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Pharmacogenomics polygenic risk score for
drug response prediction using PRS-PGx
methods

Song Zhai1,3, Hong Zhang 1,3, Devan V. Mehrotra2 & Judong Shen 1

Polygenic risk scores (PRS) have been successfully developed for the predic-
tion of human diseases and complex traits in the past years. For drug response
prediction in randomized clinical trials, a common practice is to apply PRS
built from a disease genome-wide association study (GWAS) directly to a
corresponding pharmacogenomics (PGx) setting. Here, we show that such an
approach relies on stringent assumptions about the prognostic and predictive
effects of the selected genetic variants.We propose a shift fromdisease PRS to
PGx PRS approaches by simultaneously modeling both the prognostic and
predictive effects and furthermake this shift possible by developing a series of
PRS-PGx methods, including a novel Bayesian regression approach (PRS-PGx-
Bayes). Simulation studies show that PRS-PGx methods generally outperform
the disease PRS methods and PRS-PGx-Bayes is superior to all other PRS-PGx
methods. We further apply the PRS-PGx methods to PGx GWAS data from a
large cardiovascular randomized clinical trial (IMPROVE-IT) to predict treat-
ment related LDL cholesterol reduction. The results demonstrate substantial
improvement of PRS-PGx-Bayes in both prediction accuracy and the capability
of capturing the treatment-specific predictive effects while comparedwith the
disease PRS approaches.

Pharmacogenomics (PGx), an important tool for precision medicine,
studies how pharmacokinetics, pharmacodynamics, efficacy, and
safety responses to drugs are associated with genetic information at
the molecular level of treated subjects1–3. Efficacy PGx studies have
great potential to guide treatment options by integrating routine
pharmacogenomic screening into clinical development and propos-
ing novel strategies for identifying genetic markers that impact
efficacy for new compounds (and for marketed drugs, if applicable)4.
In the domain of precision medicine, many associations between
genetic variation and inter-individual difference in drug response
have been discovered to tailor treatments to the genetic makeup of
the patient4. However, the conventional single variant PGx bio-
markers or drug response predictors usually rely on large effect
sizes. Genetic variants with small but genuine effects may not reach
the significance threshold in a typical PGx analysis of hundreds to a

few thousand subjects. Recent developments in disease genetics
reveal that the polygenicity, i.e., many small genetic effects, is pre-
sent in many complex traits5. This observation provides evidence to
support modeling and predicting disease status by combining the
effects of many weak signals.

Polygenic risk score (PRS), defined as the weighted sum of the
effect sizes of many polymorphisms, is a rapidly emerging tool in the
disease genetics field. PRS reflects the overall genetic risk of a phe-
notype of interest and can be used as a stratification mechanism for
downstream analyses and decision making. In disease genetics, PRSs
have been successfully developed for multiple complex diseases
including coronary artery disease6,7, cancer8,9, etc. A large variety of
methods have been developed for constructing PRS. To name a few,
they include (1) the unadjusted method which builds PRS using the
unadjusted effect estimates of SNPs across whole genome; (2) the
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Clumping and Thresholding (C+T) method10 which builds a few PRSs
using independent SNPs that pass different significance thresholds
and the optimal threshold is selected according to their performance
in an independent study; (3) the Lassosum method11 which uses
penalized regression to select informative SNPs by incorporating
linkage disequilibrium (LD) information, and (4) the Bayesian
regression methods, e.g., LDpred12, LDpred213, and PRS-CS14, which
shrink the marginal effect sizes with respect to LD. Among them, the
more sophisticated penalized regression and Bayesian regression
methods have been shown to achieve better performance over the
C+T method13.

Like many complex traits, most drug responses in PGx are
extremely polygenic3,15. Despite recent development in PRS methods
and their exciting applications in disease genetics, similar analytic
methods have largely not yet been successfully adapted to drug
responses in PGx16. There are emerging examples published so far,
which build PRS from disease GWAS using SNPs with treatment
unrelated prognostic effects only and then test whether the PRS is
predictive of drug responses in one or several PGx studies17–21.
However, this current practice of building disease PRS and applying
to PGx data (called PRS-Dis approach) has not been fully justified in
theory. In fact, we can show (Results section) that the PRS-Dis
approach relies on a very stringent assumption that every variant
selected for constructing PRS should have a constant ratio between
its genotype main effect and genotype-by-treatment interaction
effect, which may not be true in real PGx data. On the other hand, to
the best of our knowledge, only a few published studies directly build
PRS from drug-related data for safety or efficacy PGx prediction. For
example, Lanfear et al.16 build an efficacy PGx PRS for β-blockers
using observational data. Koido et al.22 build a PGx PRS for drug-
induced liver injury using a method similar to C+T. Lewis et al.23 build
an efficacy PGx PRS for clopidogrel response in terms of cardiovas-
cular outcomes using single-arm clinical data. However, there is
limited methodological development on the adaptation of PRS
methods in disease genetics to PGx where data from both treatment
and placebo (or control) arms are available.

To tackle the challenges of the complex drug response predic-
tion and the lack of state-of-the-art PGx PRS methods, we propose to
shift from the disease PRS approach to the PGx PRS approach by
jointly modeling the genetic main effect and the genotype-by-
treatment interaction effect (called PRS-PGx approach). We system-
atically extend the current PRS-Dis methods to construct both
prognostic and predictive PRSs for drug response prediction in PGx
studies. These methods include PRS-PGx-Unadj (Unadjusted), PRS-
PGx-CT (Clumping + Thresholding), PRS-PGx-L, -GL, -SGL (-Lasso,
-Group Lasso, -Sparse Group Lasso), and PRS-PGx-Bayes (Bayesian
regression) methods. Our proposed methods use only PGx genome-
wide association summary statistics and an external LD reference
panel except for the penalized regression-based methods, which
require access to individual level genetic and phenotypic data.
Moreover, by extending the idea of global-local scaling parameters
from disease GWAS14 to PGx GWAS, the PRS-PGx-Bayes method is
able to infer the posterior prognostic and predictive effects
simultaneously.

Our simulation studies demonstrate that PRS-PGx methods gen-
erally outperform the PRS-Dis methods across a wide range of genetic
architectures and PRS-PGx-Bayes is superior to all other PRS-PGx
methods. These methods are further applied to the IMPROVE-IT
(IMProved Reduction of Outcomes: Vytroin Efficacy International
Trial)24 PGx GWAS summary statistics data25 to predict treatment-
related LDL cholesterol reduction. The drug response prediction
results demonstrate a substantial improvement of PRS-PGx-Bayes in
both prediction accuracy and the capability of capturing the predictive
effect over alternative methods.

Results
Conceptual framework of the PRS-PGx methods
We consider a high-dimensional regression model of n patients andm
SNPs for a drug response:

Y=Xγ +βTT+Gβ+ ðG×TÞα+ ϵ, ð1Þ

where Y denotes a quantitative trait (drug response), T the binary
treatment assignment,X the n × pmatrix of covariates, andG the n ×m
genotype matrix; β is a m× 1 vector of prognostic effects (i.e., main
effects), α is a m× 1 vector of predictive effects (i.e., interaction
effects), and ϵ is the random error. In practice, the phenotype Y can
first be adjusted by the covariates X and the treatment T, before
application to any PRS-PGx algorithms. For simplicity, we will use Y as
the phenotype after such adjustment in the later discussion.

The regression coefficient b = (β,α) is assumed to be fixed in the
PRS-PGx-Unadj, PRS-PGx-CT and PRS-PGx-L, -GL, -SGL methods and
random in the PRS-PGx-Bayes method. Specifically, for each
j = 1,⋯ ,m, we consider the following prior distribution ofbj = (βj, αj) in
the Bayesian approach:

βj
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where ϕ is a global scaling parameter that is shared across multiple
SNPs and controls the degree of the model sparseness; ψj and ξj are
local and marker-specific scaling parameters; ρj is the marker-specific
correlation between the two effect sizes βj and αj; and g is a probability
density function of a random matrix.

In PRS-PGx methods, SNPs are used for the construction
of prognostic PRS and predictive PRS based on their estimated best =
(βest, αest). The prognostic and predictive PRSs are defined as the
weighted sum of the selected SNPs’ genotypes, where the weights are
the estimated prognostic and predictive effect sizes, respectively,

Sprog = ∑
m

j = 1
βest
j Gj, Spred = ∑

m

j = 1
αest
j Gj: ð3Þ

The predictive PRS is useful for patient stratification by aggre-
gating the differential treatment effects. We can define the PGx PRS as

SPGx =
Sprog + Spred, T = 1,

Sprog, T =0,

(
ð4Þ

for overall drug response prediction. More technical details are pro-
vided in the “Methods” section.

Assumption of PRS-Dis approach for drug response prediction
Consider the linear model defined in Eq. (1). Assume (i) SNPs Gi, i = 1,
. . . ,m are standardized: EGi =0, var(Gi) = 1; (ii) E(ϵ) = 0, var(ϵ) = σ2; (iii)
b is defined in Eq. (2); (iv) Gi, i = 1, . . . ,m, b, and ϵ are mutually inde-
pendent. We consider the following three quantities:

Y ∣ðT = 1Þ= ∑
m

i= 1
ðβi +αiÞGi + ϵ, ð5Þ

SPGx∣ðT = 1Þ= ∑
m

i= 1
ðβi +αiÞGi, ð6Þ

SDis = ∑
m

i = 1
βiGi: ð7Þ
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Y∣(T = 1) is theobserved responseof a subject in the treatment armwith
SNPs Gi, i = 1, . . . ,m; SDis and SPGx∣(T = 1) are the perfect polygenic
scores for this treated subject from disease GWAS and PGx, respec-
tively. We will drop the condition notation ‘∣(T = 1)’ hereafter when
there is no ambiguity. We prove (in SupplementaryMethod A) that the
heritability of a drug response can be calculated as

h2 =
var ∑m

i = 1ðβi +αiÞGi

� �
var ∑m

i= 1ðβi +αiÞGi

� �
+ σ2

= cor2 SPGx,Y
� �

: ð8Þ

On the other hand, it can be shown (in SupplementaryMethod B)
that the squared correlation coefficient between SDis and Y for the
treated subjects is:

cor2 SDis,Y
� �
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In the scenario that all interaction effects are independent ofmain

effects, i.e., ρi ≡0, i = 1, . . . ,m, Eq. (9) is reduced to h2 1� 1
1 +R

� �
, where

R= ∑m
i = 1 ψi=∑

m
i= 1 ξ i is the ratio between the total main effect and the

total interaction effect. If R→∞, that is no interaction effect at all, then
cor2(SDis, Y)→ h2. If, however, we have strong interaction effect and no
main effect, R→0, then cor2(SDis, Y)→0. This observation is consistent
with the intuition that disease PRS approach, which ignores the
treatment-by-genotype effects, is less ideal if such effects are strongly
present.

In fact, by Cauchy-Schwarz inequality, cor2(SDis, Y ) ≤ h2 and the
equality holds if and only if

ρi � 1 andψi / ξ i, for all i= 1, � � � , m, ð10Þ

which is equivalent to

βi = cαi, i= 1, � � � , m, for some constant number c: ð11Þ

This explicitly shows that the disease PRS approach SDis works
only under an extremely stringent assumption that every causal variant
must have the same interaction effect proportionate to its main effect.
We also consider the situations when the regression coefficients βi, αi,
i = 1, . . . ,m, are fixed constants (in Supplementary Method B). The
proof also shows that disease PRS SDis cannot recover all heritability as
long as the interaction effect is not proportionate to its main effect for
all causal variants.

By using the IMPROVE-IT PGx GWAS summary statistics data and
1000Genomes (1KG) Phase 3 data (http://csg.sph.umich.edu/abecasis/
mach/download/1000G.Phase3.v5.html) as external reference panel,
we can calculate the cor2(SDis, Y) = h2(1 −0.54), which means the PRS
developed from any disease GWAS can at most explain 46% genetic
variability of the drug response. In addition, we also calculate the ratio
of genetic main effect to interaction effect, c, for the SNPs (after
clumping with 250kb window size and LD r2 > 0.8) across whole gen-
ome (m = 8,551,930) and the top SNPs defined by p-values of 2df (joint
G and G×T) two-sided test26 less than three thresholds 1e−06 (m = 16),
1e−05 (m = 81), and 1e−04 (m = 472), respectively. Figure 1 shows that
the constant ratio assumption (11) is completely not satisfied. There-
fore, it is expected that the performance of PRS-Dis methods will be
lower when applied to analyzing real PGx data (i.e., the IMPROVE-IT
PGx GWAS data). Our real data analysis results indeed show that the
PRS-Dis methods have substantially lower predictive power than the
PRS-PGx methods.

Simulation studies
In this section, we further illustrate the limitations of PRS-Dis methods
and compare their empirical performance with the proposed PRS-PGx

methods. We considered the scenario where all causal variants were
both prognostic and predictive and their effect sizes were positively
correlated. The constant ratio assumption (11) was only partially
satisfied since the correlation coefficients were assumed to follow
uniform distribution. As a sensitivity analysis, we also considered the
scenario where all causal variants were either prognostic or predictive
but could not be both, i.e., the constant ratio assumption (11) was
strongly violated.

The constant ratio assumption of PRS-Dis is partially satisfied. We
simulated SNPs’ prognostic and predictive effects from a bivariate
normal distribution, as described in Eq. (15). Specifically, we set the
heritabilityH2 = 0.3, the treatment effectβT =0, and theprognostic and
predictive effect sizes at the same scalewithψ/ξ = 1. Note that although
ψi∝ ξi for all i 2 I , where I is the set of causal variants, the correlation
coefficient between the two effects ρi ~ Uniform(0,1) may vary from
different LD blocks. The full details of data generation process are
provided in the “Methods” section.

Before we compared PRS-PGx and PRS-Dis methods, we first
assessed the performance among the three disease PRSmethods (PRS-
Dis-Unadj, PRS-Dis-CT, and PRS-Dis-LDpred2) and the three machine
learning-based PRS-PGx methods (PRS-PGx-L, PRS-PGx-GL, and PRS-
PGx-SGL), respectively. As shown in Supplementary Fig. 1, among the
three diseasePRSmethods, PRS-Dis-LDpred2outperformed the others
in terms of both R2 and the statistical significance of its predictive
effect. Similarly, among three penalized regression approaches, PRS-
PGx-GL was consistently favored in the current simulation setting.
Therefore, in the remaining simulations and real data analyses, we
focused on only PRS-Dis-LDpred2 among all PRS-Dis methods; and
only PRS-PGx-GL among all the PGx penalized regression methods.

Five polygenic prediction methods, PRS-Dis-LDpred2, PRS-PGx-
Unadj, PRS-PGx-CT, PRS-PGx-GL, and PRS-PGx-Bayes, were compared
across different settings of sample sizes, number of causal variants,
heritabilities and effect sizes. The tuning parameters such as the
p-value threshold in PRS-PGx-CT, the penalty parameter in PRS-PGx-
GL, and some prior distribution parameters in PRS-PGx-Bayes were
selected via 5-fold cross-validation (CV). The 1000 Genomes Project
European population data was used as an external reference panel for
LD. The performance was evaluated in an independent testing set

Fig. 1 | Distributions of the prognostic topredictive effect size ratios calculated
from the IMPROVE-IT PGx GWAS summary statistics data with n = 5661 unre-
lated European samples. The left boxplot shows the distribution of whole genome
SNPs (after clumping,m= 8,551,930). The right three boxplots show the distribution
of top SNPs (after clumping) with their 2df (G +G×T) two-sided test p-values less
than the three p-value thresholds 1e−06 (m= 16), 1e−05 (m=81), and 1e−04 (m=472),
respectively. In each boxplot, the band indicates the median, the box indicates the
first and third quartiles, and the whiskers indicate ± 1.5 × interquartile range. Effect
size ratios of m SNPs are overlaid on the corresponding boxplot as dot points.
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(sample size = 1000) in terms of (i) the prediction accuracy of SPGx
quantified by R2 between the observed and predicted phenotypes in
two arms; (ii) the predictive effect measured by the −log10(p-value)
from the two-sided likelihood ratio test (LRT) of Spred × T interaction;
and iii) R2 of the SPGx under treatment and control arms, respectively.
The statistical details about the above analyses are provided in the
“Methods” section.

The predictive performance of the five polygenic prediction
methods from the simulation studies is summarized in Fig. 2a. The
PRS-PGx methods generally outperformed the PRS-Dis method (i.e.,
PRS-Dis-LDpred2). Among PRS-PGx methods, our proposed Bayesian
approach PRS-PGx-Bayes was consistently better than the others.
Overall speaking, PRS-PGx-Unadj approach,whichaggregated all SNPs,
performed poorly when the number of causal variants was small, but
became more comparable to other methods when the genetic archi-
tectureswere highly polygenic. Although it is reasonable to expect that
PRS-PGx-GL (which accounts for local LD patterns) likely outperforms
PRS-PGx-CT (which does not consider the impact of LD information),
we observed an opposite pattern in our simulations. This is likely
because Lasso-based methods are sensitive to the noise, and suffer
most when the signal-to-noise ratio is small, which was the case in our
simulation data. Finally, for all the methods, the prediction accuracy
decreased as the number of causal variants increased given a fixed
heritability. This is because, asmore causal SNPswere in LD (as a result
of more causal SNPs being randomly sampled across the genome) and
their effect sizes declined, it became increasingly difficult to

distinguish real signals from noise. Furthermore, we compared R2 of
different methods in the treatment and control arms, respectively
(Fig. 2c, d). The performance in the treatment arm held a similar pat-
tern as to theR2 in two arms. However, the results from the control arm
showed a different pattern. PRS-Dis-LDpred2 seemed to be superior to
PRS-PGx methods. Note that under the control arm, the underlying
true model becomes EY =Gβ. Therefore, a large-scale disease GWAS is
able toperfectly recover β’swith β̂’s, which implies that thedisease PRS
(=∑m

i = 1 β̂iGi) is able to capture the prognostic effect under control arm.
In such condition, disease PRSmay show advantage to PGx PRS since it
is constructed from a much larger sample size from disease GWAS.
Fortunately, our proposed PRS-PGx-Bayes was still comparable to PRS-
Dis-LDpred2 (Fig. 2d).

In addition to prediction accuracy, we summarized the predictive
p-values (i.e., the significance of Spred × T interaction) across different
methods in Fig. 2b. As expected, PRS-PGx methods showed a clear
advantage to the PRS-Dis method PRS-Dis-LDpred2. This is not sur-
prising since the disease PRS can fully capture the predictive effect
only when the strong assumption (9) is satisfied as we discussed
before. Furthermore, our proposed Bayesian approach PRS-PGx-Bayes
generally outperformed othermethods, whichwas consistent with our
previous observations in terms of R2. P-values, obtained by the two-
sided LRT of SPGx from Y ~ SPGx under two arms, respectively, were
provided in Supplementary Fig. 2.

As shown in Supplementary Fig. 3, we further compared dis-
tributions of (β̂, α̂) estimated from different PRS-PGx methods versus

Fig. 2 | Predictive performance of five polygenic prediction methods in the
simulation studies, where heritability was fixed at 0.3 andψ/ξ = 1. The numbers
of the causal variants for P(causal) =0.001, 0.01, and 0.1 were 5, 50, and 500,
respectively. The training sample size for PRS-PGx approaches was either 1000 or
3000; for PRS-Dis-LDpred2 approach was 20,000. The tuning parameters were

selected via cross-validation in the training data. The performance was assessed in
terms of a prediction accuracy R2 of SPGx in two arms, b predictive p-value for the two-
sided Spred ×T interaction test, cR2 of SPGx under treatment arm, anddR2 of SPGx under
control arm. Data are presented as mean values +/− standard deviations (error bars)
with 10,000 replications, where results were calculated from the testing sets.
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the true value of (β, α) under four different genetic architectures, from
no signal (P(causal) = 0), sparse signals (P(causal) = 0.001), to dense
signals (P(causal) = 0.01 or 0.1). In a scenario when no causal variants
were simulated (i.e., null hypothesis scenario), PRS-PGx-CT mis-
identified a few SNPs. However, the type I error rate was still well
controlled. More specifically, PRS-PGx-CT misidentified 7 SNPs, which
is comparable to the expected number of false positives (i.e.,
5000×0.001 = 5). Both PRS-PGx-GL and PRS-PGx-Bayes shrank prog-
nostic and predictive effect sizes to zero. In this scenariowhen 5, 50, or
500 causal variants were simulated, PRS-PGx-Bayes more accurately
estimated the genetic effects compared with the other methods.

To further assess the impact of different implementation strate-
gies, we also performed additional simulations where PRS-PGx-Bayes
function was applied on LD blocks jointly (i.e., full LDmatrix across LD
blocks was used). The simulation settings remained the same as
described in Fig. 2. As a sensitivity analysis, we also applied PRS-PGx-
Bayes method to the uniform blocks with number of variants in each
block as 200, 500, and 2500, respectively. Supplementary Fig. 4 shows
that there is a slightly decreasing trend in R2 and −log(p-value) from
using the full genotype matrix to using uniform blocks with size 200.
However, such differences across different types of blocks are limited,
especially between LD blocks and full genotype matrix. For example,
when P(causal) = 0.001, compared to using the full genotype matrix,
the LD block approach only decreases R2 by 0.4%. The relative
decreases of LD block approach compared to the full genotype
approach was summarized in Supplementary Table 1. The table shows
that the relative decreases of the LD block approach in simulation
studies are very small (i.e., all ≤1.1%).

To assess the performance of the proposed methods under dif-
ferent heritabilities, we conducted sensitivity analyses by setting
H2 = 0.1 and 0.5 and the results showed a very similar pattern (Sup-
plementary Fig. 5). Supplementary Fig. 6 shows the sensitivity analysis
results when the treatment effect βT was set to 1. The methods per-
formed very similar to when βTwas set as 0. Furthermore, we assessed
the impact of different scales of the prognostic and predictive effect
sizes on themethods’ performance.When the two effect sizes were set
with different scales (ψ/ξ = 16 or 1/16), the sparse group Lasso-based

method (PRS-PGx-SGL) performed the best among the three penalized
regression methods, while PRS-PGx-Bayes still outperformed all the
other methods (Supplementary Fig. 7). In addition, when ψ/ξ = 16 (i.e.,
the heritability is mostly explained by the prognostic effect), it was not
surprising that PRS-Dis-LDpred2 was at least comparable to most PRS-
PGx methods in terms of the prediction accuracy R2. But still, the
performance of the PRS-Dis methods was much worse than PRS-PGx
methods in terms of capturing the predictive effect.

The constant ratio assumption of PRS-Dis is strongly violated. We
simulated completely separate sets of prognostic and predictive SNPs
so that no SNPs were both prognostic and predictive. Under this
condition, the ratio of main to interaction effects (i.e., β/α) for each
causal variant was either 0 or ∞. The details of data generation are
provided in the “Methods” section.

The simulation results are summarized in Fig. 3, which shows that,
when the assumption (11) is not satisfied, the PRS-PGx methods uni-
formly outperformed PRS-Dis methods in terms of the prediction
accuracy across different settings of causal variants. Figure 3a shows
that the average R2 of the PRS-Dis methods are all below 0.1 while it is
larger than 0.13 for the PRS-PGx methods. Such advantage was even
more pronounced for capturing the predictive effect, which was
measured by the predictive p-value from the two-sided likelihood ratio
test of Spred × T interaction. Figure 3b shows the PRS-Dis-LDpred2
method generates the geometric mean p-values > 0.01, but the geo-
metric mean p-values of PRS-PGx methods are <1e−8. The detailed
results from the three disease PRS methods and the three penalized
regression methods are summarized in Supplementary Fig. 8.

Computational time. To assess the computational burden of the
proposed method, we applied the PRS-PGx-Bayes function with 1000
MCMC iterations to chromosome 6, LD block 33 (the largest LD block
with 11,769 SNPs). As a sensitivity analysis, we also explored scenarios
by randomly choosing 1000, 3000, 5000, 7000, 9000 SNPs from that
block. The real genetic data was obtained from the IMPROVE-IT trial
with a sample size of 5661. The effect sizes and phenotype data were
simulated with heritability fixed at 0.3, ψ/ξ = 1, and P(causal) = 0.01.

Fig. 3 | The drug response prediction performance comparison among five
methods based on the simulated data with completely separate prog-
nostic and predictive SNPs and heritability fixed at 0.3. The training
sample size for PGx PRS approaches was fixed to be 3000. Numbers of the
causal variants for P(causal) = 0.001, 0.01, and 0.1 are 5, 50, and 500,

respectively. The performance was assessed in terms of a prediction accu-
racy R2 of SPGx in two arms, b predictive p-value for the two-sided Spred × T
interaction test. Data are presented as mean values +/− standard deviations
(error bars) with 10,000 replications, where results were calculated from the
testing sets.
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The tuning parameters were selected via cross-validation. The com-
putation was completed on a single core of 2.4 GHz Intel Core i5. We
summarized the result in Supplementary Fig. 9, which shows that the
computational time increased at the rate ofm2 tom3, wherem denotes
the number of variants. The result also shows that it took roughly
5.9 hours for the largest LD block and 1 h for the median-size LD block
(Supplementary Fig. 10) to complete the computation. In practice,
since the computation in each LD block is independent, we could
further shorten the computational time by parallel computing 1725 LD
blocks across the whole genome. In the authors’ High Performance
Computing working environment, the IMPROVE-IT whole genome
analysis took about 35 h, where typically 50 jobs were run
simultaneously.

Polygenic prediction of drug responses in the IMPROVE-IT PGx
GWAS study
Weapplied the four proposed PRS-PGxmethods (PRS-PGx-Unadj, PRS-
PGx-CT, PRS-PGx-GL, PRS-PGx-Bayes) and the other two PRS-Dis
methods (PRS-Dis-CT and PRS-Dis-LDpred2) to the IMPROVE-IT PGx
GWAS summary statistics data to predict the low-density lipoproteins
cholesterol (LDL-C) log-fold change at 1-month from the two treatment
arms. The two treatment arms are the treatment arm with the com-
bined therapy (Ezetimibe + Simvastatin: 10mg+ 40mg) and the active
control arm with monotherapy (Simvastatin: 40mg). We adjusted for
the age, gender, prior lipid-lowering (PLL) therapy, early glycoprotein
IIb/IIIa inhibition in non-ST-segment elevation acute coronary syn-
drome (EARLYACS) trial, high-riskACSdiagnosis, baseline LDL-C level,
and five top principal components when generating the IMPROVE-IT
summary statistics data for the LDL-C drug response phenotype.

To apply PRS-PGx methods to the IMPROVE-IT data, we used
nested cross-validation. More specifically, the IMPROVE-IT data was
split into five folds in the outer layer of cross-validation with four for
training and one for testing. The training set was used to obtain the
PGx GWAS summary statistics. In the inner layer of cross-validation,
the training set was further split into four folds, three for training and
one for validation, to select the optimal tuning parameters (i.e., p-value
cutoff for PRS-PGx-CT, penalty λ for PRS-PGx-GL and (v,ϕ) for PRS-
PGx-Bayes).We compared performance across differentmethods with
the results summarized from the testing set. The prediction accuracy
wasmeasured by R2 and summarized in Table 1. The capabilities of the
PRS methods in capturing the prognostic and predictive effects were
measured by their effect sizes, as well as association p-values, and
shown in this table as well.

Consistent with previous simulation results, the two PRS-Dis
methods performed poorly in terms of R2 and predictive p-value. In
contrast, the PRS-PGx approaches demonstrated an overall improve-
ment in both metrics. For example, PRS-PGx-Bayes increased the
prediction accuracy R2 to 0.214 in both arms while compared with
0.174 from the best disease PRS method PRS-Dis-LDpred2. In the
treatment arm, PRS-PGx-Bayes improved the R2 by 0.112 while

compared with PRS-Dis-LDpred2 (0.277 vs. 0.165). On the other hand,
the PRS-Dis method PRS-Dis-LDpred2 was superior to PRS-PGx meth-
ods in terms of R2 under the control arm, whichmight be partially due
to the fact that we used the disease GWAS statistics data with much
larger sample size (n > 300,000) for constructing the disease PRS in
the PRS-Dis analyses. But our proposed method PRS-PGx-Bayes still
provided a comparable R2 prediction performance (i.e., 0.194 from
PRS-PGx-Bayes vs. 0.201 fromPRS-Dis-LDpred2). In termsof predictive
p-value, PRS-PGx-Bayes yielded a much more statistically significant
predictive (or interaction) p-value 5.4e−05 while compared to 0.033
from PRS-Dis-LDpred2. In addition, p-values obtained by the LRT of
SPGx showedvery similarpattern as theR2 in either treatmentor control
arm. Table 1 also shows that the marginal effect sizes bβG of SPGx from
the model Y ~ SPGx under treatment arm were all negative across dif-
ferent PRS-Dis and PRS-PGx methods, indicating that a larger PRS
would result in more LDL reduction after 1-month treatment of Ezeti-
mibe + Simvastatin. In the meantime, PRS-PGx-Bayes method out-
performed the others with the largest absolute value of effect size bβG.
Similarly, the interaction effect sizes bβG×T of Spred from the model
Y ~ T + Sprog + T × Spred were all negative across all methods, implying
that a larger predictive score would result in a larger treatment effect
(i.e., Ezetimibe + Simvastatin combination vs. Simvastatin mono-
therapy). PRS-PGx-Bayesmethod is also superior to the others with the
largest absolute value of effect size bβG×T .

We further compared the patient stratification performance
across different methods with the results summarized in Fig. 4. In
Fig. 4a, we used four fixed quantiles (0–25%, 25–50%, 50–75%, and
75–100%). The results indicated that although overall the population
had a positive treatment effect (i.e., Simva+EZ is better), the treatment
effects varied acrossdifferent patient subgroupswhen stratified by the
predictive score. Furthermore, the predictive score determined by
PRS-PGx-Bayes was generally superior to other methods for patient
stratification. Specifically, ratios of top 75–100% subgroup to bottom
0–25% subgroup in terms of treatment effects were 1.27, 1.48, 1.65,
3.27, 1.94, and 10.28 for PRS-Dis-CT, PRS-Dis-LDpred2, PRS-PGx-Unadj,
PRS-PGx CT, PRS-PGx-GL, and PRS-PGx-Bayes, respectively. In Fig. 4b,
patients were stratified into top 10%, 20%,⋯ , 90% percentile of the
predictive score vs. the rest, respectively. The corresponding between
group differential treatment effect was calculated. Among the six
methods, PRS-PGx-Bayes had the largest differential treatment effect
across different cutoff points followedby PRS-PGx-CT and PRS-PGx-GL
and the rest three methods had the lowest differential treatment
effects. The optimal cutoff point for PRS-PGx-Bayes occurred between
50% and 60%, with differential treatment effect around0.52. Insteadof
using fixed quantiles, we also determined the optimal quantile cutoffs
with the largest differential treatment effect estimated from the 5-fold
cross-validation (training and testing) procedures. The corresponding
ability of PRS-PGx-Bayes to stratify patients with greater clinical ben-
efits was assessed in different validation sets with the results sum-
marized in Supplementary Fig. 11. The differences in treatment effects

Table 1 | IMPROVE-IT PGx GWAS data analysis results: R2, p-values of two-sided test, and effect sizes

Two armsa T armb C armc Two arms T arm C arm Two arms T arm C arm
PRS method R2 R2 R2 PvalG×T PvalG PvalG bβG ´T (SE) bβG (SE) bβG (SE)

PRS-Dis-CT 0.165 0.152 0.191 0.041 3.0e−09 5.1e−17 −0.031 (0.015) −0.066 (0.011) −0.035 (0.004)

PRS-Dis-LDpred2 0.174 0.165 0.201 0.033 4.3e−13 6.1e−23 −0.037 (0.017) −0.079 (0.011) −0.042 (0.004)

PRS-PGx-Unadj 0.165 0.180 0.121 0.028 1.2e−13 2.7e−03 −0.061 (0.028) −0.082 (0.011) 0.057 (0.019)

PRS-PGx-CT 0.184 0.241 0.070 0.009 1.7e−15 0.01 −0.095 (0.036) −0.104 (0.013) −0.040 (0.016)

PRS-PGx-GL 0.181 0.203 0.123 0.014 7.4e−15 1.8e−03 −0.076 (0.031) −0.093 (0.012) 0.112 (0.036)

PRS-PGx-Bayes 0.214 0.277 0.194 5.4e−05 3.8e−21 1.0e−17 −0.131 (0.032) −0.124 (0.013) 0.198 (0.023)
aTwo-arm model: Y ~ T +Sprog + T ×Spred.
bT-arm model: Y ~SPGx[ = Y ~ (Sprog +Spred)], where SPGx =Sprog + T ×Spred.
cC-arm model: Y ~SPGx[ = Y ~Sprog], where SPGx =Sprog + T ×Spred.
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between high and low predictive score subgroups were very clear in
the overall population as well as in four out of five CVs.

In terms of variant selection, PRS-Dis-CT identified 280 SNPs to
construct disease PRSwith the optimalp-value cutoff determined as 5e
−08 and PRS-PGx-CT selected 91 SNPs into the PGx PRS with the
optimal p-value cutoff selected as 1e−07. The number of SNPs identi-
fied by PRS-PGx-CT is much smaller because the sample size of the
IMPROVE-IT PGxGWASdata ismuch smaller than that fromthedisease
GWAS summary statistics data. For PRS-PGx-Bayes, it tends to shrink
effect sizes of most SNPs close to zero (but not exactly equivalent to
zero), which is consistent with our simulation results. Distributions of
thepredictive effect sizesof thewhole genomeSNPs estimatedbyPRS-
PGx-CT, -GL, and -Bayes are shown in Supplementary Fig. 12. The
corresponding information of the top 20 SNPs with the largest pre-
dictive effect sizes (>0.1) reported by PRS-PGx-Bayes was summarized
in Supplementary Table 2, most of which were with the previous
association evidence from literature and the Open Targets database
(https://genetics.opentargets.org/).

Discussion
In this article, we develop a series of PRS-PGx methods to construct
PGx-based PRS and predict the polygenic component of drug
responses in PGx studies. To our best knowledge, no existingmethods
canbedirectly applied to jointlymodel both prognostic andpredictive
effects for drug response prediction. The necessity of using PGx PRS
approaches instead of disease PRS approaches is validated by the
proof of extremely stringent assumptions needed for the disease PRS
approach to predict drug response. Our proposed PRS-PGx methods
include a simple method using whole genome variants (PRS-PGx-
Unadj), a clumping and p-value thresholding method (PRS-PGx-CT),
three penalized regression methods (PRS-PGx-L, PRS-PGx-GL, PRS-
PGx-SGL), and a novel Bayesian regression method (PRS-PGx-Bayes).
Except for the penalized regression-based algorithms, all the other
methods can take PGx summary statistics as input without relying on
individual-level genotype and phenotype data. Compared with the

PRS-Dis methods, the PRS-PGx approaches can shrink variants’ main
and interaction effect sizes simultaneously, and construct PGx scores
including a prognostic PRS and a predictive PRS. Thus, in our PRS-PGx-
Bayes method, we propose to accommodate both effects and their
correlation by modeling a variance-covariance matrix. Although the
inverse Wishart (IW) prior is widely used, in this paper, we choose to
use the hierarchical half-t prior27 instead due to the limitation of IW
(i.e., IW prior imposes a dependency between the correlations and the
variances). Moreover, by introducing global-local continuous shrink-
age priors on SNP effect sizes, our proposed PRS-PGx-Bayes method is
more robust to varying relationships between main and interaction
effects compared to other PRS-PGxmethods.Our extensive simulation
studies and the PRS analyses based on the IMPROVE-IT PGxGWASdata
show that the proposed PRS-PGx methods generally outperform the
PRS-Dis methods in terms of the prediction accuracy R2 and the sig-
nificance of their predictive effects. Furthermore, the PGx PRS Baye-
sian approach (PRS-PGx-Bayes) is superior to all the other methods,
under different genetic architectures. Interestingly, we find that the
C+T method (PRS-PGx-CT) can outperform the penalized regression-
basedmethods (PRS-PGx-L, PRS-PGx-GL, and PRS-PGx-SGL) in someof
the scenarios. This patternwas also observed inMak et al.11. Our results
suggest that Lasso-based methods are sensitive to the noise, and
perform poorly when the signal-to-noise ratio is small (Supplementary
Figs. 5 and 7). Further study is needed to examine the differencemore
comprehensively.

Despite the successful application of polygenic risk score in dis-
ease genetic studies for disease prediction and stratification, the PRS
analyses in PGx studies from randomized clinical trials are usually
more complex. On one hand, although sample sizes from PGx studies
are usually smaller than those in disease GWAS, the significantly larger
effect sizes from PGx studies28,29 can result in decent power to detect
variants associated with drug response phenotypes and further enable
good drug response prediction performance of PGx PRS. On the other
hand, the availability of summary statistics fromPGxGWAS is expected
to increase quickly (i.e., similar as the case for the availability of

Fig. 4 | Patient stratification performance of six polygenic predictionmethods
in the IMPROVE-IT PGx real data analysis with n = 5661 unrelated European
samples. a Quantile plot of treatment effect using four fixed quantiles (0–25%,
25–50%, 50–75%, and 75–100%). Each dot stands for the observed Treatment Effect

(TE), and each bar denotes the 95% Confidence Interval (CI). b Differential treat-
ment effect when patients were stratified into top 10%, 20%,⋯ , 90% percentile of
the predictive score vs. the rest, respectively.
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summary statistics fromdiseaseGWAS). Therefore, statisticalmethods
customized for PGx PRS analysis are urgently needed for drug
response prediction and patient stratification in PGx GWAS studies,
with the ultimate goal of achieving precision medicine. Unfortunately,
there are currently very limited efforts of constructing PGx PRS and
successfully applying to efficacy-based PGx studies16,22,23. The most
popular practice of PRS analysis strategies in literature is to construct
PRS from disease GWAS and apply to PGx data. We used rigorous
statistical modeling to prove that PRSs built from disease GWAS lack
the prediction potential in reaching the full heritability of drug
responses. Qualitatively speaking, the disease PRS approach is only
able to fully predict drug responses under an extremely strong
assumption that all variants used for constructing PRS have the same
relationship between their main effect and interaction effect (i.e., the
ratio between the prognostic G and predictive G ×T effect sizes is a
constant). The violation of such assumption may result in very limited
predictive power. For example, we showed in our theoretical analysis
that any PRS developed from disease GWAS can explain at most 46%
variability of the LDL-C drug response in the IMPROVE-IT PGx GWAS
data. In addition, the disease PRS likely lacks the molecular specificity
to be directly informative for clinical interventions30 since the PRS is
built from variants with only prognostic effects (i.e., without con-
sidering the variants with predictive effects related to treatment). This
may partially explain why there has been little investigation into PGx
PRS and very few successful PGx PRS applications have been published
for predicting drug responses in the PGx space so far. One successful
example using an analysis strategymost closely resemble our PGx PRS
analysis strategy is from Lanfear et al.’s paper16. A direct PGx polygenic
response predictor (PRP) was constructed from a genome-wide ana-
lysis of β-Blocker (BB) x SNP interaction and successfully predicted all-
cause mortality (BB survival benefit) in European ancestry patients
with reduced ejection fraction heart failure16. The authors built the PRS
with the selected variants (using the simple p-value thresholding
method) with only predictive effects (i.e., from 44 SNPs with strong BB
x SNP interaction) and then applied to the validation PGx GWAS data
for PRS effect evaluation and patient stratification. Compared with the
PGx PRS construction in this example, the PGx PRS analysis strategy
embedded in our PRS-PGx methods constructs both the prognostic
and predictive PRSs by jointly modeling both effects in the base GWAS
data and then tests themon validationdata. This provides a systematic
way to understand the full picture of PRS’ association with drug
response. Furthermore, in addition to the p-value thresholding
method, themore advanced (Bayesian regression based) method PRS-
PGx-Bayes can also be applied to such application examples, which has
been demonstrated to outperform the simple p-value thresholding
method in our simulations and real data analyses. In summary, our
drug response prediction analysis strategies based on proposed PRS-
PGx methods, especially PRS-PGx-Bayes, are highly recommended
over the various strategies and existing methods from current
literature.

The genetic architectures of responses from a single drug or drug
classes determine the proportion of variants across the human gen-
ome contributing to their heritability and the proportion of variants
with small-,moderate- or large-effects in capturing the heritability. Our
research tackles the challenges of PRSmethodology in PGx so that PRS
can be directly and accurately used for drug response prediction and
patient stratification. However, it is usually challenging to find two
independent PGx GWAS data or a summary statistics data from a
relatively large PGxGWAS studywith the trait same or similar as that in
an independent testing PGx GWAS study. In addition to discovering
the top variants with large effects associated with drug responses (like
what most current PGx GWAS do), we call for also carefully examining
genetic architectures of drug responses in PGx GWAS and sharing
summary statistics data from those studies in the public domain.

Furthermore, recording both the prognostic and predictive (the gen-
otype by treatment interaction) effects (β,α) as GWAS summary sta-
tistics in future PGx studies from randomized clinical trials and sharing
them will enable the wide application of the proposed PRS-PGx
methods and accelerate the development and deployment of PRS
based on PGx data for precision medicine.

Recent studies31 have shown that Genotype-by-Environment
Interaction (GEI or G × E) may explain a significant proportion of
phenotypes compared with the main genotype (G) test in disease
genetics studies. Our proposed PRS-PGx methods can be directly
applicable to the scenario of genome-wide GEI test or G +G× E joint
test if environmental variables are considered in the PRS development
and deployment in disease genetics. In addition, although we mainly
demonstrate the PRS-PGx methods in the analysis of continuous drug
response phenotypes, all of themcanbe directly applied to binary (i.e.,
drug-induced adverse reactions or other drug safety responses) and
survival (i.e., time-to-event drug responses) phenotypes except for
PRS-PGx-Bayes. It is straightforward to extend the PRS-PGx-Bayes to
analyzing binary and survival endpoints by adopting the Bayesian
logistic regression32 and Bayesian Cox proportional hazards model33–35

instead of the Bayesian linear regression. How to derive their posterior
probabilities remains a question for future research. Moreover, our
methods are developed based on single-ethnic population (e.g., Eur-
opean population). A direct application of this score to other ethnic
groupsmay result in considerable loss in prediction accuracy.With the
rapid growth of non-European genomic resources in recent years, it is,
therefore, of great both research and public interests to extend the
proposed PRS-PGx approaches to the trans-ethnic scenario in future.
In addition, for the purpose of effect size shrinkage, the currently
existing Bayesian methods lack a systematic way to determine the
optimal prior. For example, the LDpred method uses the spike-and-
slab prior12; the SBayesR method uses the spike-and-slab prior by
replacing normal with mixture normal36; the DPR method uses the
Dirichlet process prior37; and Griffin and Brown use the Normal-
Gamma shrinkage prior38. The PRS-CS method14 and our proposed
PRS-PGx-Bayes method use one of the most popular continuous
shrinkage priors (global-local scale mixtures of normals, i.e., the
Horseshoe prior). One potential drawback of the Horseshoe prior is
that there has been no consensus on how to place a prior for ϕ based
on the information about the sparsity39, neither by grid searching for
the optimal ϕ (as in PRS-PGx-Bayes), nor by applying full Bayesian
inference (as in PRS-CS). Thus, another possible future research
direction is to systematically study the impact of different priors on
PRS-PGx-Bayes performance and then determine the optimal one.
Furthermore, if the Horseshoe prior is used, we may further improve
the PRS-PGx-Bayes algorithm by automatically updating (ν,ϕ) based
on the sparsity information instead of using grid searching for the
tuning parameters. Last, we suggest applying our proposed methods
by LD blocks. Expanding the size of blocks (e.g., using the whole
chromosome) may slightly improve prediction accuracy but also sig-
nificantly increase computational costs. On the other hand, further
reducing the size of blocks (e.g., using the uniform blocks with smaller
size) can reduce run-timebut also possibly increase the bias bymissing
long-range LD.We believe that the by LDblock strategy is a right trade-
off between decent modeling accuracy and feasible computational
time. We also acknowledge that future work is needed to further
improve the computational efficiency to incorporate more SNPs for
simultaneous analysis.

As next-generation sequencing and other genetic platforms
become much cheaper and more routinely embedded within PGx
research studies, more rare variants may be evaluated and discovered
to associate with drug responses. There will be an increasing need to
consider pharmacogenomic variants, both common and rare with
either large, moderate, or small effects to predict patients’ drug
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responses. The PRS-PGx methods we develop are promising in
advancing precision medicine by improving drug response (efficacy
and/or safety) prediction in PGx studies. Our efforts of developing the
PRS-PGx methods, which identify optimal ways for PRS construction
by jointly modeling the prognostic and predictive effects, is an
important step for accelerating the translation of PRS to clinical
practice.

Methods
The four PRS-PGx methods (PRS-PGx-Bayes, PRS-PGx-Unadj, PRS-PGx-
CT, and PRS-PGx-L, -GL, -SGL)we propose are described in this section.
We leave the brief description of the PRS-Dis-LDpred2 method to
Supplementary Method C and Supplementary Fig. 13 since it is an
existing method. The overview of PRS-Dis and PRS-PGx methods is
summarized in Supplementary Table 3. The workflow and details of
simulation studies and real data analyses are also discussed.

PRS-PGx-Bayes
Recall that the Bayesian regressionmodel has been specified in Eq. (1),
and we assume Y and G have been standardized. Furthermore, we
assume the residual variance σ2 follows a non-informative scale-invar-
iant Jeffreys prior, that is, p(σ2)∝ σ−2 as suggested by Ge et al.14

Regarding the priors of effect sizes, we extend the idea of global-local
scale mixtures of normals14 to the two-dimensional scenario as indi-
cated in Eq. (2):

βj

αj
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where ϕ is a global scaling parameter that is shared across all effect
sizes;ψj and ξj are local andmarker-specific scalingparameters;ρj is the
marker-specific correlation between the two effect sizes βj and αj; and
g( ⋅ , ⋅ ) is anabsolutely continuous and two-dimensionalmixing density
function.

We first note that, given the prior information σ2, ϕ, and Mj,
j = 1, 2,⋯ ,m, and the summary statistics (i.e., the effect size estimates)bb=X0Y=n from PGx GWAS, the posterior mean of b is

E ½b ∣ bb�= ðD+Ω�1Þ�1bb, ð12Þ
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Ω=
Ψ P

P Ξ

� �
,Ψ= diag ðϕψjÞ,Ξ = diag ðϕξ jÞ,P = diag

�
ϕρj

ffiffiffiffiffiffiffiffiffi
ψjξ j

q �
,

and

D=X0X=n= cor ð½G G×T�Þ

can be obtained from LD reference panel as illustrated in Supple-
mentary Method D and Supplementary Fig. 14.

To provide further insights on Eq. (12), we consider several sce-
narios. First, assume ψj ≡ 1, ξj ≡ 1, and ρj ≡0, Eq. (12) is equivalent to the
Ridge regression and all effect sizes are shrunk towards zero at the
same constant rate controlled by the global shrinkage parameter ϕ
(i.e., the penalty). Second, assume a one-to-one treatment-placebo
allocation ratio (μT = 0.5), unlinked geneticmarkers (σij ≡0 for i ≠ j) and
ρj ≡0 (i.e., within each SNP, the two effect sizes are independent). We
can derive the formulas explicitly for E ½βj ∣bβj� and E ½αj ∣bαj � (Supple-
mentary Method E). Under the simplified scenario where all markers’

MAFs are small, fj ≡ f→0, we can show that:
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stand the above equations, we can interpret 1=tj =
1

1 +ϕ�1ψ�1
j
,

1=sj =
1

1�f +ϕ�1ξ�1
j
as the shrinkage factors. Therefore, β̂j=tj and α̂j=sj are

the ‘shrunk’ effects: tj = sj = 1 indicates no shrinkage while tj = sj→∞
yields full shrinkage. The correlation c between Gj and Gj × T also
contributes to the second part of the numerator because the bias
induced by the positive correlation needs to be corrected.

In the PRS-PGx-Bayesmethod,Mjdenotes the variance-covariance
matrix. It is a common practice to use an inverse Wishart (IW) dis-
tribution as the conjugate prior for the covariance matrix of a multi-
variate normal distribution. However, the IW prior has its own
limitations. The IW prior imposes a dependency between the correla-
tions and the variances: larger variances automatically imply the
absolute value of the correlation near one while small variances imply
the correlation near zero40,41. Therefore, in this study, we propose to
use the hierarchical half-t prior27, which is more flexible than the IW
prior by adding the degrees of freedom parameter to the scale matrix.
Specifically, we assume

Mj ~W
�1ðBj, 2v+ 1Þ, where Bj =4v

δj 0

0 λj

" #
, δj ~ G ðb1, 1Þ, λj ~ G ðb2, 1Þ,

ð13Þ

whereW−1(Bj, 2v + 1) denotes the inverseWishart distributionwith scale
matrix Bj and v degrees of freedom and G is a Gamma distribution.
Equation (13) implies marginal distributions of the variances and the
correlation as:

ψj ~ iG ðv, 2vδjÞ, ξ j ~ iG ðv, 2vλjÞ, pðρjÞ /
�
1� ρ2

j

�v
,

where iG denotes the inverse Gamma distribution. By using this defi-
nition, changing the correlation does not necessarily result in a change
in the variances, which are instead determined through δj and λj.

In practice, by using LD information from an external reference
panel (i.e., 1000 Genomes data), the method can be applied to PGx
GWAS summary statistics and does not require individual-level geno-
type and phenotype data. PRS-PGx-Bayes approach updates b = (β, α),
σ2, (ψ, ξ, ρ), (δ, λ) sequentially based on their posterior distributions (as
described in Supplementary Method E), where we set b1 = b2 = 1/2 as
suggested by Ge et al.14. Also as proposed by Ge et al.14, to avoid
numerical issues caused by collinearity between SNPs, we set ϕψj ≤ ρ
and ϕξj ≤ ρ, where ρ = 1 is a constant number. In addition, we partition
the genome into 1725 largely independent genomic regions42 (https://
bitbucket.org/nygcresearch/ldetect-data/src/master/) estimated using
data from the 1KG European sample, and further conduct multi-
variate update of the effect sizes within each LD block. The dis-
tributions of block sizes in 1KG and IMPROVE-IT data are summarized
in Supplementary Fig. 10 a and b, respectively. The largest LD block
(chr 6, block 33) after matching IMPROVE-IT PGx data to 1KG con-
tains 11,769 SNPs in total. The same strategy is also applied to the
other methods. As shown in Supplementary Fig. 4 and Supplemen-
tary Table 1, this strategy is justified by that fact that only a small
relative difference (≤1.1%) is observed when the PRS-PGx-Bayes
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function is carried out by LD blocks, compared to across multiple LD
blocks in simulation studies. The overall PRS-PGx-Bayes algorithm is
described in Algorithm 1.

Algorithm 1. PRS-PGx-Bayes: Performed within each LD block

PRS-PGx-Unadj
The PGx PRS include two parts: prognostic PRS (Sprog) and predictive
PRS (Spred). The unadjusted PGx PRS is the sum of all genetic markers
across the whole genome, weighted by their marginal prognostic and
predictive effect size estimates (i.e., bβ and bα from PGx GWAS summary
statistics), respectively.

PRS-PGx-CT
The PRS-PGx-CT method constructs both the prognostic and pre-
dictive PRS using the variant LD-clumping and p-value thresholding
steps, in a similar manner as the disease PRS C+Tmethod. Specifically,
in the clumping step, for any pair of SNPs that have a physical distance
smaller than 250kb and an LD r2 > 0.01, the less significant SNP is
removed. Furthermore, in the thresholding step, the prognostic and
predictive effect size estimates of SNPs, whose 2-df two-sided test (i.e.,
joint test of G +G ×T, obtained from PGx GWAS summary statistics)
p-values not passing the threshold PT, will be shrunk to zero. And then
the remaining SNPs are kept with both types of effects. We consider
PT∈ {5e−08, 1e−07, 1e−06, 1e−05, 1e−04, 0.001, 0.01, 0.1, 1} in this
paper. The PT value that produces the highest prediction accuracy in a
validation data set is selected, and the predictive performance is
assessed in an independent testing set.

PRS-PGx-L, -GL and -SGL
In the PRS-PGx-L, -GL and -SGL methods, penalized regression is used
to solve Eq. (1) with individual-level data. Assuming independence
between prognostic and predictive effect sizes within each SNP, a
direct solution is to minimize the following equation while using a
Lasso framework (PRS-PGx-L based on glmnet R package v4.1.1 https://
cran.r-project.org/web/packages/glmnet/index.html):

f ðbÞ= 1
2
∣∣Y� ∑

m

j = 1
Xjbj ∣∣

2

2 + λ∣∣b∣∣1,

where Xj = [Gj,G ×Tj], and bj = (βj, αj). ∣∣ ⋅ ∣∣1 and ∣∣ ⋅ ∣∣2 stand for L1-norm
and L2-norm, respectively. Assuming if a SNP is included into the
model, both prognostic and predictive effects of that SNPmay be non-
zero, then Group Lasso43 (PRS-PGx-GL based on gglasso R package v1.5
https://cran.r-project.org/web/packages/gglasso/index.html)might be

appealing by considering each genetic marker as a group:

f ðbÞ= 1
2
∣∣Y� ∑

m

j = 1
Xjbj ∣∣

2

2 + λ ∑
m

j = 1

ffiffiffiffiffi
pj

p
∣∣bj ∣∣2,

where pj = 2 denotes the group size. Finally, if we assume sparsity at
both the group and individual feature levels, we also consider the
Sparse Group Lasso44 (PRS-PGx-SGL based on SGL R package v1.3
https://cran.r-project.org/web/packages/SGL/index.html) whose pen-
alty is a linear combination of penalties from Lasso and Group Lasso:

f ðbÞ= 1
2
∣∣Y� ∑

m

j = 1
Xjbj ∣∣

2

2 +αλ∣∣b∣∣1 + ð1� αÞλ ∑
m

j = 1

ffiffiffiffiffi
pj

p
∣∣bj ∣∣2:

Simulations
We performed simulation studies using real genetic data from the
IMPROVE-IT trial (n = 5661 in the PGx subset population) and the 1KG
European sample (n = 503) as an external LD reference panel. 5000
SNPs were randomly chosen from LD blocks 31 and 3242 on chromo-
some 19, which were matched between the IMPROVE-IT and the 1KG
datasets. To mimic disease GWAS data, the sample size was increased
to n = 20,000 via randommating (SupplementaryMethodG). The SNP
prognostic and predictive effect sizes were simulated jointly with the
following distribution:

βðkÞ
j

αðkÞ
j

0@ 1A ~
MVN ð0,ΣkÞ with probabilityπk ,

0 with probability 1� πk ,

	
ð14Þ

where πk ~ Beta(P(causal), 1 − P(causal)), j denotes the j-th SNP, and k
the k-th LD block. Equation (14) implies that proportion of causal
variants varies from different LD blocks, but the overall proportion of
causal variants across the whole genome is controlled by P(causal).
Furthermore,

Σk =
ψ ρk

ffiffiffiffiffiffi
ψξ

p
ρk

ffiffiffiffiffiffi
ψξ

p
ξ

" #
, where ρk ~ Uniform ð0, 1Þ: ð15Þ

We explored different scenarios when ψ/ξ = 1 (i.e., the prognostic
effect was in the same scale with the predictive effect); and when
ψ/ξ = 16 or 1/16 (i.e., one effect was dominant to the other effect). It is
worth noting that Eq. (14) indicates that each causal variant would
carry some degree of prognostic effect, and some degree of predictive
effect. In addition, to generate completely separated prognostic and
predictiveSNPs,we randomly chosehalf of the causal variants andonly
kept their prognostic effects (i.e., artificially shrank αj =0); for the rest
half of the causal variants, only predictive effectswere kept (i.e., βj =0).

Five clinical factors (age, gender, prior lipid-lowering (PLL) ther-
apy, EARLY acute coronary syndrome (ACS) trial, and high-risk ACS
diagnosis) were considered as covariates. Tomimic the disease GWAS
data, the phenotype was generated as

Yn× 1 =Xn× 515 × 1 +Gn×mβm× 1 + ϵn× 1,

where n = 20,000 and m = 5000. To mimic the PGx GWAS data, the
simulated trait was generated as

Yn× 1 =Xn× 515 × 1 + βTTn× 1 +Gn×mβm× 1 + ðG×TÞn×mαm× 1 + ϵn × 1,

where n = 5661 and m = 5000. In the above two equations, ϵn×1 ~ N(0,
σ2In), where σ2 was determined by the heritability, which was set to 0.1,
0.3, and 0.5.

In each replicate, we randomly chose either 1000 or 3000
patients from PGx GWAS data as the PGx training dataset (to build the
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PGx PRS); and the other 1000 patients as the independent testing
dataset (to evaluate the predictive performance of all the PRS-Dis and
PRS-PGx methods). Specifically, the observed phenotype Y in the
testing set was first adjusted by the clinical factors X and the treatment
T, and we obtained the adjusted phenotype Yadj. Then the predictive
effect wasmeasured by the p-value from the two-sided likelihood ratio
test of Spred × T interaction in the model Yadj ~ Sprog + Spred × T. The
prediction accuracies were quantified by R2 between the adjusted
phenotype and the predicted ones from Yadj ~ SPGx under two arms, the
treatment arm, and the control arm, respectively. P-values were also
obtained by the two-sided LRT of SPGx under treatment and control
arms, respectively. The entire workflow of the simulation studies is
shown in Supplementary Fig. 15.

IMPROVE-IT PGx GWAS data analysis
We applied two PRS-Dis methods (PRS-Dis-CT and PRS-Dis-LDpred2)
and four PRS-PGxmethods (PRS-PGx-Unadj, PRS-PGx-CT, PRS-PGx-GL,
and PRS-PGx-Bayes) to the prediction of the drug response (low-den-
sity lipoprotein cholesterol log-fold change at 1-month) from the
IMPROVE-IT PGx GWAS although LDL-C was measured longitudinally
atmultiple timepoints. IMPROVE-IT is a phase 3b,multicenter, double-
blind, randomized study to establish the clinical benefit and safety of
Vytorin (Ezetimibe/Simvastatin tablet) versus Simvastatin mono-
therapy in high-risk subjects24 (clinical trial registry number:
NCT00202878). The ethics committee at each participating center
approved the protocol and amendments. All IMPROVE-IT trials were
carried out in accordance with the Declaration of Helsinki, current
guidelines on Good Clinical Practices and local ethical and legal
requirements. All participants provided voluntary written informed
consent before trial entry. The details of the endpoint, genotyping,
genotype QC, and imputation for this GWAS analyses are introduced
elsewhere25. AfterGWASQCandSNP imputation, therewere9,407,967
variants and6502 subjects are available for analyses. The subjectswere
further filtered down to 5661 subjects for the GWAS analyses by
excluding subjects who had a cardiovascular event prior to month 1,
since cardiovascular events prior to this timepointmay affect LDL-C in
a manner unrelated to treatment. A total of 5661 European subjects
were included for analysis of the LDL-C endpoint.

For the PRS-Dis approaches (PRS-Dis-CT and PRS-Dis-LDpred2),
the LDL-C disease GWAS summary statistics, obtained from the Global
LipidsGenetics ConsortiumResults45 (http://csg.sph.umich.edu/willer/
public/lipids2017/), were used to construct disease PRS in the
IMPROVE-IT data (as the independent testing set). For PRS-PGx
methods (PRS-PGx-Unadj, PRS-PGx-CT, PRS-PGx-GL, and PRS-PGx-
Bayes), due to the lack of independent PGx data for training, we
alternatively proposed to use a 5-fold cross-validation to evaluate their
performance. More specifically, we split the IMPROVE-IT data into five
folds; in each CV step, we chose four of them as the training set, and
used the remaining one as the testing set. The PGx GWAS summary
statistics, obtained from the training set, were used to construct PGx
PRS in the testing set, and only the prognostic and predictive scores of
patients in the testing set were recorded. The above procedures were
repeated and the PGx PRS for all the patients in the IMPROVE-IT PGx
GWASdata (when they served as the testing set)wereobtained. Finally,
the predictive performance was evaluated in the same criteria as
described in the “Simulations” section, as well as the quantile plot for
patient stratification.

It is worth noting that in each cross-validation, the GWAS sum-
mary statistics data were generated from the training set by running
GWAS analysis with the model: logY1 � logY0 = β0 + βY0

logY0 +
βTT+Gβ+ ðG ×TÞα +Xγ where Y1 is the on-treatment LDL-C response,
Y0 is the baseline LDL-C response, β is the prognostic effect, α is the
predictive effect and the covariatematrixX included age, gender, prior
lipid-lowering therapy, early Acute Coronary Syndrome (ACS) trial,

high-risk ACS diagnosis, and the top five principal components. As
recommended by Zhang et al.25, we adjusted for the baseline LDL-C
level Y0 (in the log scale) in themodel to appropriately control the type
I error rate (or genome inflation). The PGx GWAS summary statistics
data, including the prognostics and predictive effects (bβ and bα),
the minor allele frequencies (MAF), the two-sided 2df (G+G ×T) test
p-values, the SNP positions, the standard deviation of response, and
the mean of treatment, were further used for the PGx PRS based drug
response analyses. Detailed information about the summary statistics
is provided in Supplementary Method F.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
MSD’s data sharing policy, including restrictions, is available at http://
engagezone.msd.com/ds_documentation.php. Requests for access to
the PGxGWAS summary statistics results from this IMPROVE-IT clinical
study data can be submitted through the EngageZone site or via email
to dataaccess@merck.com.

Code availability
Our methods are implemented in the PRSPGx R package v0.3.0, freely
available at the Comprehensive R Archive Network (CRAN): https://
cran.r-project.org/web/packages/PRSPGx/index.html.
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