Available online at www.ijpcr.com International Journal of Pharmaceutical and Clinical Research 2009; 1(1): 35-39 # Research Article # Pharmacognostic and preliminary phytochemical investigation on bark of *Bridelia retusa Spreng* Banerjee Saurabh K.*, Kulkarni Kala S. School of Pharmacy and Technology Management, NMiMS UNIVERSITY, Shirpur Campus, Maharashtra-425 405, India #### ABSTRACT *Bridelia retusa* bark has been traditionally used for the treatment of various ailments such as rheumatism, diarrhoea and dysentery. In view of its medicinal importance and to have taxonomic clarity about the plant the present study was done to investigate the pharmacognostic, microscopical, morphological and various chemical parameters of the bark. The studies will provide referential information for the correct identification of the crude drug. Keywords: Rheumatism, diarrhoea, Bridelia retusa. #### INTRODUCTION Bridelia retusa Spreng (Euphorbiaceae) commonly known as Kasai in India, belongs to the family Euphorbiaceae. The plant is a shrub or a tree up to 18 m height armed with strong conical spines 7 cm long, found through out India up to an altitude of 1,000 m, except in very dry regions. [1] A survey of ethno medicinal records revealed that the bark is pungent, bitter, heating; useful in 'vata' lumbago, hemiplegia. The bark is good for the removal of urinary concretions. The root and the barks are valuable astringents. The bark is used as a liniment with gingerly oil in rheumatism. [2] The bark extract is used by the tribal to develop sterility and it is used as a contraceptive. One or two drops of fruit extract are poured in ear to cure earache. [3] The plant has been used in traditional systems of medicines for treatment of dysentery and diarrhea, diabetes. [4-5] The present investigation was planned with an objective to establish Pharmacognostic standards and to evaluate preliminary phytochemical data's on Bridelia retusa that can facilitate the authentification and the isolation of the desired constituent from the correct extract. # MATERIALS AND METHODS #### Plant material Fresh bark of *Bridelia retusa Spreng* were collected in the month of June from Array colony of Goregaon (East) of Mumbai, Mahrashtra, India and authenticated by Dr. Vinayak Naik, Taxonomist and Senior research scientist at Piramal Life Sciences, Goregaon, Mumbai. A voucher specimen no 1967, dated April 2002, is maintained in Piramal life Sciences, Goregaon, Mumbai. The fresh bark was removed and dried in shade. The fresh bark was used for the study of macroscopic and microscopic characters, whereas the dried bark powder was used for determination of ash value, extractive values and phytochemical *Corresponding author: Saurabh Kumar Banerjee, Email: saurabhk77@gmail.com investigations. All the reagents used were of analytical grade obtained from Qualigens Fine Chemicals, Mumbai, India and Merck Limited, Mumbai, India. # Microscopy Fresh barks of *Bridelia retusa* were selected for the microscopical studies. Microscopic sections were cut by free hand sectioning. Numerous temporary and permanent mounts of the microscopical sections of the bark specimen were made and examined microscopically. Histochemical reactions were applied with Hydrochloric acid - Phloroglucinol to reveal the lignified elements, weak iodine solution for starch, Dragendroff's reagent for the alkaloidal substances, ruthenium red for mucilage, 60 % H₂SO₄ for the calcium oxalate and ferric chloride for phenolic compounds on the powdered bark by reported methods. [6-7] Photomicrographs of the microscopical sections were taken with the help of MOTIC photomicroscope provide with MOTIC IMAGE PLUS 2.0 software # **Powder characteristics** Preliminary examination and behavior of the powder with different chemical reagents was carried out and microscopical examination was carried out. [8-9] ## Micrometry Photomicrographs of the microscopical sections were taken with the help of MOTIC photomicroscope provide with MOTIC IMAGE PLUS 2.0 software. The measurement of different cell and cell contents were taken. #### Physico-chemical parameters Percentage of total ash, water soluble ash, acid insoluble ash and sulphated ash were calculated as per the Indian pharmacopoeia. Extract of the powdered bark were prepared with different solvents for the study of extractive values. The total ash of the powdered bark was tested for different inorganic constituents. [10] Fluorescence analysis of the powdered bark was carried out by standard methods. [9, 11] Table 1: Histochemical color reactions of Bridelia retusa Spreng bark | Reagent | Constituent | Colour | Histological
zone | Degree
of
intensity | |--|-------------------------|--------|-----------------------|---------------------------| | Phloroglucinol
+ hydrochloric
acid | Lignin | Pink | Xylem,
Sclerencyma | ++ | | Aniline
Sulphate +
Sulphuric acid | Lignin | Yellow | Xylem | + | | Weak iodine solution | Starch | | | | | Millons reagent | Protein | | | | | Dragendorff's regent | Alkalods | | | - | | Libermann-
Burchardt
reagent | Steroids | Pink | Cortex,
phloem | ++ | | Keddy reagent | Glycoside | | | | | Aqs Ferric chloride | Tannins | black | cortex | +++ | | 5% Aq KOH | Anthraquinone glycoside | | | - | +++ High, ++ Moderate, + Slight, - Negative # Preliminary phytochemical analysis For the preliminary phytochemical analysis, 5 gm of the powdered drug was extracted with petroleum ether (60-80), chloroform, methanol, ethyl acetate and water successively. The extracts were dried and weighed. The marc was air dried, and water extract was obtained by boiling with distilled water for 2 h, filtering, concentrating and drying in an oven at 40-50°C. The presence or absence of different phytoconstituents viz triterpenoids, steroids, alkaloids, sugars, tannins, glycoside and flavanoids were detected by usual prescribed methods. [12- | Table | e 2: Measurement of cells | | |-----------|---------------------------|--| | S.
No. | Type of cells | Size in micron (μm) | | 1. | Cork cells | 59.00 x 38.59 μm | | 2. | Cortex | 12.3 μm in width and 14.5 μm in length | | 3. | Stone cells | 72.5 μm x 29.5 μm | | 4. | Parencyma | 45.31 μm | | 5. | Phloem fibres | 280 μm x 17.2 μm | | 6. | Pericyclic fibres | 382 x 28.2 μm | | 7. | Phloem Parencyma | 27.01 μm | | 8. | Calcium oxalate crystals | 12.3 $\mu\text{m}(W)$ to 14.5 μm ($L)$ | # RESULTS ## Organoleptic characters (Fig. 1): Colour: Externally brownish black, internally yellowish brown Taste- Astringent Odour- Odourless Touch- Rough Size and shape- 7 to 9 cm \times 3 to 5 cm \times 1 to 2.5cm Extra feature –The bark shows minute longitudinal wrinkles, and fibrous fracture, internal surface smooth to touch # Histochemical color reactions Histochemical color reactions were carried out on the bark by reported methods. ^[7, 12] The results are given in Table 1 # Microscopy #### A) Transverse section of the bark (Fig. 2) The transverse section of the bark shows the typical marphoanatomical characteristics as **Cork** -The cork region was found to be well defined, in which the cork cells are rectangular and in 10 to 15 layers. Some of the cork cells are lignified. Phellogen is compactly arranged in 3 to 5 layers, Phellogen and phelloderm are indistinguishable. Cortex- The periderm and the cortex is separated by a layer of stone cells. The cortex region shows the presence of simple calcium oxalate crystals having average size of 12.3 μm in width and 14.5 μm in length. Few mucilaginous cells are also present. They are solitary, appears brown in colour. In the cortex bundle of lignified bundle of lignified Pericyclic fibers are also present. They are found in a group of 6 to 15. The cortex region is guarded by layers of stone cells. | Table | Table 3: Behavior of the bark powder with different chemical reagents | | | | | |-----------|---|-------------------------------|--|--|--| | S.
No. | Reagent | Colour/Precipitate | Constituent | | | | 1. | Conc. Sulphuric acid | Reddish brown | Steroids present | | | | 2. | Picric acid | No change | Alkaloids absent | | | | 3. | Aqueous ferric chloride | Blakish | Tannins present | | | | 4. | Iodine solution | No change | Starch absent | | | | 5. | Aqueous mercuric chloride solution | No change | Alkaloids absent | | | | 6. | Magnesium – hydrochloric acid | No change | Flavanoids absent | | | | 7. | Aqueous silver nitrate solution | No ppt | Protein absent | | | | 8. | Aqueous potassium hydroxide solution (5 %) | No change | Anthraquinone glycoside absent | | | | 9. | Spot test | No stain observed | Fixed oils absent | | | | 10. | Lieberman's bur chard test | Reddish green | Steroids /
Triterpenoids
present | | | | 11. | Salvoski's test | A yellow ring at the junction | Steroids present | | | | 12. | Frothing test | Foam observed | Saponins present | | | | 13. | Mollish reagent | Purple colour at the junction | Carbohydrate present | | | | 14. | Aq lead acetate | White precipitation | Tannins present | | | | 15. | Dragendroff reagent | No precipitation | Alkaloids absent | | | | 16. | Aqueous NaOH | No change | Flavanoids absent | | | **Phloem region** – Modularly rays are distinct, funnel shaped found to be uniserrate to biserrate. **Phloem-** It shows the presence of lignified phloem fibers found in a group of 3 to 8 fibers surrounded by phloem parenchyma and sieve tubes. The phloem region shows trace of calcium oxalate crystals. The phloem region shows the presence of endodermis. The micrometric analysis was tabulated in Table 2 | Fable 4: Ash values of Bridelia retusa Spreng bark | | | | |--|---------------------|--------------------|--| | S. No. | Types of ash values | % w/w(Mean ± SEM) | | | 1. | Total ash | 9.5 ± 89 | | | 2. | Acid insoluble ash | 2.5 ± 0.69 | | | 3. | Water soluble ash | 4.5 ± 0.24 | | | 4. | Sulphated ash | 3.0 ± 0.79 | | # B) Powder characteristics (Fig. 3) *Preliminary examination of powder* Colour- Dark brown Odor- Odorless Taste – Astringent Texture- Rough After pressing a little amount of powder between filter paper, no greasy stain was found, indicates the absence of fatty oils, after shaking powder with water in test tube persistent froth was formed, indicates the presence of saponins. Behavior of the powder with different chemical reagents is shown in Table 3. | S. No. Type of solvent | | % Extractability(Mean: SEM) | | |------------------------|--------------------------|------------------------------|--| | 1. | Petroleum ether (60-40) | 0.5 ± 0.18 | | | 2. | Chloroform | $\boldsymbol{0.9 \pm 0.40}$ | | | 3. | Ethyl acetate | 0.9 ± 0.31 | | | 4. | Methanol | 18.0 ± 0.21 | | | 5. | Water | 10.3 ± 0.39 | | **Table 6:** Consistency, colour & fluorescence analysis of different extracts of *Bridelia retusa Spreng* bark | Extract | Consistency | Colour in | | | | |---------------|-------------|-----------|-----------|----------|--| | Latruct | consistency | Daylight | Short UV | Long UV | | | Petroleum | Sticky mass | Light | Green | Dark | | | ether | | green | | green | | | Chloroform | Resinous | Pale | Greenish | Dark | | | | | brown | brown | brown | | | Ethyl acetate | Semisolid | Brownish | Yellowish | Dark | | | | | green | green | green | | | Ethanol | Solid | Greenish | Greenish | Bluish | | | | | brown | black | black | | | Methanol | Solid | Greenish | Greenish | Greenish | | | | | brown | black | black | | | Water | Semisolid | Light | Brown | Light | | | | | brown | | brown | | **Table 7:** Florescence analysis of powdered bark of *Bridelia retusa Spreng* | Sample | Colour in
daylight | Colour in
Short U V | Colour in
long U V | |---|------------------------------------|----------------------------------|---------------------------------| | Powder | Light
brown | Light brown | Light brown | | Powder + sodium
hydroxide in methanol
Powder + sodium
hydroxide in water | Greenish
black
Dark
brown | Fluorescent
green
Greenish | Greenish
black
Dark brown | | Powder + 1 N
hydrochloric acid | Reddish
brown | Greenish | Dark
fluorescent
green | phloem parenchyma having average size 280 $\mu m \times 17.2 \ \mu m$ (Fig. 3c). Stone cells: Thick walled English U shaped lignified stone cells was observed having average size of 72.5 μ m × 29.5 μ m found in abundance (Fig. 3d). Calcium oxalate crystals: simple prism of average size 12.3 μ m (W) to 14.5 μ m (L) was found (Fig. 3e). *Mucilaginous cells*: the brown colour mucilaginous cell of average size was found in few numbers (Fig. 3f). #### Ash values Total ash, acid insoluble ash, water soluble ash and Sulphate ash values of the bark powder were done as per the Indian Pharmacopoeia. The results are tabulated in Table 4. #### **Extractive values** Different extracts of the powdered bark were prepared for the study of extractive values. Percentage of extractive values was calculated with reference to the air dried drug. The results are shown in Table 5. #### Fluorescence analysis Consistency, colour and fluorescence analysis of different extracts and the fluorescence analysis of the powdered drug in daylight, short UV, and long UV were evaluated by reported methods. The observations are given in Table 6 and 7. #### Preliminary Phytochemical screening The presence or absence of different phytoconstituents viz triterpenoids, steroids, alkaloids, sugar, tannins, glycosides and flavanoids, etc were detected by usual prescribed methods and t results are given in Table 8. ### **DISCUSSION** Lack of standardization is the major stumbling block in exploiting the potential of traditionally used herbal medicines. *B. retusa* is a plant with old history of use as a traditional medicine and can be well exploited for anti-inflammatory and antiulcerogenic activity. The present investigation has stated important standardization parameters of *Bridelia retusa bark*, qualitative and quantitative microscopic characters, ash values, extractive values, and phytochemical profiles of | Table 8: Qualitative phytochemical a | nalysis of various extracts of bark of Brid | lelia retusa Sprena | | <u> </u> | - | |--------------------------------------|---|---------------------|---------------|----------|-------| | Type of constituent | Petroleum ether | Chloroform | Ethyl acetate | Methanol | Water | | Steroids and sterols | + | + | + | + | + | | Carbohydrates | - | - | - | + | + | | Alkaloids | - | - | - | - | - | | Glycoside | - | - | - | - | - | | Reducing sugars | - | - | - | - | - | | Flavanoids | - | - | + | + | | | Tannins and phenolic | - | - | - | + | + | | Proteins and amino acids | - | - | - | - | - | | Gums and resins | - | - | - | - | - | | Triterpenoids | + | + | + | - | - | | Saponins | - | - | + | + | + | ⁺ Present, - Absent # Microscopical examination of the of the powder Cortex cells: Simple polygonal parencymatous cells with intracellular spaces were observed. The parenchymal cell shows the presence of simple prism of calcium oxalate (Fig. 3a). *Pericyclic fibers:* Lignified long slender tapering towards both the end, Pericyclic fibers of average size $382x\ 28.2\ \mu m$ was found in abundance (Fig. 3b). Phloem fibers: Long cylindrical with cell lumen lignified, phloem fibers were observed. It was frequently adhered to petroleum ether, chloroform, ethyl acetate, methanol and aqueous extracts of the plant. These standardized parameters would be of immense help in authenticating *Bridelia retusa* # REFERENCES - 1. Anonymous. The Wealth of India, Vol 2; B, Publications and Information Directorate, C S I R, New Delhi, 1996, 295-297. - Kirtikar KR, Basu BD. Indian medicinal plants, Edn 2, Vol III, International book distributor, Dehradun, India, 1996, 2212-2213 #### Banerjee and Kulkarni / Pharmacognostic and preliminary phytochemical... - Jain A, Katewa SS, Gala PK, Sharma P. Medicinal plant diversity of Sitamata wildlife sanctuary, Rajasthan, India. *Journal of Ethnopharmacology* 2005; 102: 143–157 - Raju SV, Reddy KN. Ethnomedicine for dysentery and diarrhoea from Khammam district of Andhra Pradesh. *Indian Journal of Traditional Knowledge* 2005; 4(4): 443-447. - Pawar S, Patil DA. Observations on folkloric medicinal plants of Jalgaon district, Maharashtra. *Indian journal of traditional knowledge* 2004; 3(4): 437-442. - Kokate C, Purohit A, Gokhale S. Practical Pharmacognosy. Edn 10, Vallabh prakashan, New Delhi, India, 1994, 112-120. - Trease GE, Evans W C. Pharmacognosy. Edn 15, WB Saunders Company Ltd, New Delhi, 1996, 516-547. - Reddy YSR, Venkatesh S, Ravichandra T. Pharmacognostical studies on wrightia tinctoria bark, *Pharm Biol*. 1999; 37: 291-295. - Pratt RT, Chase ER. Fluorescence powder vegetable drugs in particular to development system of identification. J Am Pham Assoc. 1949; 38: 324-331 - Anonymous, Pharmacopoeia of India, Vol II, Govt of India, Ministry of health, controller of publication, New Delhi, 1996, A-53-54 - Kokoski CJ, Kokoski RJ, Sharma M. Fluorescence of powdered vegetable drugs under ultraviolet radiation. J. Am. Pharm. Ass. 1958; 47: 715-717. - Kokate CK, Purohit AP, Gokhale SB. Practical Pharmacognosy. Edn 30, Nirali Prakashan, Pune, 2004, 593-597. - Harborne JB. Phytochemical methods Edn 3, Chapman and Hall, London, 1998, 90 and 203.