismatch 

repair-deficient (MMRd) system, triggering hypermutation and microsatellite instability 

(MSI)
14

. According to Dienstmann et al., the epigenetic profile of tumors with CIN present 

mutations in APC, KRAS, TP53, SMAD4 and PIK3CA, promoting the formation of the 

non-hypermutated consensus molecular subtypes (CMSs): CMS2, CMS3 and CMS4
1
. 

Whereas tumors with MSI harbor mutations in the MSH6, RNF43, ATM, TGFBR2, BRAF 

and PTEN genes of the hypermutated molecular subtype CMS1
1
.  

 

A consensus of molecular subtypes  

 

Gene expression-based subtyping is widely accepted as a relevant source of disease 

stratification
17

. Nevertheless, the translational utility is hampered by divergent results that 

are probably related to differences in algorithms applied to sample preparation methods, 

gene expression platforms and racial/ethnic disparities
18,19

. Inspection of the published gene 

expression-based CRC classification revealed an absence of a clear methodological ‘gold 

standard’
8,9,16,20–23

. To facilitate clinical translation, the CRC Subtyping Consortium 

(CRCSC) was formed to assess the core subtype patterns among existing gene expression-

based CRC subtyping algorithms
18,24

. 
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In spite of heterogeneities, subtype concordance analysis readily yielded four CMSs
18

, 

being CMS1 the immune subtype, CMS2 the canonical subtype, CMS3 the metabolic 

subtype and CMS4 the mesenchymal subtype (Figure 1)
18,25

. Upon evaluation of these 

classification system, Calon et al., discovered that their prediction power arises from genes 

expressed by stromal cells that associate robustly with disease relapse
26

. Mesenchymal 

stromal cells (MSC) may represent a pivotal part of stroma in CRC, but little is known 

about the specific interaction of MSC in CRC
27

.  

 

Recognizing that transcriptomics represents the level of high-throughput molecular data 

that is most intimately linked to tumor phenotype and clinical behavior, it is important to 

characterize the CRC genomics alterations. Tumor genomes contain thousands of 

mutations. However, only a few of them drive tumorigenesis by affecting driver genes, 

which upon alteration, confers selective growth advantage to tumor cells
28

. Since the 

identification of the first somatic mutation in human bladder carcinoma cell line (HRAS 

G12V)
29,30

, the Pan-Cancer Atlas from The Cancer Genome Atlas (TCGA) have undertaken 

omics analyses identifying 20 CRC driver genes (ACVR2A, AMER1, APC, ARID1A, 

BRAF, CTNNB1, FBXW7, GNAS, KRAS, NRAS, PCBP1, PIK3CA, PTEN, SMAD4, 

SMAD2, SOX9, TCF7L2, TGIF1, TP53 and ZFP36L2) that are included in The Catalogue 

of Somatic Mutations in Cancer (COSMIC) Cancer Gene Census (CGC) and the Cancer 

Genome Interpreter (CGI)
31–35

. CGI identifies 71 biomarkers among biallelic markers, copy 

number alterations (CNAs), somatic mutations, fusion genes and amplifications
34

. 

Likewise, CGI annotates CRC tumor variants that constitute state-of-art biomarkers of drug 

response as shown in Supplementary Table 1. 
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Drugs, biomarkers and allele frequencies 

 

According to the National Comprehensive Cancer Network (NCCN) guidelines v1.2018 

and the European Society for Medical Oncology (ESMO) guidelines
36–38

,
 
the two main 

drug categories in CRC treatment are cytotoxic and biological therapies. Cytotoxic agents 

are platinum derivatives (oxaliplatin), antimetabolites (5-fluorouracil and capecitabine) and 

antitopoisomerases (irinotecan). Biological therapy includes drugs against the epidermal 

growth factor receptor (EGFR) (cetuximab, panitumumab) and antiangiogenics 

(bevacizumab, ziv-aflibercept, ramucirumab). In addition, the recommendation includes 

PD-1 and PD-L1 inhibitors (nivolumumab, pembrolizumab) as new immunological 

molecules for MSI or MMRd (Table 1 and Figure 2).  

 

Platinum derivatives. These compounds form covalent bonds with guanine and adenine in 

the DNA. The most important drugs in this group are cisplatin, carboplatin and oxaliplatin 

(Figure 2). Drugs containing platinum salts exert their cytotoxic effect by means of DNA 

adduct formation, leading to inhibition of DNA replication and apoptosis
39

. The major path 

of adduct elimination is the nucleotide excision repair (NER). During NER, damaged DNA 

and unwound DNA helices are identified by the action of several factors, including 

xeroderma pigmentosum proteins (XPD, XPC and XPA). Cleavages of the damaged DNA 

strand are performed by nucleases XPG (3’) and ERCC1 (5’), and adducts are removed
40

.  

 

The glutathione S-transferases (GSTs) are involved in the inactivation of platinum 

compounds, thus preventing cellular DNA damage and increasing the treatment efficacy
41

. 

Single nucleotide polymorphisms (SNPs) in GSTP1, GSTT1 and GSTM1 can alter GST 
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activity
42

. The decrease in enzyme activity has been linked to reduced detoxification 

capacity, leading to increased efficacy of platinum compounds. GSTP1 (Ile105Val) has 

been associated with reduced enzyme activity
43

, a deletion in GSTT1 leads to the absence 

of enzyme activity and a deletion in GSTM1 is linked with decreased survival rate
44,45

. 

 

The excision repair cross-complementation (ERCC) is involved in nucleotide repair 

system
46

. Polymorphisms in genes encoding these repair proteins may contribute to inter-

individual differences to platinum toxicity. The association between toxicity and ERCC1 

rs11615 has been studied in CRC
47

. The mutant T allele has been related to grade 1 

neuropathy in oxaliplatin-treated patients, even though no association with a higher degree 

of neuropathy was observed. In addition, ERCC2 (XPD) is involved in the oxaliplatin 

pathway. rs13181 has been related with treatment effectiveness
48

. Meanwhile, ERCC4 

rs1799801, ERCC5 rs2016073 and rs751402 are associated with platinum response
49

.  

 

The X-ray repair cross-complementing protein (XRCC1) and its variant rs25487 are 

involved in the repair of broken DNA strands which can be induced by platinum 

compounds; such repair is carried out by an excision repair system
50

. It has been suggested 

that a deterioration in the efficiency of DNA repair caused by Gln’s allele leads to greater 

efficacy of oxaliplatin
50

. On the other hand, the presence of XRCC3 rs1799794 has been 

associated with an increased risk of neutropenia
51

. Biomarkers focused on oxaliplatin are 

listed in Table 2
42,48–50,52–55

. 

 

Pharmacogenomics identifies mutations that may predict an efficient therapeutic response; 

however, genetic variations significantly change among race/ethnic populations 
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worldwide
56

. The allele frequencies of platinum derivative variants rs1695, rs11615, 

rs13181, rs1799801, rs2016073, rs2234671, rs25487 and rs1799794, according to the 1000 

Genomes Project (phase 3), are shown in Table 3
57

.   

 

Antimetabolites. These drugs inhibit enzymes related to purine and pyrimidine synthesis, 

resulting in cell depletion and alteration of nucleic acid synthesis. Among these, there are 

pyrimidine analogs such as 5-fluorouracil (5-FU) and oral pro-drugs such as gemcitabine, 

capecitabine and tegafur (Figure 2)
58

.  

 

Fluoropyrimidines (5-FU, capecitabine and tegafur) are antimetabolite drugs used in CRC 

treatment. 5-FU is a fluoropyrimidine derivative with two major mechanisms of action that 

explain its cytotoxic effect
59

. The main active metabolite of 5-FU (5-FdUMP) prevents 

DNA synthesis by forming a complex with thymidylate synthase (TS) stabilized by 5,10-

methylenetetrahydrofolate (5,10-MTHF), thus inhibiting the conversion of monophosphate 

2'-deoxyuridine-5' (dUMP) to deoxythymidine-2'-5'-monophosphate (dTMP), an essential 

precursor for DNA synthesis. In addition, the incorporation of 5-FU to nucleotides in DNA 

and RNA strands leads to an alteration in the processing of nucleic acids
59

. Gemcitabine is 

a structural analog of deoxycytidine, which is metabolized by nucleoside kinase to 

nucleoside diphosphate and triphosphate
60

.  

 

TYMS protein is a homodimeric methyltransferase enzyme that catalyzes the synthesis 

reaction of thymidylate. This reaction is a critical step in the formation of deoxythymidine 

5'-triphosphate (dTTP), an indispensable metabolite in DNA synthesis. TYMS contains a 
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tandem of a polymorphic 28-base-pair sequence repeated in the promoter (TSER) 5' 

untranslated region (5'-UTR)
42,60

.  

 

Inactivation of 5-FU depends on dihydropyrimidine dehydrogenase (DPYD) activity
61

. The 

deficient activity of DPYD leads to prolonged 5-FU plasma half-life, causing a severe 

hematological toxicity
62

. DPYD deficiency is present in ~3% of all cancer patients, but it 

represents approximately 50% of patients manifesting severe toxicity. So far, ~30 

polymorphisms in DYPD have been identified; however, a mutation of G>A at the splicing 

site in exon 14 (IVS14+1G>A) leads to the formation of a truncated protein without 

residual activity
63

. The incidence of this allele is rare, with a heterozygote population 

frequency of 0.9-1.8%. Nevertheless, it is estimated to be responsible for approximately 

25% of all cases of 5-FU unexpected toxicity
59

.  

 

Methylenetetrahydrofolate reductase (MTHFR) catalyzes the conversion of 5,10-MTHF to 

5-MTHF. The most common polymorphisms of MTHFR are C677T and A1298C. These 

polymorphisms lead to decreased enzyme activity, which induces a more effective 

stabilization of the FdUMP-TS ternary complex, potentiating 5-FU toxicity
64–66

.  

 

ATP-Binding Cassette Sub-Family B1 (ABCB1) is a member of the ABC transporter 

superfamily and its protein is known as P-glycoprotein
67

. ABCB1 overexpression in tumors 

has been associated with resistance to chemotherapeutic drugs. ABCB1 is a highly 

polymorphic gene that significantly differs among ethnic groups. Some of the most studied 

SNPs are rs1128503, rs2032592 and rs1045642
68

.  
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Cytidine deaminase (CDA) is involved in capecitabine metabolism in the liver to form 5-

fluorodeoxyuridine, which, in turn, becomes 5-FU by the action of thymidine 

phosphorylase (TP)
60

. The decreased activity of CDA leads to the accumulation of 

potentially toxic metabolites. The variation in expression of CDA has been linked to 

polymorphisms in the promoter region of CDA and affects the metabolism of gemcitabine 

and capecitabine
67

. rs602950 and rs532545 have been associated with increased expression 

of CDA in vitro in capecitabine-treated patients
67

. 

 

TP is involved in 5-FU metabolism, where 5-FU is converted to 5-fluoro-2'-deoxyuridine 

(FUDR-5)
69

. rs11479 generates an amino acid change of serine to leucine that leads to a 

lower treatment response. Enolase superfamily member 1 (ENOSF1) gene encodes an 

antisense RNA against TYMS. ENOSF1 regulates mRNA and protein expression of 

TYMS. Hence, TYMS variants with lower or higher activity affect its function
63,64

. Lastly, 

biomarkers focused on capecitabine, 5-FU and gemcitabine drugs are listed in Table 

4
63,64,67–73

. 

 

The allele frequencies of rs3918290, rs1801133, rs1128503, rs2072671, rs9344, rs9344 and 

rs2612091 polymorphisms in populations worldwide are shown in Table 5
57

.  

 

Agents interacting with topoisomerases. Topoisomerases play a key role in the cell 

replication, transcription, and DNA repair. It modifies the tertiary DNA structure without 

altering the nucleotide sequence. In humans, three types of topoisomerases (I, II and III) 

have been identified. Within this group, camptothecin derivatives are included such as 

irinotecan
74

 (Figure 2).  
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Irinotecan is a potent inhibitor of topoisomerase I
75

. It promotes an oxidation bioreaction 

mediated by CYP3A to form APC, a cytotoxic substance. Alternatively, irinotecan is 

converted by hepatic carboxylesterase to SN-38. This compound is conjugated further by 

several UDP glucuronyl to reach the inactive metabolite SN-38G
76

. To enable excretion, 

SN-38 and irinotecan are actively transported out of the cell by ATP-dependent efflux 

pump (ABCB1). After biliary excretion, SN-38G can become active SN-38 by bacterial 

beta-glucuronidase, which can lead to gastrointestinal toxicity.  

 

It has been shown that reduced glucuronidation of SN-38 significantly increases irinotecan 

gastrointestinal toxicity
77

. The main UDP-glucuronosyltransferase (UGT) involved in 

conjugating SN-38 is UGT1A1. At least 25 UGT1A1 polymorphisms have been described, 

of which the most common in the promoter region consists of seven TA-repetitions (-53 

[TA] 6>7, UGT1A1*28) instead of six
78,79

. The highest number of TA repeats is associated 

with a reduction of UGT1A1 expression, leading to reduced glucuronidation. UGT1A1*28 

has proven to be a significant predictor of severe toxicity following administration of 

irinotecan
80,81

.  

 

ABC transporters, including ABCC1, ABCC2, ABCB1 and ABCG2, regulate output of 

hepatic and biliary CPT-11 metabolites
55,82

. SNPs in ABCB1 and ABCC2 have been 

recently associated with modulation of CPT-11 and SN-38 exposure
75

. In addition, other 

SNPs in ABCC5 and ABCG2 genes have been correlated with both hematological and non-

hematological toxicities
83

.  
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The solute carrier organic anion transporter family member 1B1 (SLCO1B1) is an 

important transporter expressed in the basolateral membrane of hepatocytes which mediates 

the availability of active irinotecan metabolite
84

. rs4149056 has been associated with an 

increased SN-38 concentration in patients with metastatic CRC (mCRC). Meanwhile, other 

polymorphisms are linked to faster response rate and higher PFS
76

. Finally, biomarkers 

focused on irinotecan drug are shown in Table 6
45,52,68,78,79,81,83–89

.  

 

The allele frequencies of genes that interact with topoisomerases rs2244613, rs1045642, 

rs2074087, rs262604, rs1051266 and rs2306283 in populations worldwide are shown in 

Table 7
57

.  

 

Antiangiogenics. Vascular endothelial growth factor (VEGF) is a major regulator of 

angiogenesis and inhibition mediated by bevacizumab which reduces tumor volume
90,91

. 

Bevacizumab is a recombinant humanized monoclonal IgG antibody directed against all 

isoforms of VEGF-A. Hypoxia is a potent stimulus for VEGF expression and one of the 

control elements in this mechanism is the hypoxia-inducible factor 1A (HIF-1a)
92

. This 

factor binds to a 28-bp promoter in the 5' upstream region of VEGF, thereby/hence-

stimulating transcription. In addition, other regulatory elements for VEGF expression are 

found in the 3'-UTR as shown in Table 8
92–95

.  

 

Variations in the VEGF receptor 1 (rs9582036) and 2 (rs12505758) are associated with 

tyrosine kinase domain. High expression levels of these receptors contribute to a less 

favorable outcome when treated with bevacizumab, associated with PFS and overall 

survival (OS)
90,94,96

.  
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Various studies from mCRC have investigated the predictive impact of some SNPs present 

in VEGF-A, which are involved in bevacizumab response. Loupakis et al., conducted a 

retrospective analysis which found that rs833061 was associated with PFS and OS
94

. 

Meanwhile, Sibertin-Blanc et al., showed that T-carriers of the C237T SNP had shorter 

time-to-treatment failure as well as shorter PFS and OS
97

.  

 

Annexin A11 (ANXA11) has been associated with a spectrum of regulatory functions in 

calcium signaling, cell division and apoptosis
98

. ANXA11 rs1049550 leads to an amino 

acid change (R230C) of the first conserved domain of annexin, which is responsible for 

Ca
+2

 dependent intracellular traffic. Response to bevacizumab revealed that patients 

carrying rs1049550 were more sensitive to chemotherapy than those having at least one C 

allele
95

.  

 

CXC chemokine receptors (CXCR1 and CXCR2) are integral membrane proteins which 

specifically bind and respond to CXC chemokine family cytokines
93

. They represent a 

family of seven receptors linked to G-protein that plays an important role in angiogenesis. 

CXCR1 rs2234671 and CXCR2 rs2230054 are associated with overall response (ORR)
99

.  

 

Finally, the Food and Drug Administration (FDA) and the European Medicines Agency 

(EMA) have approved new molecules that improve the therapeutic effectiveness, OS and 

PFS. In particular, research efforts have focused on novel agents targeting tumor 

angiogenic activity, cell growth and migration in mCRC. The use of molecules targeting 
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VEGF pathways (ziv-aflibercept, regorafenib and ramucirumab) have been integrated into 

clinical practice
90

 (Figure 2).  

 

The allele frequencies of variants that interact with antiangiogenic agents rs9582036, 

rs12505758, rs3025039, rs1049550 and rs2230054 in populations worldwide are shown in 

Table 9
57

.  

 

Agents against epidermal growth factor receptor. Cetuximab and panitumumab are 

monoclonal antibodies (mAb) that block the action of EGF and may be employed in mCRC 

treatment
7,92

. These drugs exert their action by binding to the extracellular domain of 

EGFR, with a greater affinity than the wild-type EGF, thereby blocking phosphorylation 

induced by EGFR ligands. Some variants are shown in Table 10
62,63,73,100–108

.  

 

The EGF/EGFR pathway plays an important role in cancer pathogenesis. EGF and EGFR 

are commonly overexpressed in CRC and they appear to be associated with poor prognosis 

and increased metastatic risk
109

. EGFR is a transmembrane glycoprotein that plays a main 

role in cell proliferation, migration and survival. EGFR R497K attenuates tyrosine kinase 

activation
110

, and EGF G61A increases its production when individuals have GG or GA 

genotypes
105

. The EGF/EGFR pathway is a predictive marker for cetuximab treatment in 

patients with locally advanced CRC
111

.  

 

KRAS oncogene is a member of the human RAS family, which produces a self-inactivating 

guanosine triphosphate (GTP), binding signal transducer located on the inner surface of the 

cell membrane
112

. KRAS mutations may compromise the intrinsic GTPase activity, 
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resulting in constitutively active KRAS protein that affects various signaling pathways
112

. 

The 45% of CRC cases has KRAS mutations and it has been shown that these mutations 

are predictive biomarkers of poor outcome in mCRC treated with cetuximab
77

. The anti-

EGFR mAb therapy significantly improves both PFS and OS tumors without mutations in 

RAS. Therefore, mutations in KRAS predict resistance to mAb directed to EGFR with 

cetuximab and panitumumab
100

. NRAS codifies an isoform of RAS protein, involved 

primarily in the regulation of cell division
108

. Mutations in exon 2, 3 and 4 of NRAS, in 

addition to those in exon 2 of KRAS, must be detected before administration of a 

monoclonal anti-EGFR
100

. According to the NCCN, KRAS and NRAS are the only one 

predictive biomarkers approved in mCRC. Cetuximab and panitumumab are applied on 

patients with non-mutated RAS, and bevacizumab is applied on patients with mutated 

RAS
12,113

.  

 

Regarding Fc receptor range, modulating the immune response could be a further important 

mechanism to cetuximab sensitivity. The immune mechanism of antibody-dependent 

(ADCC) mediated cellular cytotoxicity through Fc receptors (Fc gamma R) made by 

immune cells, plays an important role in the effect of IgG1 antitumor antibodies
114,115

. The 

most common polymorphisms in FCGR2A and FCGR3A are rs1801274 and rs396991, 

respectively
116,117

. 

 

The phosphatidylinositol 3-kinase (PI3K/AKT) pathway plays an essential role in cancer 

pathogenesis, being imperative the design of therapeutic inhibitors
118

. PIK3CA gene 

encodes the p110 catalytic subunit of PI3K alpha. PIK3CA mutations (associated with 

KRAS mutation and MSI) stimulate AKT pathway and promote cell growth in CRC
118

. 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 26, 2019. ; https://doi.org/10.1101/561316doi: bioRxiv preprint 

https://doi.org/10.1101/561316
http://creativecommons.org/licenses/by-nd/4.0/


 
17

PIK3CA mutations in exon 9 and 20 affects the helical and kinase domains of the protein, 

promoting a lack of effectiveness in drug treatments
106

.  

 

BRAF protein is part of the RAS/MAPK signaling pathway, which regulates cell growth, 

proliferation, migration and apoptosis
119

. BRAF is a driver gene whose mutations are 

inversely associated with treatment response and are mutually exclusive with RAS 

mutations
108,120

. Hence, BRAF V600E mutation correlates with worse prognosis
121

. 

Vemurafenib is a third-line therapeutic option in advanced mCRC with BRAF mutations
122

. 

Furthermore, it has been proposed that patients with KRAS and BRAF mutations could be 

eligible for mAb treatment against EGFR. Finally, BRAF must not present any mutation for 

a favorable treatment response when panitumumab or cetuximab are applied
107

.  

 

COX is the limiting enzyme in the conversion of arachidonic acid into prostaglandins. 

COX2, encoded by prostaglandin endoperoxide synthase 2 (PTGS2), is involved in 

metastasis and chemotherapy resistance
123

. High levels of COX2 are associated with shorter 

OS in CRC. The C allele of COX2 G765C polymorphism has been associated with a 

significantly lower promoter activity
104,124

.  

 

The allele frequencies of rs2227983, rs4444903, rs1801274, rs396991 and rs20417 genetic 

variants in populations worldwide are shown in Table 11
57

.  

 

Colorectal cancer immunogenomics. Recent advances in cancer immunology have 

highlighted the immunogenic nature of CRC and provided insights regarding the complex 

tumor-immune system interactions that drive immune evasion in CRC
125,126

. One of the 
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mechanisms that mediates tumor-associated immune escape is the activation of inhibitory 

co-receptors or immune checkpoints on the T lymphocyte surface by tumor cells through 

the expression of immunosuppressive molecules
125–127

. 

 

Programmed cell death protein 1 (PD-1, CD279) is an inhibitory co-receptor expressed by 

exhausted tumor-infiltrating lymphocytes (TILs) present within the tumor 

microenvironment
127–129

. PD-1 engages with programmed-death ligands 1 (PD-L1, BT-H1, 

CD274) and 2 (PD-L2, B7-DC, CD273) which are expressed by CRC cells
130–133

. PD-

1/PD-L1 interaction inhibits CD8
+ 

T-cell activation, cytokine production, proliferation and 

cytotoxicity which suppresses the host immune response and allows CRC cells to 

proliferate and metastasize
127–129

. 

 

Immune checkpoint inhibition has revolutionized cancer immunotherapy since it has 

proven to be very successful for treatment of melanoma and non-small cell lung cancer
134–

136
. It has been shown that PD-1 blockade is a highly efficient therapeutic strategy against 

MSI-high and MMRd CRC tumors since these tumors display dense lymphocyte infiltrates 

due to their increased expression of immunogenic neo-antigens
137–139

. Moreover, these 

tumors exhibit higher PD-1 expression on TILs and PD-L1 expression than microsatellite 

stable tumors
139,140

. Subsequently, the FDA approved pembrolizumab and nivolumab, two 

anti PD-1 antibodies, for treatment of metastatic MSI-high or MMRd solid tumors. 

 

According to Tauriello et al., inhibition of the PD-1 and PD-L1 immune checkpoints 

provoked a limited response in quadruple-mutant mice. By contrast, his results strongly 

suggest that inhibition of TGFβ signaling could be promising as immunotherapy for 
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patients with microsatellite stability and stroma-rich CRCs, enduring cytotoxic T-cell 

response against tumor cells that prevent metastasis
141–143

. The clinical implications of CRC 

immunogenomics continue to expand, and it will likely serve as a guide for next-generation 

immunotherapy strategies for improving outcomes for this disease (Figure 2).  

 

The Pan-Cancer Atlas: germline pathogenic variants  

 

The Pan-Cancer Atlas provides a panoramic view of the oncogenic processes that 

contribute to human cancer. It reveals how genetic variants collaborate in cancer 

progression and explores the influence of mutations on cell signaling and immune cell 

composition, providing insight to prioritize the development of new immunotherapies
144

.  

 

According to Huang et al., the Pan-Cancer Atlas analyzed 564 CRC samples and found 

several pathogenic germline variants in the APC, ATM, ATR, BARD1, BLM, BRCA1, 

BRCA2, BRIP1, CHEK2, COL7A1, FANCI, GJB2, MLH1, MSH2, MSH6, PALB2, 

POT1, RAD51D, RECQL4, RET, RHBDF2 and SDHA genes
145

. Additionally, Table 12 

shows the allele frequencies of those 29 pathogenic germline variants according to The 

Exome Aggregation Consortium (ExAC)
146

.  

 

Biomarker network in colorectal cancer 

 

Figure 3 shows the proposed biomarker network in CRC. The protein-protein interaction 

(PPi) network with a highest confidence cutoff of 0.9 was created using String Database
147

. 
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This network is made up of known and predicted interactions of driver genes, genes with 

pathogenic germline mutations according to the Pan-Cancer Atlas
33,145

, genes with somatic 

mutations according to the CGI
34

, and druggable enzymes according to the 

Pharmacogenomics Knowledge Base (PharmGKB)
148,149

.  

 

The enrichment analysis of gene ontology (GO) terms related to biological processes and 

metabolic pathways were carried in the 87 genes of CRC biomarker network (Figure 3). 

The top biological processes with significant false discovery rate (FDR) <0.01 were DNA 

synthesis involved in DNA repair, strand displacement and response to drug. Meanwhile, 

the top metabolic pathways with FDR <0.01 were colorectal, endometrial and pancreatic 

cancer types
150

.  

 

Pharmacogenomics in clinical practice  

 

In addition to the NCCN and ESMO guidelines
36–38

, the Canadian Pharmacogenomics 

Network for Drug Safety (CPNDS), the Royal Dutch Association for the Advancement of 

Pharmacy (DPWG) and the Clinical Pharmacogenetics Implementation Consortium (CPIC) 

have published precise guidelines for the application of pharmacogenomics in clinical 

practice
151–153

. All this information is published in the PharmGKB which is a 

comprehensive resource that curates knowledge about the impact of 80 clinical annotations 

on drug response
148

 (Supplementary Table 2).  

 

In addition to the 1000 Genomes Project (Phase 3)
57

, there are 33 studies that have 

published the allele frequencies of mutations in several druggable enzymes in 34 different 
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ethnic populations from Latin America (Supplementary Tables 3-10). Figure 4 is an 

innovative way to visualize and correlate the minor allele frequencies of 43 genes related to 

the different categories of drugs applied in CRC treatments in 8674 samples from 9 Latin 

American countries. This information will make it easier for clinical oncologists to make 

decisions regarding CRC treatments. For instance, the minor allele (G) of GSTP1 rs1695 

can alter GST activity reducing detoxification capacity and leading to increased efficacy of 

platinum compounds
42,43

. Thus, the Latin American countries whom best reduce the 

detoxification capacity and increase the efficacy of platinum compounds are Venezuela, 

Mexico and Peru due to their populations have a G allele frequency ≥0.50.   

 

On the other hand, it is imperative to unify efforts at the governmental level to increase 

investment in pharmacogenomics fomenting precision medicine in clinical practice. The 

most relevant barriers to implement pharmacogenomics testing in clinical practice in Latin 

America are: 1) need for clear guidelines for the use of pharmacogenomics, 2) insufficient 

awareness of pharmacogenomics among clinicians, and 3) absence of a regulatory 

institution that facilitates the use of pharmacogenomics tests
154

. Overcoming the previously 

mentioned barriers, pharmacogenomics will make it possible to improve public health 

investment, patient safety and drug dosage in CRC treatments
155

.  

 

CONCLUSION 

 

In the era of precision medicine, it is important to unify all current knowledge about the 

CRC biology to improve patient treatments. Large-scale projects worldwide have studied 

the multi-omics landscape of CRC by implementing the CMS classification and generating 
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new therapeutic targets related to different populations worldwide. Developed countries 

might incorporate racial/ethnic minority populations in future cancer researches and clinical 

trials, and developing countries might invest to obtain a database of genomic profiles of 

their populations with the overall objective of linking pharmacogenomics in clinical 

practice.  
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FIGURE LEGENDS 

 

Figure 1. Integrating multi-omic features in CRC subtypes. Microsatellite instability (MSI) 

is linked to hypermutation, hypermethylation, highly immunogenic response, and locations 

in the proximal colon (consensus molecular subtype 1 (CMS1)). Tumors with chromosomal 

instability (CIN) are linked to copy number variations, poorly immunogenic or inflamed, 

non-hypermutated subtypes, stromal infiltration, and locations in left colon or rectum 

(CMS2, CMS3, and CMS4).  

 

Figure 2. Overview of different drugs used in the CRC treatments: a) antiangiogenics, b) 

drugs against EGFR, c) antimetabolites, d) platinum derivatives, e) immune checkpoint 

inhibitors (anti PD-1, anti PD-L1 and TGFβ inhibitor), and f) antitopoisomerase. 

 

Figure 3. Biomarker network in CRC made up of driver genes, genes with pathogenic 

germline mutations, genes with somatic mutations, and druggable enzymes by 

antitopoisomerase, antimetabolite, platinum derivative and antiangiogenic drugs. The PPi 

network with a highest confidence cutoff of 0.9 was created using String Database. 

 

Figure 4. Minor allele frequencies of druggable enzymes studied in 8674 samples from 

Latin American populations, and its relation with the category of drugs applied in CRC 

treatments. 
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TABLES 

 
Table 1. Category of drugs applied in CRC treatments 

 
Category Agents Drugs 

Cytotoxic agents Platinum derivatives Oxaliplatin 

Antimetabolites 5-FU/leucovorin, capecitabine 

Antitopoisomerase Irinotecan 

Nucleoside analoguea Trifluridine, tripiracil 

Monoclonal antibodies Antiangiogenicb Bevacizumab, ziv-aflivercept, ramucirumab 

Anti EGFRb Cetuximab, panitumumab 

Anti BRAF V600Eb Vemurafenib 

Anti PD-L1, PD-1b Nivolumab, pembrolizumab 

Tyrosine kinase inhibitorsa Poli anti kinase inhibitors Regorafenib, sorafenib 

5-FU, 5-fluorouracil; EGFR, epidermal growth factor receptor; BRAF, B-Raf protooncogene; PD-1, 

programmed cell death protein 1; PD-L1, programmed cell death ligand 1. aFor patients who have progressed 
through all available regimens. bFor advanced or metastatic disease only. 
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Table 2. Biomarkers focused on oxaliplatin  
 

Gene Polymorphism Clinical relevance Function Type of inheritance Reference 

GSTP1 rs1695 (A313G) Neurotoxicity, neutropenia Enzyme Germinal 50,52 

GSTM1 Del Poor survival, neutropenia Enzyme Germinal 52 

ERCC1 rs11615 (T354C) Neuropathy / Survival Repair protein Germinal 50 

ERCC2 rs13181 (A2251C/T) Effectiveness / Survival Repair protein Germinal 42,48 

ERCC4 rs1799801 (T2505C) Response Repair protein Germinal 53 

ERCC5 rs2016073 (A-763G); 

rs751402 (A+25G) 

Response Repair protein Germinal 49 

XRCC1 rs25487 (G1196A) Response Repair protein Somatic 50,54 

XRCC3 rs1799794 (A316G) Neutropenia Repair protein Germinal 55 

GSTP1, glutathione S-transferase pi 1; GSTM1, glutathione S-transferase mu 1; ERCC1, excision repair 1; 

ERCC2, excision repair 2; ERCC4, excision repair 4; ERCC5, excision repair 5; XRCC1, X-ray repair cross 
complementing 1; XRCC3, X-ray repair cross complementing 3; del, deletion; G, guanine; A, adenine; C, 

cytosine; T, thymine. 
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Table 3. Allele frequencies for clinically relevant genetic variants GSTP1 rs1695, ERCC1 

rs11615, ERCC2 rs13181, ERCC4 rs1799801, ERCC5 rs2016073, CXCR1 rs2234671, 

XRCC1 rs25487 and XRCC3 rs1799794 in populations worldwide 

 

Gene Polymorphism 
Human Populations 

Latin American Caucasian Asian 

GSTP1 
rs1695  

(A313G) 

Colombia: 0.36 (G)a;  

Mexico: 0.56 (G);  

Peru: 0.67 (G);  

Puerto Rico: 0.37 (G) 

Spain: 0.36 (G);  

British: 0.32 (G);  

Finland: 0.28 (G);  

Italy: 0.29 (G) 

Han Chinese: 0.18 (G);  

Bangladesh: 0.22 (G);  

Japan: 0.10 (G);  

Vietnam: 0.20 (G) 

ERCC1 
rs11615  

(T354C) 

Colombia: 0.52 (G);  

Mexico: 0.74 (G);  

Peru: 0.75 (G);  

Puerto Rico: 0.50 (G) 

Spain: 0.37 (G);  

British: 0.32 (G);  

Finland: 0.37 (G);  

Italy: 0.46 (G) 

Han Chinese: 0.75 (G);  

Bangladesh: 0.65 (G);  

Japan: 0.71 (G);  

Vietnam: 0.73 (G) 

ERCC2 
rs13181 

(A2251C/T) 

Colombia: 0.24 (G);  

Mexico: 0.19 (G);  

Peru: 0.17 (G);  

Puerto Rico: 0.24 (G) 

Spain: 0.31 (G);  

British: 0.30 (G);  

Finland: 0.40 (G);  

Italy: 0.45 (G) 

Han Chinese: 0.11 (G);  

Bangladesh: 0.35 (G);  

Japan: 0.07 (G);  

Vietnam: 0.08 (G) 

ERCC4 
rs1799801 

(T2505C) 

Colombia: 0.22 (G);  

Mexico: 0.19 (G);  

Peru: 0.24 (G);  

Puerto Rico: 0.19 (G) 

Spain: 0.38 (G);  

British: 0.28 (G);  

Finland: 0.25 (G);  

Italy: 0.29 (G) 

Han Chinese: 0.21 (G);  

Bangladesh: 0.24 (G);  

Japan: 0.33 (G);  

Vietnam: 0.37 (G) 

ERCC5 
rs2016073 

(A-763G) 

Colombia: 0.73 (A);  

Mexico: 0.61 (A);  

Peru: 0.48 (A);  

Puerto Rico: 0.78 (A) 

Spain: 0.87 (A);  

British: 0.80 (A);  

Finland: 0.82 (A);  

Italy: 0.77 (A) 

Han Chinese: 0.65 (A);  

Bangladesh: 0.66 (A);  

Japan: 0.73 (A);  

Vietnam: 0.63 (A) 

CXCR1 
rs2234671 

(G2607C) 

Colombia: 0.08 (G);  

Mexico: 0.14 (G);  

Peru: 0.31 (G);  

Puerto Rico: 0.08 (G) 

Spain: 0.01 (G);  

British: 0.08 (G);  

Finland: 0.04 (G);  

Italy: 0.03 (G) 

Han Chinese: 0.10 (G);  

Bangladesh: 0.18 (G);  

Japan: 0.08 (G);  

Vietnam: 0.06 (G) 

XRCC1 
rs25487 

(G1196A) 

Colombia: 0.63 (C);  

Mexico: 0.73 (C);  

Peru: 0.69 (C);  

Puerto Rico: 0.71 (C) 

Spain: 0.58 (C);  

British: 0.66 (C);  

Finland: 0.67 (C);  

Italy: 0.63 (C) 

Han Chinese: 0.75 (C);  

Bangladesh: 0.66 (C);  

Japan: 0.72 (C);  

Vietnam: 0.77 (C) 

XRCC3 
rs1799794 

(A316G) 

Colombia: 0.19 (C);  

Mexico: 0.16 (C);  

Peru: 0.25 (C);  

Puerto Rico: 0.16 (C) 

Spain: 0.28 (C);  

British: 0.19 (C);  

Finland: 0.23 (C);  

Italy: 0.19 (C) 

Han Chinese: 0.52 (C);  

Bangladesh: 0.42 (C);  

Japan: 0.42 (C);  

Vietnam: 0.39 (C) 

GSTP1, glutathione S-transferase pi 1; ERCC1, excision repair 1; ERCC2, excision repair 2; ERCC4, 

excision repair 4; ERCC5, excision repair 5; XRCC1, X-ray repair cross complementing 1; XRCC3, X-ray 

repair cross complementing 3; CXCR1, C-X-C motif chemokine receptor 1; G, guanine; A, adenine; C, 

cytosine; T, thymine. a Frequency of minor allele. 
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Table 4. Biomarkers focused on capecitabine, 5-FU and gemcitabine drugs  
 

Gene Polymorphism Clinical relevance Function Type of inheritance Reference 

TYMS rs45445694 (*2R/*3R) Neutropenia Enzyme Germinal 63,70 

DPYD rs3918290 (G1905+1A); 

rs67376798 (A2846T); 

rs1801158 (G1601A); 

rs55886062 (T1679G); 

rs1801159 (A1627G); 

rs12132152 (G97057448A); 

rs12022243 (C97397224T) 

Toxicity 

Toxicity 

Toxicity 

Toxicity 

Neutropenia 

Diarrhea 

Diarrhea 

Enzyme Germinal 63,64,71 

MTHFR rs1801131 (A1298T); 

rs1801133 (C677T) 

Toxicity 

Toxicity 

Enzyme Germinal 70,72 

ABCB1 rs1128503 (C1236T); 

rs1045642 (C3435T) 

Neutropenia 

Diarrhea 

Transporter Germinal 67,68 

CDA rs2072671 (A79C); 

rs602950 (A-92G); 

rs532545 (C-451T) 

Toxicity 

Diarrhea 

Diarrhea 

Enzyme Germinal 67 

CCND1 rs9344 (G870A) Prognosis Cyclin Germinal 73 

TP rs11479 (C1412T) Response Enzyme Germinal 69 

ENOSF1 rs2612091 (805-227G>A) Diarrhea Enzyme Germinal 64,67 

ABCB1, ATP binding cassette subfamily B member 1; CCND1, cyclin D1; CDA, cytidine deaminase; 
DPYD, dihydropyrimidine dehydrogenase; ENOSF1, enolase superfamily member 1; MTHFR, 

methylenetetrahydrofolate reductase; TP, thymidine phosphorylase; TYMS, thymidylate synthetase; G, 

guanine; A, adenine; C, cytosine; T, thymine. 
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Table 5. Allele frequencies for clinically relevant genetic variants DPYD rs3918290, 

MTHFR rs1801133, ABCB1 rs1128503, CDA rs2072671, CCND1 rs9344, TP rs9344 and 

ENOSF1 rs2612091 in populations worldwide  
 

Gene Polymorphism 
Human Populations 

Latin American Caucasian Asian 

DPYD 
rs3918290 

(1905+1G>A) 

Colombia: 0.00 (T) a;  

Mexico: 0.00 (T);  

Peru: 0.01 (T);  

Puerto Rico: 0.00 (T) 

Spain: 0.00 (T);  

British: 0.00 (T);  

Finland: 0.02 (T);  

Italy: 0.00 (T) 

Han Chinese: 0.00 (T);  

Bangladesh: 0.00 (T);  

Japan: 0.00 (T);  

Vietnam: 0.00 (T) 

MTHFR 
rs1801133 

(C677T) 

Colombia: 0.54 (A);  

Mexico: 0.47 (A);  

Peru: 0.44 (A);  

Puerto Rico: 0.45 (A) 

Spain: 0.44 (A);  

British: 0.32 (A);  

Finland: 0.27 (A);  

Italy: 0.47 (A) 

Han Chinese: 0.47 (A);  

Bangladesh: 0.12 (A);  

Japan: 0.38 (A);  

Vietnam: 0.19 (A) 

ABCB1 
rs1128503 

(C1236T) 

Colombia: 0.57 (G);  

Mexico: 0.53 (G);  

Peru: 0.67 (G);  

Puerto Rico: 0.60 (G) 

Spain: 0.62 (G);  

British: 0.58 (G);  

Finland: 0.57 (G);  

Italy: 0.58 (G) 

Han Chinese: 0.30 (G);  

Bangladesh: 0.37 (G);  

Japan: 0.40 (G);  

Vietnam: 0.42 (G) 

CDA 
rs2072671 

(A79C) 

Colombia: 0.27 (C);  

Mexico: 0.32 (C);  

Peru: 0.36 (C);  

Puerto Rico: 0.28 (C) 

Spain: 0.34 (C);  

British: 0.33 (C);  

Finland: 0.19 (C);  

Italy: 0.37 (C) 

Han Chinese: 0.12 (C);  

Bangladesh: 0.17 (C);  

Japan: 0.21 (C);  

Vietnam: 0.10 (C) 

CCND1 
rs9344 

(G870A) 

Colombia: 0.33 (A);  

Mexico: 0.33 (A);  

Peru: 0.30 (A);  

Puerto Rico: 0.42 (A) 

Spain: 0.55 (A);  

British: 0.47 (A);  

Finland: 0.42 (A);  

Italy: 0.51 (A) 

Han Chinese: 0.56 (A);  

Bangladesh: 0.58 (A);  

Japan: 0.47 (A);  

Vietnam: 0.63 (A) 

TP 
rs11479  

(C1412T) 

Colombia: 0.11 (A);  

Mexico: 0.25 (A);  

Peru: 0.24 (A);  

Puerto Rico: 0.12 (A) 

Spain: 0.06 (A);  

British: 0.05 (A);  

Finland: 0.08 (A);  

Italy: 0.07 (A) 

Han Chinese: 0.24 (A);  

Bangladesh: 0.16 (A);  

Japan: 0.25 (A);  

Vietnam: 0.32 (A) 

ENOSF1 
rs2612091 

(805-227G>A) 

Colombia: 0.61 (T);  

Mexico: 0.59 (T);  

Peru: 0.69 (T);  

Puerto Rico: 0.61 (T) 

Spain: 0.54 (T);  

British: 0.53 (T);  

Finland: 0.57 (T);  

Italy: 0.56 (T) 

Han Chinese: 0.70 (T);  

Bangladesh: 0.55 (T);  

Japan: 0.69 (T);  

Vietnam: 0.70 (T) 

ABCB1, ATP binding cassette subfamily B member 1; CCND1, cyclin D1; CDA, cytidine deaminase; 

DPYD, dihydropyrimidine dehydrogenase; ENOSF1, enolase superfamily member 1; MTHFR, 

methylenetetrahydrofolate reductase; TP, thymidine phosphorylase; G, guanine; A, adenine; C, cytosine; T, 

thymine. a Frequency of minor allele. 
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Table 6. Biomarkers focused on irinotecan drug  
 

Gene Polymorphism Clinical relevance Function Type of inheritance Reference 

CYP3A5 rs776746 (*3C) Response Enzyme Germinal 45 

UGT1A1 rs8175347 (*28); 

rs4148323 (*6) 

 Neutropenia and Diarrhea 

Neutropenia 

Enzyme Germinal 78,79,81 

UGT1A7 rs17868324 (*3) Neutropenia Enzyme Germinal 79,81 

UGT1A9 rs3832043 (*22) Neutropenia Enzyme Germinal 79,81,88 

ABCB1 rs1128503 (C1236T); 

rs1045642 (C3435T); 

rs2032582 (G2677T/A) 

Asthenia 

Diarrhea 

Global Survival 

Transporter Germinal 67,68 

ABCC1 rs2074087 (C2461-30G) Neutropenia Transporter Germinal 52,55 

ABCC2 rs3740066 (T3972C) Neutropenia Transporter Germinal 86,87,89 

ABCG2 rs262604 (-20+805 A>G); 

rs2231142 (C421A); 

rs7699188 (C61414T) 

Myelosuppression 

Neutropenia 

Toxicity 

Transporter Germinal 83 

SLC19A1 rs1051266 (A80G) PFS Transporter Germinal 84 

SLCO1B1 rs2306283 (A388G) PFS Transporter Germinal 84 

ABCB1, ATP binding cassette subfamily B member 1; ABCC1, ATP binding cassette subfamily C member 
1; ABCC2, ATP binding cassette subfamily C member 2; ABCG2, ATP binding cassette subfamily G 

member 2; PFS, progression-free survival; CYP3A5, cytochrome P450 family 3 subfamily A member 5;  

UGT1A1, UDP glucuronosyltransferase family 1 member A1; UGT1A7, UDP glucuronosyltransferase family 

1 member A7; UGT1A9, UDP glucuronosyltransferase family 1 member A9; SLC19A1, solute carrier family 

19 member 1; SLCO1B1, solute carrier organic anion transporter family member 1B1; G, guanine; A, 

adenine; C, cytosine; T, thymine; *, repetitions 
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Table 7. Allele frequencies for clinically relevant germline polymorphisms CES1 

rs2244613, ABCB1 rs1045642, ABCC1 rs2074087, ABCG2 rs262604, SCL19A1 

rs1051266 and SLCO1B1 rs2306283 in populations worldwide 
 

Gene Polymorphism 
Human Populations 

Latin American Caucasian Asian 

CES1 
rs2244613 

(C1168-33A) 

Colombia: 0.80 (T) a;  

Mexico: 0.70 (T);  

Peru: 0.64 (T);  

Puerto Rico: 0.75 (T) 

Spain: 0.80 (T);  

British: 0.84 (T);  

Finland: 0.84 (T);  

Italy: 0.87 (T) 

Han Chinese: 0.38 (T);  

Bangladesh: 0.60 (T);  

Japan: 0.37 (T);  

Vietnam: 0.43 (T) 

ABCB1 
rs1045642 

(C3435T) 

Colombia: 0.56 (G);  

Mexico: 0.52 (G);  

Peru: 0.62 (G);  

Puerto Rico: 0.57 (G) 

Spain: 0.54 (G);  

British: 0.47 (G);  

Finland: 0.42 (G);  

Italy: 0.53 (G) 

Han Chinese: 0.62 (G);  

Bangladesh: 0.39 (G);  

Japan: 0.52 (G);  

Vietnam: 0.60 (G) 

ABCC1 
rs2074087 

(C2461-30G) 

Colombia: 0.79 (G);  

Mexico: 0.77 (G);  

Peru: 0.77 (G);  

Puerto Rico: 0.78 (G) 

Spain: 0.85 (G);  

British: 0.88 (G);  

Finland: 0.84 (G);  

Italy: 0.79 (G) 

Han Chinese: 0.78 (G);  

Bangladesh: 0.57 (G);  

Japan: 0.78 (G);  

Vietnam: 0.88 (G) 

ABCC2 
rs3740066 

(T3972C) 

Colombia: 0.36 (T);  

Mexico: 0.42 (T);  

Peru: 0.24 (T);  

Puerto Rico: 0.36 (T) 

Spain: 0.39 (T);  

British: 0.38 (T);  

Finland: 0.37 (T);  

Italy: 0.37 (T) 

Han Chinese: 0.25 (T);  

Bangladesh: 0.33 (T);  

Japan: 0.23 (T);  

Vietnam: 0.27 (T) 

ABCG2 
rs262604 

(-20+805A>G) 

Colombia: 1.00 (C);  

Mexico: 1.00 (C);  

Peru: 1.00 (C);  

Puerto Rico: 1.00 (C) 

Spain: 1.00 (C);  

British: 1.00 (C);  

Finland: 1.00 (C);  

Italy: 1.00 (C) 

Han Chinese: 1.00 (C);  

Bangladesh: 1.00 (C);  

Japan: 1.00 (C);  

Vietnam: 1.00 (C) 

SLC19A1 
rs1051266 

(A80G) 

Colombia: 0.51 (G);  

Mexico: 0.65 (G);  

Peru: 0.63 (G);  

Puerto Rico: 0.57 (G) 

Spain: 0.49 (G);  

British: 0.60 (G);  

Finland: 0.55 (G);  

Italy: 0.55 (G) 

Han Chinese: 0.52 (G);  

Bangladesh: 0.62 (G);  

Japan: 0.46 (G);  

Vietnam: 0.46 (G) 

SLCO1B1 
rs2306283 

(A388G) 

Colombia: 0.48 (G);  

Mexico: 0.38 (G);  

Peru: 0.47 (G);  

Puerto Rico: 0.53 (G) 

Spain: 0.42 (G);  

British: 0.36 (G);  

Finland: 0.44 (G);  

Italy: 0.39 (G) 

Han Chinese: 0.78 (G);  

Bangladesh: 0.56 (G);  

Japan: 0.66 (G);  

Vietnam: 0.78 (G) 

CES1, carboxylesterase 1; ABCB1, ATP binding cassette subfamily B member 1; ABCC1, ATP binding 

cassette subfamily C member 1; ABCC2, ATP binding cassette subfamily C member 2; ABCG2, ATP 

binding cassette subfamily G member 2; SLC19A1, solute carrier family 19 member 1; SLCO1B1, solute 

carrier organic anion transporter family member 1B1; G, guanine; A, adenine; C, cytosine; T, thymine. a 

Frequency of minor allele. 
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Table 8. Biomarkers focused on antiangiogenics and bevacizumab drug  

 
Gene Polymorphism Clinical relevance Function Type of inheritance Reference 

VEGFR1 rs9582036 (C-834A) OS Receptor Germinal 94 

VEGFR2 rs12505758 (2266+1166 A>G) PFS Receptor Germinal 92,94 

VEGFA rs3025039 (C*237T) 

rs13207351 (G-152A) 

PFS 

PFS 

Growth factor Germinal 

Germinal 

94 

ANXA11 rs1049550 (C688T) ORR Calcium-dependent 

phospholipid-binding 

proteins 

Germinal 95 

CXCR1 rs2234671 (G827C) Response Receptor Germinal 93 

CXCR2 rs2230054 (C786T) ORR Receptor Germinal 93 

ANXA11, annexin A11; CXCR1, C-X-C motif chemokine receptor 1; CXCR2, C-X-C motif chemokine 

receptor 2; VEGFA, vascular endothelial growth factor A; VEGFR1, vascular endothelial growth factor 

receptor 1; VEGFR2, vascular endothelial growth factor receptor 2; G, guanine; A, adenine; C, cytosine; T, 

thymine; OS, overall survival; PFS, patient-free survival; ORR, overall response rates. 
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Table 9. Allele frequencies for clinically relevant germline polymorphisms VEGFR1 

rs9582036, VEGFR2 rs12505758, VEGFA rs3025039, ANXA11 rs1049550 and CXCR2 

rs2230054 in populations worldwide 
 

Gene Polymorphism 
Human Populations 

Latin American Caucasian Asian 

VEGFR1 
rs9582036 

(C-834A) 

Colombia: 0.73 (A) a;  

Mexico: 0.84 (A);  

Peru: 0.94 (A);  

Puerto Rico: 0.64 (A) 

Spain: 0.69 (A);  

British: 0.70 (A);  

Finland: 0.78 (A);  

Italy: 0.75 (A) 

Han Chinese: 0.83 (A);  

Bangladesh: 0.84 (A);  

Japan: 0.85 (A);  

Vietnam: 0.79 (A) 

VEGFR2 
rs12505758 

(2266+1166 A>G) 

Colombia: 0.13 (C);  

Mexico: 0.17 (C);  

Peru: 0.31 (C);  

Puerto Rico: 0.09 (C) 

Spain: 0.12 (C);  

British: 0.07 (C);  

Finland: 0.10 (C);  

Italy: 0.12 (C) 

Han Chinese: 0.19 (C);  

Bangladesh: 0.34 (C);  

Japan: 0.27 (C);  

Vietnam: 0.15 (C) 

VEGFA 
rs3025039 

(C*237T) 

Colombia: 0.13 (T);  

Mexico: 0.30 (T);  

Peru: 0.34 (T);  

Puerto Rico: 0.18 (T) 

Spain: 0.13 (T);  

British: 0.07 (T);  

Finland: 0.14 (T);  

Italy: 0.12 (T) 

Han Chinese: 0.18 (T);  

Bangladesh: 0.12 (T);  

Japan: 0.16 (T);  

Vietnam: 0.16 (T) 

ANXA11 
rs1049550 

(C688T) 

Colombia: 0.45 (A);  

Mexico: 0.39 (A);  

Peru: 0.64 (A);  

Puerto Rico: 0.38 (A) 

Spain: 0.47 (A);  

British: 0.44 (A);  

Finland: 0.54 (A);  

Italy: 0.41 (A) 

Han Chinese: 0.63 (A);  

Bangladesh: 0.35 (A);  

Japan: 0.65 (A);  

Vietnam: 0.59 (A) 

CXCR2 
rs2230054 

(C786T) 

Colombia: 0.45 (T);  

Mexico: 0.45 (T);  

Peru: 0.57 (T);  

Puerto Rico: 0.54 (T) 

Spain: 0.51 (T);  

British: 0.47 (T);  

Finland: 0.42 (T);  

Italy: 0.50 (T) 

Han Chinese: 0.36 (T);  

Bangladesh: 0.49 (T);  

Japan: 0.28 (T);  

Vietnam: 0.39 (T) 

ANXA11, annexin A11; CXCR2, C-X-C motif chemokine receptor 2; VEGFA, vascular endothelial growth 

factor A; VEGFR1, vascular endothelial growth factor receptor 1; VEGFR2, vascular endothelial growth 

factor receptor 2; G, guanine; A, adenine; C, cytosine; T, thymine. a Frequency of minor allele. 
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Table 10. Biomarkers focused on gefitinib, erlotinib, imatinib, vemurafenib, cetuximab, 

and panitumumab drugs 
 

Gene Polymorphism Clinical relevance Function Type of inheritance Reference 

EGFR rs2227983 (G1562A); 

rs712830 (C-191A); 

rs1050171 (G2226A); 

CA-repeat in intron 1 

rs1057519860 (S492R, A1474C) 

S464L 

G465R 

I491M 

rs377567759 (R451C, C1351T) 

K467T 

Better prognosis 

Toxicity 

PFS 

PFS 

Response 

Treatment resistance 

Treatment resistance 

Treatment resistance 

Treatment resistance 

Treatment resistance 

Receptor Somatic 

Germinal 

Somatic 

Germinal 

Somatic 

Somatic 

Somatic 

Somatic 

Somatic 

Somatic 

34,102–104 

EGF rs4444903 (G61A) Response Growth factor Germinal 105 

FCGR2A rs1801274 (A535G) Survival Receptor Germinal 62 

FCGR3A rs396991 (A818C) Survival Receptor Germinal 102 

PIK3CA Exon 9 and 20 (Mutations) 

consider alternative therapy for 

cetuximab and panitumumab 

Treatment resistance Oncogene Somatic 106 

B-RAF V600E: if the mutation is present 

considering alternative therapy 

for cetuximab and panitumumab 

Treatment resistance Protein kinase Somatic 107,108 

KRAS Exon 2 (codons 12 and 13) and 

exon 4 (codon 61). If the 

mutation is present, not use 

cetuximab or panitumumab 

Treatment resistance Protooncogene Somatic 100,101 

NRAS Exon 2 (codons 12 and 13), exon 

3 (59 and 61), and exon 4 (117 

and 146) 

Treatment resistance Protooncogene Somatic 100,101 

COX2 rs20417 (G-765C) PFS Enzyme Germinal 63 

EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; FCGR2A, Fc fragment of IgG 

receptor IIa; FCGR3A, Fc fragment of IgG receptor IIIa; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-

kinase catalytic subunit alpha; KRAS, KRAS proto-oncogene, GTPase; NRAS, neuroblastoma RAS viral 
oncogene homolog; COX2, cytochrome c oxidase subunit II; PFS, progression-free survival; G, guanine; A, 

adenine; C, cytosine; T, thymine. 
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Table 11. Allele frequencies for clinically relevant genetic variants EGFR rs2227983, EGF 

rs4444903, FGGR2A rs1801274, FCGR3A rs396991 and COX2 rs20417 in populations 

worldwide 
 

Gene Polymorphism 
Human Populations 

Latin American Caucasian Asian 

EGFR 
rs2227983 

(G1562A) 

Colombia: 0.35 (A) a;  

Mexico: 0.31 (A);  

Peru: 0.36 (A);  

Puerto Rico: 0.30 (A) 

Spain: 0.25 (A);  

British: 0.24 (A);  

Finland: 0.38 (A);  

Italy: 0.25 (A) 

Han Chinese: 0.46 (A);  

Bangladesh: 0.34 (A);  

Japan: 0.62 (A);  

Vietnam: 0.53 (A) 

EGF 
rs4444903 

(G61A) 

Colombia: 0.51 (G);  

Mexico: 0.62 (G);  

Peru: 0.70 (G);  

Puerto Rico: 0.52 (G) 

Spain: 0.39 (G);  

British: 0.41 (G);  

Finland: 0.37 (G);  

Italy: 0.38 (G) 

Han Chinese: 0.70 (G);  

Bangladesh: 0.64 (G);  

Japan: 0.71 (G);  

Vietnam: 0.70 (G) 

FCGR2A 
rs1801274 

(A535G) 

Colombia: 0.39 (G);  

Mexico: 0.51 (G);  

Peru: 0.47 (G);  

Puerto Rico: 0.45 (G) 

Spain: 0.53 (G);  

British: 0.61 (G);  

Finland: 0.54 (G);  

Italy: 0.41 (G) 

Han Chinese: 0.34 (G);  

Bangladesh: 0.36 (G);  

Japan: 0.19 (G);  

Vietnam: 0.28 (G) 

FCGR3A 
rs396991 

(A818C) 

Colombia: 0.00 (C);  

Mexico: 0.00 (C);  

Peru: 0.00 (C);  

Puerto Rico: 0.00 (C) 

Spain: 0.00 (C);  

British: 0.00 (C);  

Finland: 0.00 (C);  

Italy: 0.00 (C) 

Han Chinese: 0.00 (C);  

Bangladesh: 0.00 (C);  

Japan: 0.00 (C);  

Vietnam: 0.01 (C) 

COX2 
rs20417 

(G-765C) 

Colombia: 0.22 (G);  

Mexico: 0.21 (G);  

Peru: 0.21 (G);  

Puerto Rico: 0.21 (G) 

Spain: 0.15 (G);  

British: 0.14 (G);  

Finland: 0.11 (G);  

Italy: 0.19 (G) 

Han Chinese: 0.05 (G);  

Bangladesh: 0.17 (G);  

Japan: 0.04 (G);  

Vietnam: 0.02 (G) 

EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; FCGR2A, Fc fragment of IgG 

receptor IIa; FCGR3A, Fc fragment of IgG receptor IIIa; COX2, cytochrome c oxidase subunit II; G, guanine; 

A, adenine; C, cytosine; T, thymine. a Frequency of minor allele. 
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Table 12. Pathogenic germline variants in CRC according to the Pan-Cancer Atlas and 

allele frequencies according to the Exome Aggregation Consortium  
 

Gene Polymorphism Alleles Consequence Variation 

type 

Overall 

classification 

Frequency a 

APC rs752519066 (L69*) T>A Stop gained SNV Likely pathogenic A=0.00001 

ATM rs587782652 (V2716A) T>C Missense SNV Pathogenic C=0.00004 

ATR rs777982083 (E409*) C>T Missense SNV Likely pathogenic T=0.00002 

rs755272769 

(C142553741T) 

C>T Splice 

acceptor 

SNV Likely pathogenic T=0.00001 

rs781260235 (L2093X) delAG Frameshift Deletion Likely pathogenic delAG=0.00001 

BARD1 rs587780021 (Q564*) G>A Stop gained SNV Pathogenic A=0.00005 

BLM rs200389141 (Q548*) C>T Stop gained SNV Pathogenic T=0.00018 

BRCA1 rs80357669 (S819X) delG Frameshift Deletion Pathogenic delG=0.00002 

BRCA2 rs80359550 (S1982X) delT Frameshift Deletion Pathogenic delT=0.00027 

rs80359013 (W2626C) G>A, G>C Missense SNV Pathogenic C=0.00002 

BRIP1 rs137852986 (R798*) G>A Stop gained SNV Pathogenic A=0.00015 

CHEK2 rs137853011 (S571F) G>A Missense SNV Pathogenic A=0.00031 

COL7A1 rs753819164 (R226*) G>A Stop gained SNV Likely pathogenic A=0.00001 

FANCI rs121918164 (R1285*) C>T Stop gained SNV Pathogenic T=0.00005 

GJB2 rs766975999 (S222*) G>T Stop gained SNV Likely pathogenic T=0.00002 

MLH1 rs63751615 (R226*) C>T Stop gained SNV Pathogenic T=0.00001 

rs780956158 (I691IX) dupT Frameshift Insertion Likely pathogenic dupT=0.00001 

MSH2 rs63749932 (R680*) C>G, C>T Stop gained SNV Pathogenic G=0.0000 

rs760228651 (L407LX) dupC Frameshift Insertion Likely pathogenic dupC=0.00001 

MSH6 rs587781691 (R248X) delC Frameshift Deletion Pathogenic delC=0.00001 

rs771764652 (SK536-537X) delAGTA Frameshift Deletion Likely pathogenic delAGTA=0.00001 

PALB2 rs515726124 (R170X) - Frameshift Deletion Pathogenic - 

rs756660214 (L253LX) - Frameshift Insertion Pathogenic - 

POT1 rs750470470 (-357-358X) dupA Frameshift Insertion Likely pathogenic dupA=0.00006 

RAD51D rs775045445 (W36*) C>T Stop gained SNV Likely pathogenic T=0.00006 

RECQL4 rs386833845 (C525X) delA Frameshift Insertion Pathogenic delA=0.00026 

RET rs78347871 (R912P) G>A, G>C, 

G>T 

Missense SNV Pathogenic T=0.0000 

RHBDF2 rs777871789 (W574*) C>T Stop gained SNV Likely pathogenic T=0.00001 

SDHA rs766667009 (G251104T) G>T Splice donor SNV Pathogenic T=0.00001 

SNV, single nucleotide variant; *, stop gained; dup, duplication; del, deletion; APC, APC WNT signaling 

pathway regulator; ATM, ATM serine/threonine kinase; ATR, ATR serine/threonine kinase; BARD1, 

BRCA1 associated RING domain 1; BLM, bloom syndrome RecQ like helicase; BRCA1, BRCA1 DNA 

repair associated; BRCA2, BRCA2 DNA repair associated; BRIP1, BRCA1 interacting protein C-terminal 

helicase 1; CHEK2, checkpoint kinase 2; COL7A1, collagen type VII alpha 1 chain; FANCI, Fanconi anemia 

complementation group I; GJB2, gap junction protein beta 2; MLH1, mutL homolog 1; MSH2, mutS 
homolog 2; MSH6, mutS homolog 6; PALB2, partner and localizer of BRCA2; POT1, protection of 

telomeres 1; RAD51D, RAD51 paralog D; RECQL4, RecQ like helicase 4; RET, ret proto-oncogene; 

RHBDF2, rhomboid 5 homolog 2; SDHA, succinate dehydrogenase complex flavoprotein subunit A. a 

Frequency of minor allele. 
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