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Abstract

There are many factors that can affect the pharmacokinetics (PK) of drugs. Pathophysiological 

changes from disease states can alter the mechanisms that control the PK of antiretrovirals 

(ARVs), direct-acting antivirals (DAAs) and addiction treatment medications. Drug-drug 

interaction pathways of certain ARVs and DAAs can be very complex, with agents being 

substrates, inhibitors or inducers of multiple metabolic and transporter pathways. Buprenorphine 

and methadone may be used in HIV and hepatitis C virus (HCV) - infected patients, and may also 

be affected by drug interactions. Current research is focused on novel PK analyses, which aim to 

describe the PK of agents within the organs that host the infection of interest, such as within 

hepatocytes during treatment for HCV. Modeling techniques allow for the prediction of drug PK in 

specific organs and the plasma compartment. This review will provide a summary of these areas 

while exploring PK considerations for ARVs, DAAs, and addiction treatment medications.

Introduction

Multiple factors can contribute to pharmacokinetic (PK) drug interactions. If drugs are 

administered orally, several possible mechanisms can modulate PK from within the gut, such 

as gastrointestinal absorption (e.g., chelation, changes in pH, motility alterations), 

membrane transporters, and metabolism in the gut wall. When drug is transferred via the 

portal vein to the liver, hepatic processes that affect PK can occur, consisting of additional 

uptake and efflux membrane transporters, metabolism, elimination in the bile, and 

enterohepatic cycling.
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Pathophysiological changes from disease states can alter the mechanisms that control the PK 

of antiretrovirals (ARVs), direct-acting antivirals (DAAs) and addiction treatment 

medications. When drug-drug interaction studies are conducted in healthy volunteers this 

assumes that the PK profiles seen in these healthy adults will be comparable to patients with 

the disease state of interest. 1 However, this assumption has certain limitations. HIV and 

hepatitis C virus (HCV) infections affect the small intestine and liver, 2,3 which are major 

sites involved in drug absorption, transport, metabolism and elimination. 4 Possible 

pathophysiological changes in transporter and metabolic function from HIV and HCV are 

summarized in Table 1.

The possibility that individuals with disease may exhibit altered PK parameters has been 

discussed. 9 For example, HIV-infected patients demonstrate decreased relative 

bioavailability of efavirenz as compared to healthy subjects. 10 It has also been reported that 

subjects co-infected with HIV/HCV with or without cirrhosis had significantly lower oral 

nelfinavir clearance than HIV monoinfected subjects. 11 In a study of HIV+ adult males, and 

controls with comparable weight, BMI, and estimated creatinine clearance, significantly 

lower mean plasma fluconazole clearance was found in the HIV+ subjects with the lowest 

CD4+T cell count, versus HIV+ subjects with higher CD4+T cell counts and controls. 12

Drug interactions in HAART era and today

Highly active antiretroviral therapy (HAART) was first introduced in the 1990s and has 

revolutionized the treatment of HIV, greatly improving the morbidity and mortality 

associated with HIV infection. However, combining these medications with other agents also 

came with an increased risk for drug interactions, based on the different PK effects each 

drug had on the others. In addition, HAART required a large pill burden, and certain drugs 

have specific administration requirements, such as food or pH dependencies. These concerns 

have been somewhat reduced as single daily medications have become available in co-

formulated combinations.

Currently with the advancement in HCV therapies and increased rate of HIV/HCV co-

infection being simultaneously treated, new drug-drug interactions have become a 

concern. 13 The effects may manifest in changes in systemic or tissue exposure of the direct-

acting antiviral (DAA) or ARV. Potentially this could cause increases in exposure, resulting 

in adverse or toxic effects, or decreases in efficacy. In addition, these interactions could 

extend to concomitant medications commonly used in this patient population, such as 

antihypertensives, statins and opioid maintenance therapy. 1,14

Factors Influencing Intrahepatic Drug Concentrations

Currently research interest has been extended beyond measuring only plasma 

concentrations, since it has been realized that this may not be representative of the drug that 

is present at the site of action, or tissue of interest. 15,16 Membrane transporters are 

important for hepatic uptake and efflux, potentially affecting plasma or hepatic drug 

concentration. 15 The question arises about whether to target plasma or liver concentrations 
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for deciding DAA dosing, and the importance of understanding information gained from 

hepatic drug sampling in addition to plasma pharmacokinetics. 17

Clinical Pharmacology of New HCV DAAs

The interaction pathways of some current DAAs can be rather complex, with agents being 

substrates, inhibitors or inducers of multiple metabolic and transporter pathways. 13 In 

addition, DAAs with different mechanisms of action are given in combination to increased 

efficacy and decrease the chance of resistant virus emerging. Importantly, these combination 

of DAAs has allowed for the removal of interferon from HCV regimens,18 thus limiting the 

toxicity and burden of injections associated with this agent. When ARVs and DAAs are 

combined to treat HIV/HCV co-infected populations, these patients could take at least 5 

different medications to treat these two infections. Notably, these patients may also have 

multiple co-morbidities that require additional pharmacotherapy. Therefore, the net effect 

from these individual drug interaction pathways result in the pharmacologic/toxic effect that 

is observed within an individual.

Complexities with Substance Abuse

In a study examining the influence of active substance related disorder (SRD) in HIV 

subjects receiving combination antiretroviral therapy, 19 subjects were divided into those 

with SRD and those without.19 Pharmacokinetic evaluation was performed by sampling 

ARV trough concentrations and additional samples after an observed dose. It was noted that 

those subjects with SRD were more likely to have efavirenz or protease inhibitor trough 

concentrations below the desired range (p=0.048).19 At the time of therapeutic drug 

monitoring, patients with active SRD had a significantly lower percentage of those with 

HIV-1 RNA < 75 copies/mL compared to those without active SRD (p=0.044), however, in a 

multivariate linear regression model known substance use was not significantly associated 

with CD4+ cell count and HIV RNA <75 copies/mL at study entry.19

Drug Interactions with Addiction Treatment Medications

Buprenorphine and methadone are addiction treatment medications recommended to treat 

opioid addiction in HIV and HCV infected patients. In-vitro, buprenorphine and methadone 

are both substrates of cytochrome P450 3A4, with methadone also primarily being 

metabolized by CYP2B6. 20,21 Thus, these agents may be subject to potential drug 

interactions with ARV or DAA regimens that modulate these metabolic enzymes. Caution is 

warranted and understanding possible interactions is necessary when these drugs are co-

administered. The investigation of buprenorphine and methadone drug interactions with 

ARVs have been extensively performed and reported in the literature. 22–25

Pharmacokinetic Analysis Approaches

Traditional PK analysis consists of the estimation of PK parameters from intensive drug 

concentration sampling over time. Population pharmacokinetic modeling is a method that 

can utilize not only intensive data, but also data from sparse sampling strategies 26 that 

cannot be used for traditional PK analysis. 26 Population pharmacokinetics is used to 
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evaluate the pharmacokinetic variability seen in individuals within a population.27 However, 

a limitation to population pharmacokinetic modeling is that this method of analysis cannot 

be used to anticipate new drug-drug interactions in conditions where multiple medications 

are given.

Another modeling approach called physiologically-based pharmacokinetic (PBPK) 

modeling estimates parameters based on physiology, with models containing multiple 

compartments that correspond to organs within the body that are connected using 

physiologic blood flow rates. 28 PBPK models can estimate traditional PK parameters, 28 

while also accounting for pathophysiological changes that occur during a disease state of 

interest to predict the pharmacokinetic effect. 28 Also, in-vitro data can be extrapolated to in-

vivo and used to inform these models. 29 These PBPK models can incorporate information 

from various sources, and predict the PK of drug(s) in various situations, populations or 

disease states. 28

Pharmacogenomics

Utilizing pharmacogenomics to tailor patients pharmacotherapy is a growing field, but is still 

in its infancy. 30 Looking at differences in gene expression can be examined as a covariate to 

explain differences in treatment response or adverse outcomes. In a study examining the 

effect of single nucleotide polymorphisms (SNPs) for the gene encoding the delta-opioid 

receptor, the association of the genetic effect with buprenorphine treatment outcome in men 

and women was examined separately. An association between certain SNPs and 

buprenorphine treatment outcome was found for women, depending on the genotype there 

was a significantly worse outcome, however, validation is required in an independent 

study. 31 In a study of 366 Asian subjects who were on maintenance methadone treatment, 

researchers examined a matrix of genetic variants from CYP2C19, CYP2B6, and CYP3A4 
polymorphisms. It was found that the methadone dose was significantly influenced by allelic 

variants associated with the CYP2C19 gene. 32

Conclusion

The pharmacokinetic interactions of ARV, DAAs and addiction therapy are complex, 

potentially leading to alterations in drug concentrations and treatment outcomes with certain 

agents. Due to the high potential of drug interactions, patient’s medications should be 

closely examined prior to HCV treatment, including attention to addiction treatment 

medications. Re-evaluation of the patient’s medication list should be performed after the 

completion of DAA therapy.

Liver sampling strategies may advance virologic and pharmacologic studies as well as 

identify drug interactions. It is important to be cognizant of possible tissue uptake/efflux and 

where the site of action of the drug is, and to remember that plasma pharmacokinetics may 

not be representative of drug concentration at the tissue of interest.

Lastly, a variety of modeling and analysis tools are available to help answer the question of 

interest. The choice of which tool to use should be based on the study design, type of data 

that will be collected, and the question that is to be answered.
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