Pharmacokinetic Herb-Drug Interactions (Part 2):
Drug Interactions Involving Popular Botanical
Dietary Supplements and Their Clinical Relevance

Authors

Affiliations

Key words

© herb-drug interaction

© plant secondary metabolites

© cytochrome P450 enzymes

© transferases

© ATP-binding cassette
transporters

© solute carrier membrane

transport proteins

botanical dietary

supplements

black cohosh

Echinacea

garlic

Ginkgo biloba

ginseng

goldenseal

kava

black pepper

piperine

Schisandra

milk thistle

St. John’s wort

methylenedioxyphenyl-

containing compounds

(V]

0000000000000

received Dec. 22,2011
revised February 6, 2012
accepted  February 10, 2012

Bibliography

DOI http://dx.doi.org/
10.1055/s-0031-1298331
Published online May 7, 2012
Planta Med 2012; 78:
1490-1514 © Georg Thieme
Verlag KG Stuttgart - New York -
ISSN 0032-0943

Correspondence

Dr. Bill Gurley

Department of Pharmaceutical
Sciences

UAMS, College of Pharmacy
4301 W. Markham St.

Little Rock, AR 72205
United States

Phone: + 15016866279
Fax: +15015266510
gurleybillyj@uams.edu

Gurley BJ et al. Pharmacokinetic Herb-Drug Interactions (Part 2)...

Bill J. Gurley', Espero Kim Fifer?, Zoé Gardner?

! Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, College of Pharmacy, Little Rock, AR, USA
2 Department of Plant, Soil & Insect Sciences, University of Massachusetts, Amherst, MA, USA

Abstract

v

In Part 2 of this review, a critical examination of
the pertinent scientific literature is undertaken
in order to assess the interaction risk that popular
dietary supplements may pose when taken con-
comitantly with conventional medications. Botan-
icals most likely to produce clinically important
herb-drug interactions are those whose phyto-
chemicals act as mechanism-based inhibitors of
cytochrome P450 enzyme activity (e.g., Hydrastis
canadensis, Piper nigrum, Schisandra chinensis) or
function as ligands for orphan nuclear receptors
(e.g., Hypericum perforatum). In addition, several
external factors unrelated to phytochemical phar-
macology can augment the drug interaction po-
tential of botanical supplements.

Nonstandard Abbreviations

v

ABC: ATP-binding cassette

AhR: aryl hydrocarbon receptor

AUC:  area under the plasma concentration-
time curve

CAR: constitutive androstane receptor

CYP: cytochrome P450 enzyme

DSHEA: Dietary Supplement Health and

Education Act
GMPs: good manufacturing practices
GST: glutathione S-transferase

MDR1: multidrug resistance protein 1

MDP:  methylenedioxyphenyl

MDZ: midazolam

NADPH: nicotinamide adenine dinucleotide
phosphate

OATP: organic anion transporting polypeptide

OTC: over-the-counter

P-gp:  P-glycoprotein

PSM:  plant secondary metabolite

PXR: pregnane xenobiotic receptor

SLC: solute carrier membrane transport
protein

SULT:  sulfotransferase

UGT:  uridine diphosphate glycosyltransferase

UM: ultra-rapid metabolizer

XME:  xenobiotic metabolizing enzyme

Introduction

v

In Part 1 of this review, a discussion of the origins
and mechanisms underlying herb-drug interac-
tions was presented. In Part 2, a critical assessment
of the available clinical evidence regarding herb-
drug interaction potentials for several popular bo-
tanical supplements sold in the United States is
provided. While the number of botanicals selected
for review is not extensive, the approach taken to
discern whether a botanical extract poses a risk
for producing clinically significant herb-drug in-
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teractions can be extended to any supplement
formulation. (For definitions of abbreviations re-
garding various drug metabolizing enzymes and
transporters, see Part 1 of this review.)

Black Cohosh

v

Actaea racemosa L, (syn. Cimicifuga racemosa [L.]
Nutt.; family Ranunculaceae) or black cohosh, is a
perennial herb native to North America used tra-
ditionally by Native Americans for female repro-
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Fig.1 Representative phytochemicals (triterpene glycosides, phenylpropanoids) present in black cohosh.

ductive system ailments and is now popular for the relief of meno-
pausal symptoms such as hot flashes [1,2]. The purported ability
of black cohosh to help alleviate climacteric symptoms, premen-
strual syndrome, and osteoporosis has secured its ranking among
the 10 top-selling supplements in the United States [3]. Spiroke-
tal triterpene glycosides (©Fig. 1) are believed responsible for
black cohosh’s pharmacological activity even though they are
not phytoestrogens [4, 5]. As such, most commercial black cohosh
products are chemically standardized to triterpene glycosides,
with 23-epi-26-deoxyactein (also known as 27-deoxyactein)
being the most abundant congener [6].

At present, black cohosh does not appear to be a potent modula-
tor of human drug metabolism. In vitro studies found individual
triterpene glycosides to be relatively weak inhibitors (ICsg
>100 uM) of human CYP3A4 [7,8], while whole extracts elicited
greater inhibition, a finding suggestive of synergy [7]. The inhib-
itory effects of whole black cohosh extracts may stem not from
triterpene glycosides but rather fukinolic and cimicifugic acids.
These compounds are potent (ICsg < 13 pM) inhibitors of CYP1A2,
2D6, 2C9, and 3A4 in vitro [8]; however, their quantities vary con-
siderably among commercially available black cohosh products
[9], a factor that can profoundly affect their inhibitory activity in
vivo. In human liver microsomes, ICs, values for CYP2B6, 2C19,
and 2E1 were approximately 50, 30, and 10 ug/mL, respectively,
for methanolic extracts of black cohosh [10]. However, when
compared to standard regimens of clarithromycin (500 mg daily
for 7 days) or rifampin (600 mg daily for 7 days), black cohosh
supplementation (40-80 mg extract daily delivering 3-6 mg tri-
terpene glycosides for 14 days) produced no demonstrable effects
on digoxin and MDZ pharmacokinetics [11,12]. These findings
suggest that black cohosh is not a potent modulator of human
CYP3A4 or ABCBI1 activity in vivo. Black cohosh supplementation
also had no clinically significant effects on phenotypic measures
of human CYP1A2, 2E1, or 2D6 activity [13]. When administered
orally, black cohosh’s principal triterpene glycoside, 23-epi-26-
deoxyactein, reaches the systemic circulation intact, albeit in very
low concentrations (<10 ng/mL) [6]. This apparent lack of bio-
transformation bolsters the idea that black cohosh triterpene
glycosides are unlikely to be inhibitors of human XMEs in vivo.
Black cohosh extracts incorporating DMSO as a cosolvent moder-

ately inhibited (~47%) uptake of estrone-3-sulfate, a SLCO2B1
substrate, into human embryonic kidney cells stably expressing
the transporter [14]. Whether this effect translates to the in vivo
condition remains to be determined.

As with most commercially available botanical supplements,
black cohosh products exhibit considerable variability in phyto-
chemical profiles, and label claims for “standardized” marker
compounds can deviate considerably from actual content [9].
Such variations can have considerable influence on how results
of clinical studies evaluating black cohosh efficacy or its herb-
drug interaction potential are interpreted. Nevertheless, based
on the currently available data, standardized black cohosh sup-
plements, when taken at recommended doses, pose little risk for
herb-drug interactions.

Interaction risk: low.

Echinacea spp.

v

Echinacea species (e.g., Echinacea purpurea [L.] Moench, E. angus-
tifolia DC., E. pallida [Nutt.] Nutt.) of the family Asteraceae are
North American perennials whose roots and aerial parts have
been used traditionally for a variety of medicinal purposes [15,
16]. Echinacea formulations containing either root or whole plant
extracts are marketed for their “immune stimulatory” properties
and for prevention of the common cold [15,16]. Echinacea’s pop-
ularity as an immune stimulator has placed it among the 10 top-
selling botanicals in the U.S. for many years. While evidence from
in vitro and animal studies lend credence to Echinacea prepara-
tions as immunomodulators, clinical findings remain equivocal.
(For reviews of clinical efficacy see references [15-19].) The three
species most commonly encountered are chemically dissimilar.
Both E. purpurea and E. angustifolia contain alkamides as their
major lipophilic constituents, although of differing structural
types (© Fig. 2). By contrast, the lipophilic fraction of E. pallida is
characterized by polyacetylenes and is practically devoid of alka-
mides. These phytochemical dissimilarities also extend to their
respective plant parts (i.e., roots vs. aerial parts). As PSMs, poly-
acetylenes and alkamides are natural pesticides that, when in-
gested in relatively high amounts, can be toxic. In low concentra-
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Fig.2 Representative phytochemicals (alkamides, phenylpropanoids) present in Echinacea species.

tions, however, alkamides appear to have beneficial effects [20].
Other PSMs like caffeic acid esters (e.g., cichoric acid, echinaco-
side), polysaccharides, and alkenes are also thought to contribute
to echinacea’s activity. Because commercially available Echinacea
supplements often consist of extracts from various species and
plant parts, considerable variation in phytochemical profile and
content is common among products [16,21].

Permeability [22,23] and pharmacokinetic [24-26] studies indi-
cate that several alkamides, but not caffeic acid conjugates, cross
the intestinal mucosa reaching the systemic circulation intact. Fol-
lowing single doses of Echinacea alkamides (~11 mg) adminis-
tered as tablets manufactured from ethanolic liquid extracts, plas-
ma concentrations varied considerably with maximum plasma
levels not exceeding 350 ng/mL [26]. Individual Echinacea alka-
mides are metabolized to varying degrees by several human CYPs,
but when combined (as in an extract), metabolism is markedly re-
duced [27-29]. This appears to arise from (2E)-N-isobutylundeca-
2-ene-8,10-diynamide (© Fig. 2), which contains a terminal al-
kyne and may act as a mechanism-based inhibitor [27]. A
considerable number of in vitro studies have examined the XME
and ABCB1 modulatory effects of echinacea extracts and individ-
ual PSMs [30-44]. A recent review of the bulk of these studies
concluded that alkamides exhibit at least mild to moderate inhib-
iton of CYP3A4 in most of the model systems tested, with the
magnitude dependent upon alkamide content [29]. This conclu-
sion is strengthened by a recent animal study, in which standard-
ized E. purpurea extracts reduced rat CYP3A mRNA levels by 40%
[45]. Expression of CYP1A mRNA, however, was increased by

80%. Mild inhibitory effects on ABCB1- [43,44] and SLCO2B1-
mediated [14] transport have also been demonstrated.

Very few prospective clinical studies examining the interaction
potential of Echinacea supplements have been conducted in hu-
mans. Using the CYP3A probe midazolam, Gorski et al. concluded
that 8 days of E. purpurea supplementation selectively modulated
CYP3A activity in the intestine (inhibition) and liver (induction)
of healthy volunteers [46]. The authors concluded that due to
Echinacea’s seemingly opposing effects on intestinal and hepatic
CYP3A4, any interaction would depend upon the substrate’s he-
patic and intestinal extraction ratio. Mild inhibitory effects were
observed for CYP1A2 and CYP2C9, while CYP2D6 was unaffected.
In this instance, however, Echinacea’s effect pales in comparison to
those reported by these same investigators for known CYP3A4 in-
hibitors (e.g., clarithromycin) and inducers (rifampin) of midazo-
lam metabolism [47,48]. It would appear that Echinacea’s effect
on CYP3A expression is modest at best, as neither standardized
extracts nor purified alkamides upregulated CYP3A4 mRNA levels
when exposed to HepG2 cells for 96 hours [41]. In contrast, ri-
fampin exposure increased CYP3A4 mRNA expression by 3.8-fold.
Using various phenotypic probe drug ratios to assess CYP1A2,
CYP2D6, CYP2E1, and CYP3A4 activity, Gurley et al. found that
healthy adults supplemented with E. purpurea for either 14
(800 mg extract daily) [49] or 30 days (1500 mg extract daily)
[50] produced no clinically significant changes in CYP pheno-
types. More recently, Penzak et al. reported that 28 days of E. pur-
purea supplementation in healthy volunteers (500 mg three
times daily) produced modest reductions in midazolam AUC
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(27% decrease), but had no significant effects on the pharmacoki-
netics of lopinavir and ritonavir (CYP3A4 substrates), or fexofen-
adine (a purported ABCB1 and SLCO substrate) [51]. This study,
like that of Gorski et al., suggests that E. purpurea may have mild
inductive effects on human CYP3A4 in vivo. However, when com-
pared to rifampin’s effects on the pharmacokinetics of CYP3A4
substrates [12,48], any clinically important drug interactions
with Echinacea seem remote.

To date, only two clinical studies have evaluated Echinacea’s im-
pact on drug transporters. Fourteen days of supplementation
with a standardized, well-characterized E. purpurea product
(800 mg extract daily) had no effect on digoxin (an ABCB1 sub-
strate) pharmacokinetics in healthy volunteers [52]. By contrast,
7 days of rifampin (600 mg daily) or clarithromycin (500 mg daily)
produced marked reductions and increases, respectively, in di-
goxin AUC, a finding that underscores Echinacea’s clinically insig-
nificant effect on these transporters. In addition, the pharmacoki-
netics of fexofenadine, a nonspecific ABCB1 and SLCO substrate,
were not impacted by 28 days of E. purpurea supplementation
[51]. Taken together, these data render it unlikely that E. purpurea
will produce clinically relevant interactions with coadministered
drugs through ABC or SCLO modulation.

Based on the collected evidence to date, it appears that dietary
supplements formulated with standardized Echinacea extracts -
when ingested per label recommendations - are not likely to
yield alkamide concentrations sufficient enough to dramatically
modulate human CYP, ABC, and SLCO isoforms in vivo. Therefore,
Echinacea supplements pose minimal risks for interacting with
most conventional medications, an opinion concordant with that
of other recent reviews [29,53].

Interaction risk: low.

Garlic

v

Members of the family Alliaceae have been an important part of
the human diet for thousands of years. Allium species, such as
garlic (Allium sativum L.) and onions (Allium cepa L.), are a rich
source of sulfur-containing compounds, many of which are vola-
tile and give rise to the characteristic flavor and aroma of these
species. Fresh garlic has little smell but tissue damage by cutting,
crushing, or biting results in alliin (2-propenyl-L-cysteine sulfox-
ide) (© Fig. 3) being cleaved by the enzyme alliinase resulting in

Reviews REEE]

o Fig.3 Representative phytochemicals (sulfur-
& containing compounds) present in garlic.
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the formation of allicin (diallyl thiosulfinate), which gives
crushed garlic its characteristic smell. Because allicin is very un-
stable to heat, cooking results in its degradation to a number of
organosulfur compounds including diallylsulfides and ajoenes
[54] (o Fig. 3). Bad breath, which follows the ingestion of garlic
products, is due to a range of sulfide compounds that appear in
the systemic circulation and expired air.

Garlic is reputed to have benefits for protection against cardio-
vascular diseases, cancer, microbial infections, and vampires!
Although there is some evidence for the first two effects, the rest
are largely the result of speculation and folklore [54]. The putative
anti-hypercholesterolemic effect of garlic supplements makes
them one of the most widely used botanical supplements in the
United States. Their efficacy, however, remains in doubt due to
conflicting results from numerous published clinical trials [55-
58]. This is probably a function of the type of product used, its
quality, and poor characterization of the phytochemical agent(s)
responsible for garlic’s lipid lowering effect.

Three general categories of garlic supplements are available com-
mercially (garlic oil, dehydrated garlic powder, and aged garlic
extract) each with their own unique composition of purported
bioactive components [59-61]. Within these products a plethora
of organosulfur compounds, steroid saponins, and other phyto-
chemicals have been identified [54,59-62]. Of these, the oil-solu-
ble organosulfur compounds including allyl thiosulfinates (e.g.,
allicin), alkyl sulfides (e.g., diallyl sulfide), vinyldithiins, and
ajoene have received the most attention (© Fig.3). Allicin has
long been touted as the agent responsible for garlic’s lipid lower-
ing effects, yet the compound is unstable in the gastrointestinal
tract, is not bioavailable, and is rarely found in commercial prod-
ucts [59-61]. Allicin’s degradation products, diallyl sulfide, diallyl
disulfide, diallyl trisulfide, dithiin, and ajoene, may contribute to
the lowering of serum cholesterol levels; however, many prod-
ucts, particularly those containing garlic oil, have relatively poor
efficacy [63,64]. In addition, many in vivo studies indicate that
garlic oil and individual alkyl sulfides, most notably diallyl sulfide
and allylmethylsulfide, inhibit murine and human CYP2E1 [65-
68]. This is likely a result of the CYP2E1-catalyzed biotransforma-
tion of diallyl sulfide to diallyl sulfoxide and diallyl sulfone, in
which the latter is a mechanism-based inhibitor of the enzyme
[66,69]. Despite inhibition of human CYP2ET1 in vitro, few inter-
actions involving garlic products and CYP2E1 substrates have
been reported, a consequence that probably reflects the paucity
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of drugs metabolized by this enzyme. Conversely, prolonged ad-
ministration of diallyl sulfide and diallyl disulfide induced other
hepatic and intestinal murine CYP subfamilies (e.g., CYP1A,
CYP2B, CYP3A), in addition to various transferases (e.g., GSTs,
UGTs) [65,70-76] through activation of CAR and Nrf2 nuclear re-
ceptors [77].

The ability of garlic to inhibit other human CYP isoforms also
appears dependent upon product type and composition. In vitro
assessments of allicin, fresh garlic, or commercially prepared
supplements (e.g., garlic oil and garlic powder) either found no
effect [32,78] or modest inhibition (<50%) of human CYP2C9,
CYP2C19, and CYP3A4 isoforms [79,80]. A freeze-dried garlic
supplement, however, produced significant inhibition of CYP3A4
in vitro (>95%) [80]. Because the chemistry of garlic is complex
and because different types of processing can significantly alter
its phytochemical composition, lyophilization may stabilize those
organosulfur compounds capable of inhibiting CYP3A4. Aged
garlic extracts (AGE), on the other hand, do not appear to inhibit
any of the major CYP isoforms present in human liver micro-
somes [81]. This may stem from a dearth of oil-soluble organo-
sulfur compounds in AGE and a preponderance of water-soluble
components (e.g., S-allyl-L-cysteine, saponins) [59]. The shift
from oil- to water-soluble ingredients arises from the aging pro-
cess and subsequent aqueous extraction, which makes AGE dis-
tinct from the other types of garlic products.

Based upon in vitro and murine in vivo findings, garlic’s effects on
transporter activity also appear dependent upon the hydrophilic-
ity of specific organosulfur compounds. The preponderance of in
vitro data regarding ABC isoforms implies that garlic’s oil-soluble
organosulfur compounds are not potent inhibitors of the efflux
transporter ABCB1 [80,82-85] but may, however, induce ABCC2
expression [85]. Interestingly, lipophilic compounds (e.g., diallyl
sulfide, diallyl disulfide) increased ABCB1 efflux through rat
ileum but not through Caco-2 cell monolayers [86]. When ex-
posed to both Caco-2 cell monolayers and the rat intestine at high
concentrations (~ 12 pg/mL), water-soluble compounds in AGE (e.
g., S-allyl-L-cysteine) induced the activity of ABCB1, ABCC2, and
SLCO transporters [86,87]. In a HepG2 cell line, however, ABCC2
activity was reduced, suggesting that AGE-mediated regulation
of ABCC2 proteins in the liver is different from that in the intes-
tine [88]. Tissue-specific regulation of ABCC2 activity has also
been observed for other xenobiotics [89], and this may only add
to the difficulties of predicting garlic-drug interactions.

A modest number of prospective human studies have investigated
the drug interaction potential of garlic supplements or purified
garlic organosulfur compounds [90-102]. Owing to the variety
of products evaluated and diverse dosages of garlic phytochemi-
cals administered, results have been mixed. A number of drugs,
whose biotransformation pathways run the gamut of human
XMEs, have been assessed (e.g., acetaminophen, alprazolam caf-
feine, chlorzoxazone, cyclosporine, debrisoquine docetaxel dex-
tromethorphan, midazolam, omeprazole, ritonavir, saquinavir,
warfarin), yet the evidence implies that only substrates of
CYP2ET1 are significantly affected [90,92,98]. The first prospec-
tive study by Gwilt et al. found that daily administration of aged
garlic extract (~ 19 mg S-allyl-L-cysteine) produced no significant
effects on the pharmacokinetics of acetaminophen, a putative
CYP2ET1 substrate [91]. Later, Loizou and Crocker observed that
administration of diallyl sulfide (~0.2 mg/kg) to healthy volun-
teers reduced plasma 6-hydroxychlorzoxazone/chlorzoxazone
ratios (a phenotypic measure of CYP2E1 activity) by an average
of 31% [92]. This finding confirmed in humans what had been

previously observed in murine models that lipophilic, and not
hydrophilic, organosulfur compounds were CYP2E1 inhibitors.
Subsequent studies confirmed that prolonged garlic oil supple-
mentation (500 mg, three times daily for 28 days) inhibited hu-
man CYP2E1 activity in both young [90] and elderly adults [98]
by almost 40% and 25 %, respectively; however, no modulatory ef-
fects were noted for CYP1A2, CYP2D6, or CYP3A4. In contrast, 21
days of twice daily supplementation with garlic powder (~9 mg
allicin and 23 mg alliin) reduced by 50% the mean AUC, 8-hour
trough concentrations, and mean maximum plasma concentra-
tions (Cphax) of the protease inhibitor saquinavir [93]. The authors
concluded that the garlic powder supplement might have in-
duced intestinal CYP3A4 and/or P-gp, since saquinavir is a sub-
strate for both proteins. A similar, although less dramatic, effect
on ritonavir AUC, was observed after a four-day course of garlic
extract (5mg, twice daily) [94]. Subsequent studies examining
the prolonged effects of garlic supplementation on other CYP3A4
substrates, however, failed to note any significant changes [95-
97]. Nor have any clinically important garlic-mediated interac-
tions been reported for warfarin, a recognized substrate for
CYP2C9 and 3A4 [100,101]. However, large doses of the organo-
sulfur compound allicin (~ 150 mg daily) did reduce the metabo-
lism of omeprazole by inhibiting CYP2C19 activity in individuals
both homozygous and heterozygous for the CYP2C19*1 allele, but
not for those homozygous for CYP2C19*2 [102]. Interestingly, the
CYP3A4-mediated omeprazole sulfone pathway was not affected.
Reductions in saquinavir and ritonavir concentrations noted in
early studies appear attributable to garlic-mediated upregulation
of intestinal ABCB1 or ABCC2 activity as was demonstrated in
several recent in vitro investigations [84-89]. The extent to which
garlic supplementation affects human ABC and SLCO substrates
in vivo was recently addressed in healthy volunteers receiving a
standardized garlic extract for 21 days [103]. A 31% increase in
the duodenal expression of human ABCB1 correlated with a
modest reduction in saquinavir AUC while no significant effects
were noted in the pharmacokinetic parameters of simvastatin (a
CYP3A4 substrate) or pravastatin (an SLCO1B1 substrate).
Taken together the accumulated findings imply that most com-
mercially available garlic supplements pose only a limited risk
for producing clinically important herb-drug interactions. Pres-
ently, only human CYP2E1 appears to be inhibited by garlic oil
products, but because only a few drugs are substrates of CYP2E1
and most of those have fairly broad therapeutic indicies, this in-
teraction is not cause for great concern. On the other hand, pro-
longed consumption of garlic extract appears to modestly induce
the human efflux transporter ABCB1. Accordingly, prolonged ex-
posure to concentrated garlic extracts may reduce the efficacy of
drugs whose disposition is strongly dependent on ABCB1.
Interaction risk: low.

Ginkgo biloba

v

Termed living fossils, ginkgo trees (family Ginkgoaceae) have ex-
isted since the early Jurassic period 150 million years ago. The
lone species that avoided extinction (Ginkgo biloba L.) is now cul-
tivated in Asia, Europe, North America, New Zealand, and Argen-
tina. Ginkgo is a popular ornamental tree recognizable by its un-
usual fan-shaped leaves that turn bright yellow in autumn. In
Asia, the tree has long been held sacred for its therapeutic value.
Today, dosage forms incorporating G. biloba leaf extracts are used
throughout the world for treatment of insufficient blood flow,
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memory deficits, cognitive disorders, Alzheimer’s disease, de-
pression, vertigo, tinnitus, and intermittent claudication [104].
Ginkgo’s popularity has made it one of the most intensely
studied botanicals in the world. Currently more than 2500 ar-
ticles related to G. biloba have been published in the medical lit-
erature.

Clinical trials on the efficacy of G. biloba extracts are numerous
and controversial [105-109]. Much of the research has centered
on products formulated with EGb 761, an extract produced by
the German company Schwabe. EGb 761 is a standardized, con-
centrated extract containing 24% flavonoid glycosides (e.g., quer-
cetin, kaempferol, isorhamnetin), 6% terpene lactones (3.1%
ginkgolides A, B, C, and ] and 2.9% bilobalide), 5-10% organic
acids, and other constituents [104]. Several other companies pro-
duce ginkgo extracts with similar chemical profiles. Terpene lac-
tones are unique to G. biloba and include the ginkgolides, a group
of diterpene trilactones (e.g., ginkgolide A, B, C, ], M), and biloba-
lide, a sesquiterpene lactone (© Fig. 4). G. biloba flavonoids occur
principally as glycoside derivatives, with quercetin, kaempferol,
and isorhamnetin being the most prevalent. Other PSMs present
in G. biloba that may have allergenic, immunotoxic, and other un-
desirable properties (e.g., ginkgetin, amentoflavone, ginkgolic
acids, ginkgotoxin, and others) are typically removed during
processing [104].

Discrepancies among clinical studies regarding efficacy may be
traced to significant interproduct variability in phytochemical
content and biopharmaceutical characteristics of ginkgo extract
dosage forms (e.g., disintegration, dissolution, bioavailability)
[110,111]. These same discrepancies may also underly the confu-
sion surrounding the herb-drug interaction potential of G. biloba.
Depending upon which experimental model is utilized, different
interpretations of ginkgo’s drug interaction capabilities emerge.
In many in vitro experimental systems, ginkgo extracts [14,33,
35,38,112-119], as well as individual terpene lactones [110,
111,115-120] and flavonoid glycosides [14,115-123] have been
shown to inhibit various XMEs and transporters, although in
most instances ICsy values were well in excess of 20 uM. Agly-
cones of quercetin, kaempferol, and isorhamnetin seem to have
the greatest inhibitory capacity [116,119-126], while ginkgo-
lides and bilobalide exhibit the least and in many cases, none at
all [79,116-119,123,124,127]. In contrast, ginkgo extracts and
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Fig.4 Representative phytochemicals (terpene
lactones, flavonoid glycosides) present in Ginkgo
biloba.

Bilobalide

individual terpene lactones appear capable of inducing the ex-
pression of several CYP, UGT, and ABC isoforms in rat [128-130]
and human primary hepatocytes [113,114,130,131] as well as
human mammary epithelial cells [132]. Cell-based reporter as-
says in HepG2 [121,131] and LS180 [133] and other cell lines
[132,134] revealed that ginkolides A and B are activators of PXR,
whereas quercetin and kaempferol activated PXR, CAR, and AhR.
Bilobalide exerted no effects on nuclear receptors in these assays.
The discovery that specific ginkgolides and flavonoids are ligands
for several xenobiotic receptors provides an explanation for a
host of recent in vivo studies in which prolonged administration
of G. biloba extracts to rats, often in high doses, not only induced
a multitude of XMEs [135-140] but reduced efficacy for several
drug substrates: nicardipine [141], tolbutamide [142], phenobar-
bital [143], propranolol [144], cyclosporine [145], and theophyl-
line [146]. Concomitant administration of G. biloba also enhanced
the hepatotoxicity of acetaminophen via CYP3A induction [147].
However, several of these in vivo studies contradicted cell-based
reporter assay findings when bilobalide was implicated as an
XME activator [148-150].

Evidence from in vitro and animal investigations clearly points to
G. biloba extracts and their constituents as inducers of XME and
transporter activity. These findings have led investigators to warn
of significant drug interactions with G. biloba. Clinical evidence
substantiating these claims, however, is not as compelling. To
date, 29 prospective clinical trials assessing the effect of G. biloba
supplementation on the pharmacokinetics of a variety of drugs,
including several specific CYP probes, have been published
[90,98,139,151-176]. Twenty-nine different drugs whose me-
tabolism or transport is mediated by various CYP isoforms (e.g.,
CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4)
or transporters (e.g., ABCB1, SLCO1B1, SLCO2B1) were evaluated.
The drugs included aspirin [167], alprazolam [161], antipyrine
[152], bupropion [174], caffeine [90,98, 154], chlorzoxazone [90,
98,154, cilostazol [162], clopidogrel [162], dapsone [154], debri-
soquine [90,98,154], dextromethorphan [157], diazepam [175],
diclofenac [163], digoxin [156], donepezil [159], endogenous ste-
roids [139,161], fexofenadine [170], flurbiprofen [164], lopinavir
[170], mephenytoin [154], metformin [169], midazolam [90,98,
166,170], nifedipine [153,158], omeprazole [151], talinolol
[172,173], ticlopidine [165,176], tolbutamide [163, 166], vorico-
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Fig.5 Representative phytochemicals (ginsenosides) present in the Panax
species.

nazole [171], and warfarin [155,160, 168]. The majority of these
studies followed a G. biloba supplementation regimen of 240 mg
leaf extract twice daily from as few as 3 to as many as 90 days,
while others utilized smaller doses. In addition, most utilized
products containing the standardized EGb 761 extract. Of the 29
studies (many of which evaluated more than one drug), 23 ob-
served no significant effects of G. biloba on drug disposition, 5 ob-
served a modest inhibitory effect [153,154,166,172,173], and
3 demonstrated evidence of CYP3A4 [168], CYP2C9 [164], and
CYP2C19 [151] induction. Moreover, when compared to FDA
guidelines on drug interaction criteria [177,178], those few stud-
ies demonstrating a modulatory effect of G. biloba on drug dispo-
sition do not appear to be clinically important.

Discrepancies in G. biloba’s effect on rat and human XMEs in vivo
do not appear to reflect species differences in PXR activation
[129,179], but rather seem to be dose related [136,139]. Most
rat studies administered G. biloba extracts at 100 mg/kg/day, a
dose comparable to 1300 mg/day or greater in humans; however,
most human studies incorporated doses of 240 mg/day or less.
Additionally, several studies have assessed the pharmacokinetics
of ginkgolides and bilobalide in human volunteers. Following
240 mg doses of standardized G. biloba extracts, Cr,ax values for
ginkgolides and bilobalide rarely exceeded 40 ng/mL [180-182],
concentrations well below the 4000 ng/mL at which ginkgolides
A and B activated PXR in vitro [133]. It is possible that concentra-
tions exceeding 40 ng/mL may be achieved within intestinal en-
terocytes, but this depends upon disintegration and dissolution
profiles of individual dosage forms (characteristics that can vary

considerably between brands [183,184]), as well as the perme-
ability of individual terpene lactones or flavonol glycosides. In
Caco-2 and MDR1-MDCK cell monolayers, ginkgolides and bilo-
balide exhibited low absorptive permeability and high efflux
[185]; two conditions that would further preclude their exposure
to enteric XMEs.

In summary, dosage forms containing standardized G. biloba ex-
tracts, when administered at doses of 240 mg/day or less, do not
pose arisk for clinically relevant herb-drug interactions. However,
daily doses exceeding 240 mg/day may increase prospects for in-
teractions.

Interaction risk: low, at doses 240 mg/day or lower.

Ginseng spp.

v

Of the five major Panax species (family Araliaceae) worldwide,
Asian ginseng (Panax ginseng C.A. Meyer) and American ginseng
(Panax quinquefolius L.) are the most widely used and extensively
studied. P. ginseng root has an almost 2000-year history of use in
traditional Chinese medicine (TCM) as an adaptogen (a plant that
increases resistance to stress and fatigue) and a restorative tonic.
Today, ginseng root, either as a TCM or dietary supplement, is one
of the most popular herbs in the world; used to improve libido
and sexual performance, prevent cancer, regulate blood sugar,
lower blood pressure, improve cognition, fight fatigue, and boost
immunity [186]. With the possible exception of its mild hypogly-
cemic effect, ginseng’s efficacy remains questionable, as many
clinical trials have produced confounding results [187-189]. Am-
biguity in clinical findings may be linked to differences in the gin-
sosenoside content of products evaluated.

Ginsenosides, a group of triterpene glycosides (steroidal sapo-
nins), are unique to Panax species. More than 40 ginsenosides
have been identified in the roots of P. ginseng and P. quinquefolius.
Ginsenoside nomenclature employs the designation Rx, where x
represents the retention factor (Rf) value from the sequence of
spots (from bottom to top) on thin-layer chromatography plates.
Ginsenosides exhibit considerable structural variation. They dif-
fer from one another by the type, number, and site of attachment
of sugar moieties. The two major subtypes of ginsenosides - pro-
topanaxadiol and protopanaxatriol - are classifed according to
the arrangement and number of sugar (glucose, rhamnose, xy-
lose, and arabinose) residues on the steroidal skeleton [190].
Rb1, Rb2, Rc, and Rd are examples of protopanaxadiol ginseno-
sides, while Re, Rf, Rg1, and Rg2 are examples of protopana-
xatriols (© Fig.5). P. ginseng and P. quinquefolius differ signifi-
cantly in type and proportion of ginsenosides, with P. ginseng
having a high Rg1:Rb1 ratio and P. quinquefolius a low Rg1:Rb1
ratio [191]. Such distinctions may account for differences in pur-
ported efficacy between the two species. Ginseng root extracts
are often standardized to contain a particular percentage (~4%)
and ratio of ginsenosides. When ingested, ginsenosides undergo
partial hydrolytic deglycosylation in the stomach and are further
deglycosylated in the large intestine through enzymatic glucosi-
dase activity of gut microflora [190,192-194]. It is these metab-
olites (e.g., compound K, © Fig.5) that ultimately reach the sys-
temic circulation and are alleged to have pharmacologic activity
[192,194-196].

From a drug interaction perspective, clinical and nonclinical evi-
dence regarding ginseng extracts and their effects on XMEs and
transporters is particularly confusing. This confusion stems from
an assortment of variables affecting ginsenoside disposition.
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Fig.6 Representative methylenedioxyphenyl-containing phytochemicals
(broken circle = methylenedioxyphenyl moiety).

These include, but are not limited to, variability in ginsenoside
type and content [190,191], degree of preabsorptive deglycosyl-
ation [192-195], poor membrane permeability [197], interindi-
vidual differences in gut microflora [192-194], and enteric efflux
by ABC transporters [198,199]. It is now clear that highly polar,
extensively glycosylated ginsenosides (e.g., Rb1, Rb3, Rg3, Re,
Rg1, Rg2) are relatively weak modulators of human XMEs and
transporters [37,120,200-207]. Ginsenoside concentrations nec-
essary to inhibit most CYPs and transporters in vitro are not only
high (> 50 uM), but are not likely to be realized in vivo, especially
if normal dosing recommendations of ginseng products are fol-
lowed [37,120,127,200-207]. This also holds true for the even
higher ginsenoside concentrations (> 100 M) required for in-
ducing CYP1A1 [208], CYP2C9, and CYP3A4 [200] activity in hu-
man liver cells and microsomes. However, the products of ginse-
noside hydrolysis (e.g., deglycosylated metabolites) have been
shown to competitively inhibit a variety of CYPs and transporters,
oftentimes at concentrations well below 20 uM [203-208].

Only a limited number of animal studies have examined the ef-
fects of orally administered ginseng extracts (> 30 mg/kg) on drug
disposition. From these, it appears that P. ginseng or P. quinquefo-
lius either mildly induce [209-211] or have no significant effects
[212-214] on rat XMEs and ABCB1 activity in vivo. Substantially
more prospective human trials have investigated the effects of P.
ginseng and P. quinquefolius supplementation on human drug
disposition, with the CYP2C9 substrate, warfarin, being exam-
ined the most. Like the murine studies, clinical results fall into
two catgories: no effect [90,98,215-219] or mild induction
[217,220-222].

Concerns regarding possible ginseng-drug interactions first sur-
faced when two case reports speculated that ginseng reduced
warfarin anticoagulation [223,224]. As single case reports cannot
establish causation, a prospective clinical trial by Yuan et al. dem-
onstrated that international normalized ratios (INR, a measure of
anticoagulation), peak plasma warfarin levels, and warfarin AUCs
were reduced by P. quinquefolius in healthy volunteers, and these
effects reached statistical significance [221]. Subsequent clinical
trials with P. ginseng, however, have failed to observe any influ-
ence on warfarin pharmacokinetics [216,222] or pharmacody-
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namics [216,218,222]. Such discrepancies may reflect the dispar-
ity in ginsenoside profiles between P. ginseng and P. quinquefolius;
however, several methodological concerns have been raised about
the Yuan et al. study including it being underpowered, that inad-
equate sampling was used to determine AUC, and a non-stereo-
selective assay was used to measure warfarin enantiomers
[222]. Therefore, it appears that whatever effect(s) P. quinquefo-
lius extracts might have on human CYP2C9 activity, their magni-
tude does not reach clinical significance. As a result, the available
evidence that links ginseng supplementation to potentially
harmful drug interactions remains unconvincing.

Interaction risk: low.

Methylenedioxyphenyl-Containing Phytochemicals

v

The plant kingdom is replete with species that harbor phyto-
chemicals whose structures contain methylenedioxyphenyl
(MDP) moieties (© Fig. 6). Popular botanical supplements known
to contain substantial quantities of MDP-PSMs include golden-
seal (Hydrastis canadensis), kava kava (Piper methysticum), black
pepper (Piper nigrum), and Schisandra spp. In these species,
MDP-containing PSMs (MDP-PSMs) often function as insecticides
[225], but when consumed by humans they can act as mecha-
nism-based inhibitors of CYPs [226,227]. This type of inhibition
is thought to arise from CYP-dependent oxidation of the methy-
lenedioxy carbon to a carbene that subsequently interacts with
CYP heme iron to produce a stable heme-adduct, termed a meta-
bolic-intermediate (MI) complex [227]. It is through the formation
of MI complexes that CYP isoforms are inactivated by MDP-PSMs
[227,228]. Because MDP-PSMs can function as mechanism-based
CYP inhibitors, they pose significant risks for herb-drug interac-
tions.

Prolonged administration of MDP-containing compounds has al-
so been shown to induce CYP1A and CYP2B expression in several
animal species [227-229]. Induction of CYPs by MDP-PSMs may
be mediated by AhR or through mechanisms that promote pro-
tein stabilization [228,229]. Whether CYP inhibition or induction
predominates in vivo may depend upon the length and bulk of
MDP side chains as well as the individual CYP isoform examined
[230]. MDPs with long bulky side chains appear to be more po-
tent inhibitors of CYP1A2, CYP2C9, CYP2D6, and CYP3A4, where-
as CYP2B6 and CYP2C19 are not inactivated [230].

Goldenseal

Extracts of goldenseal root (Hydrastis canadensis L.; family Ra-
nunculaceae), a perennial herb indigenous to eastern North
America, are often taken as an antimicrobial to prevent common
colds and upper respiratory tract infections. Often formulated
with Echinacea species, goldenseal ranks among the top-selling
botanicals in the United States.

Goldenseal’s medicinal properties are attributed to several isoqui-
noline alkaloids, of which berberine and hydrastine (© Fig. 7) are
the most prevalent. Both berberine and hydrastine are MDP-PSMs
that inhibit various CYP isoforms in vitro [10,30,31,34,36,37,
231]. Using fluorometric microtiter plate assays, Budzinski et al.
first noted that commercial extracts of Hydrastis canadensis were
potent in vitro inhibitors of CYP3A4 [30]. Follow-up investigations
by these authors found that goldenseal reduced CYP3A-mediated
conversion of testosterone to its 68-hydroxy metabolite by 88%
[31]. Chatterjee and Franklin later confirmed the inhibition of
testosterone 63-hydroxylation by goldenseal extracts and ex-
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Fig.7 Representative phytochemicals (isoquinoline alkaloids) present in
goldenseal.

tended their findings to include individual isoquinoline alkaloids
[231]. They demonstrated that hydrastine was a more potent in-
hibitor of CYP3A4 (IC59 =25 uM) than berberine (IC59 =400 uM).
It is seldom that prospective clinical studies corroborate in vitro-
based predictions of CYP-mediated herb-drug interactions; how-
ever, goldenseal appears to be an exception. Using phenotypic
measures of CYP activity, Gurley et al. first observed that golden-
seal supplementation significantly inhibited CYP2D6 and CYP3A4
in healthy volunteers [13]. In subsequent investigations with the
CYP3A4 probe midazolam, Gurley et al. further demonstrated
that 14 days of goldenseal supplementation (~ 209 mg isoquino-
line alklaoids daily) significantly increased midazolam AUC, Cax,
and elimination half-life, and that the effects were proportional
to those produced by the well-recognized, mechanism-based in-
hibitor clarithromycin (1000 mg daily) [232]. In addition, golden-
seal’s inhibition of human CYP2D6 in vivo was confirmed with
other commercially available supplement brands [49]. Interest-
ingly, another prospective study evaluating the influence of gold-
enseal supplementation on the pharmacokinetics of indinavir (a
protease inhibitor and CYP3A4 substrate) failed to register any sig-
nificant effects [233]. This discrepancy may stem from the rela-
tively high oral bioavailability of indinavir, which renders it a less
effective probe for assessing herb-mediated changes in CYP3A
activity. Thus, goldenseal may have its greatest impact on those
CYP3A substrates exhibiting high intestinal metabolism and low
oral bioavailability.

In China, berberine (an OTC remedy for diarrhea of bacterial ori-
gin) has also been shown to significantly increase the AUC, Cphax,
and trough concentrations of the immunosuppressive drug cy-
closporine [234,235]. Since cyclosporine is both a CYP3A4 and
ABCB1 substrate, the activity of both of these proteins could con-
ceivably be affected by hydrastine and berberine. There is con-
vincing in vitro and animal evidence that berberine is a substrate
for certain ABC isoforms [236-240], and thus, it may compete
with other ABC substrates for efflux across intestinal and canalic-
ular membranes. Recent clinical evidence, however, indicates
that goldenseal’s effect on digoxin (an ABCB1 substrate with a
narrow therapeutic index) disposition in humans is not signifi-
cant [241]. Therefore, goldenseal’s propensity for eliciting herb-
drug interactions appears limited to those mediated by CYPs.
Dissolution profiles of commercially available goldenseal supple-
ments reveal that berberine and hydrastine are rapidly and com-
pletely released from extract formulations [242], producing in-
testinal luminal concentrations comparable to those required for
CYP inhibition in vitro [241]. In humans, both berberine and hy-
drastine are readily absorbed and extensively metabolized, with

berberine phase I metabolites being preferentially sulfated, while
those of hydrastine are primarily glucuronidated [243]. Extensive
metabolism is conducive to the formation of MI complexes and
may explain goldenseal’s penchant for CYP inhibition. Given
that goldenseal isoquinoline alkaloids significantly inhibit both
CYP3A4 and CYP2D6 activity (the two most important drug me-
tabolizing enzymes in humans), its herb-drug interaction poten-
tial is deemed considerable.

Interaction risk: high.

Kava kava

Kava kava (Piper methysticum G. Forst.; family Piperaceae) has
long been a traditional beverage consumed among South Pacific
islanders to imbue psychotropic, hypnotic, and anxiolytic effects
[244]. Since the 1990s, commercial kava extracts formulated as
tablets and/or capsules have been marketed as dietary supple-
ments for the alleviation of stress, anxiety, or insomnia [244,
245]. Reports linking kava use to liver toxicity have led to the re-
moval of these products from Australia, Canada, and several
European countries, and prompted the FDA to issue warnings of
possible hepatotoxic side effects associated with kava supple-
mentation [244]. For those case reports documenting possible
kava-related hepatotoxicity, prolonged usage (>60 days), and
co-medication with prescription drugs or other botanical supple-
ments were frequent and confounding variables [244]. Modula-
tion of human drug metabolism and/or transport has been postu-
lated as an underlying mechanism for kava-induced liver toxicity.
Accordingly, a significant body of literature exists exploring kava’s
ability to alter XME and transporter activity. The preponderance
of in vitro data points to kava as an inhibitor of various CYPs and
ABCB1 [79,245-251], whereas other evidence suggests kava may
activate PXR to induce CYP and ABCB1 activity [252-254]. In ac-
cordance to kava phytochemicals acting as nuclear receptor li-
gands, most studies that administered high doses of kava extracts
to murine species for prolonged periods observed an induction in
CYP1A and 3A activity and expression [250,255-258].

The kavalactones (e.g., kavain, dihydrokavain, methysticin, dihy-
dromethysticin, yangonin, desmethoxyyangonin) are a collection
of phytochemicals unique to kava (© Fig. 8). Of these, methysticin
and dihydromethysticin are both MDP-PSMs and potent (< 10 uM)
mechanism-based inhibitiors of CYPs in vitro [247,249]. Dihy-
dromethysticin, like some other MDP-containing compounds, al-
so appears to induce CYP3A isoforms in vitro through activation
of human PXR [253]. In addition, both methysticin and dihydro-
methysticin have good dissolution profiles in simulated intestinal
fluid at pH values greater than 4, a property favorable for produc-
ing gut lumen concentrations in excess of 10 M [242]. As a re-
sult, one might anticipate that kava supplementation would sig-
nificantly modulate human XMEs and transporters in vivo. To
date, only five prospective clinical studies have attempted to
evaluate the drug interaction potential of kava and the results
have been mixed [13,49,232,241,259]. Russman et al. found that
in chronic users of traditional kava-containing beverages (e.g., 7-
27 g kavalactones per week) significantly reduced CYP1A2 activ-
ity, yet this practice had no effect on the phenotypic markers of
CYP2C19, 2D6, 2E1, or 3A4 function [259]. In contrast, Gurley et
al. observed that 30 days of kava supplementation in healthy vol-
unteers had no effect on the phenotypic markers of CYP1A2,
CYP2DG6, or CYP3A4 activity; however, CYP2E1 activity was sig-
nificantly reduced [13].

Discrepancies between these studies with regard to kava's effect
on CYP1A2 and 2E1 may be traced to variations in extract compo-
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Fig.9 Representative phytochemicals (piperamides) present in black pepper.

sition. Traditional kava beverages are made from aqueous extrac-
tions of P. methysticum root, whereas formulations of many com-
mercially available kava supplements are products of nonaqueous
solvent extractions. Kavalactone profiles can vary considerably
among the two extraction processes [245]. Subsequent studies
conducted by Gurley’s group found that, when compared to
known CYP inducers and inhibitors, 14 days of supplementation
with well-characterized kava products had no clinically relevant
effects on human CYP2D6, CYP3A4, or ABCB1 activity [52,232,
241].

The apparent low potency of methysticin and dihydromethysti-
cin as mechanism-based inhibitors in vivo may stem from the
structure of their MDP side chains. In examining a series of
MDP-containing compounds, Nakajima et al. noted that those
with short, nonbulky side chains were less effective inhibitors of
CYP activity [230]. This, coupled with the fact that kava extracts
often have lower amounts of methysticin and dihydromethysti-
cin compared to the isoquinoline alkaloid content of goldenseal,
may explain the difference in herb-drug interaction potentials for
these two MDP-containing species. In short, consumption of
commercially available kava supplements per product label rec-
ommendations is not likely to affect the efficacy or toxicity of
conventional medications.

Interaction risk: low.

(6,7-dihydropiperettine)

Black pepper|piperine

Dried ground black pepper (Piper nigrum L.; family Piperaceae)
has been used since antiquity as both a flavoring agent and med-
icine [260]. In fact, for almost two millennia Piper species (e.g., P.
nigrum and P. longum) have been essential components of several
Ayurvedic medicine preparations [261]. Black pepper is one of
the most commonly used spices and may be found on nearly
every dinner table in the industrialized world. Black pepper is
produced from green unripe berries of the pepper plant; the
fruits are dried following a heat treatment that releases brown-
ing enzymes from the cell walls [262]. The spiciness of black pep-
per is due to the MDP-containing phytochemical, piperine, and
related pungent alkaloids known as piperamides [260] (© Fig. 9).
These compounds function as insecticides in the pepper plant
[263-265], but in mammalian systems they are inhibitors of var-
ious XMEs [266-277] and transporters [278-283]. While inhibi-
tion is clearly the most prevalent finding, especially upon acute
exposure, several animal studies report upregulation of GSTs
[284], certain CYPs [285,286], and ABCs [278,280,281] with
long-term exposure to piperine, a finding in line with other stud-
ies examining chronic feeding of MDP-PSMs.

Piperine’s ability to inhibit drug metabolism was first recognized
by Atal et al. more than 30 years ago when its administration to
rats increased the oral bioavailability of the alkaloids sparteine
and vasicine by factors of two and three, respectively [266]. In ad-
dition, piperine increased the pharmacodynamic effects of hexo-
barbital and zoxazolamine in a dose-dependent fashion [266].
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Follow-up studies by Atal’s group observed that piperine admin-
istration was a noncompetitive inhibitor of various murine he-
patic monoxygenases as well as UGTs [267]. Subsequent studies
confirmed piperine’s effect on murine XMEs [268-273] and also
found that it and other piperamides were selective inhibitors of
human CYP3A4, CYP2D6, and ABCB1 in vitro [274,275,277,282].
Piperine’s inhibitory effect on UGTs is more pronounced in intes-
tinal epithelial cells than hepatocytes [270]. Moreover, structure—
activity relationship studies involving more than 35 separate
analogues revealed that piperine is especially suited for CYP inhi-
bition [273]. Modifications to either the MDP moiety or piperi-
dine side chain significantly reduced its potency [273]. (Millions
of years of plant-animal warfare have clearly optimized piperine
pharmacology.) In addition to its inhibitory effects on XMEs and
ABCB1, piperine may also promote drug absorption by modulat-
ing the permeability characteristics of intestinal membranes as
well as through stimulating increases in microvilli length [287].
One of the most compelling aspects of piperine is its ability to
dramatically enhance the oral absorption of concomitantly ad-
ministered medications [266,279,283,288-293]. To date, every
prospective human trial investigating black pepper’s and/or pi-
perine’s effect on drug pharmacokinetics has demonstrated a
profound improvement in oral bioavailability. Drugs affected
and the observed percent increase in mean AUC include phenyt-
oin (16-133%) [289,291,292], rifampicin (69%) [288], proprano-
lol (103%) [290], theophylline (96%) [290], and nevirapine
(170%) [293]. In practically every case, piperine’s effect can be
considered clinically relevant. This is especially so for drugs with
narrow therapeutic indices.

Recognizing piperine’s utility as a bioavailability enhancer, many
dietary supplement manufacturers incorporate P. nigrum or P.
longum extracts into botanical formulations as a means of im-
proving phytochemical efficacy. This positive herb-herb interac-
tion is best exemplified by curcumin, a dietary phytochemical in
tumeric with promising chemopreventative properties but ex-
ceedingly poor oral bioavailability due to extensive CYP- and

Fig. 10 Representative methylenedioxyphenyl-
containing phytochemicals present in Schisandra
species.

Schisantherin D

UGT-mediated metabolism [294-295]. When administered with
5mg of piperine, a twofold increase in curcumin AUC was ob-
served in healthy volunteers [294]. In another study, 20 mg of pi-
perine produced an almost 20-fold increase in curcumin AUC
[296]. Similar bioavailability enhancing effects on green tea poly-
phenols have also been reported [297]. As an added benefit to en-
hancing phytochemical bioavailability, piperine also has a broad
safety profile [260].

When used in quantities typical for flavoring food, black pepper
is not likely to affect the disposition of most medications. Howev-
er, excessive use of black pepper or intake of dietary supplements
formulated with P. nigrum or P. longum extracts may produce
clinically significant interactions with drugs. This may be of par-
ticular concern when CYP3A and/or ABCB1 substrates are in-
gested concomitantly with piperine or piperamides in excess of
10 mg.

Interaction risk: high.

Schisandra spp.

Preparations of fruits from woody vines in the family Schisandra-
ceae are a staple in traditional Chinese, Japanese, and Russian
medicine [298]. Among their many uses, berry extracts of Schi-
sandra species [Schisandra chinensis (Turcz.) Baill. and S. sphenan-
thera Rehder & E.H. Wilson] are often prescribed for their adap-
togenic and hepatoprotective properties [298,299]. In the United
States, extracts of S. chinensis and S. sphenanthera are often incor-
porated into multicomponent dietary supplement formulations.

A host of unique MDP-PSMs including gomisins A-C, schisandrin,
schisandrol B, and schisantherin D are found in Schisandra species
(CFig. 10). Like many MDP-PSMs, those present in Schisandra
species are modulators of mammalin XMEs and transporters. Rec-
ognition of these properties is important as Schisandra products
are often taken in conjunction with conventional medications in
China, Japan, Russia, and other Asian countries. In addition, die-
tary supplements containing Schisandra extracts are becoming
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more popular in many Western cultures. This too may increase
the chance of Schisandra-related herb-drug interactions.

Ample evidence points to Schisandra MDP-PSMs as both sub-
strates and inhibitors of ABC efflux transporters in vitro [300-
306]. A number of in vitro studies also point to Schisandra MDP-
PSMs as both competitive and noncompetitive inhibitors of mu-
rine and human CYP isoforms [307-312]. In particular, gomisins
B, C, and G were shown to be particularly effective inhibitors of
human CYP3A4 with ICsq values < 1.5 uM [308]. In the presence
of NADPH, gomisin C’s inactivation of CYP3A4 was time- and con-
centration-dependent, as well as irreversible, characteristics in-
dicative of mechanism-based inhibition. Moreover, the inhibitory
effect of gomisin C was stronger than that of ketoconazole, a
known potent CYP3A4 inhibitor [308]. In contrast, reporter gene
assays demonstrated that S. chinensis extracts and its constitu-
ents, schisandrin and schisandrol, activated rat and human PXR
[310], whereas certain natural gomisin H analogues (e.g., tigloyl-
gomisin H, angeloylgomisin H) significantly activated phase Il de-
toxification gene expression via the Nrf2 nuclear receptor path-
way [313].

Of the available animal studies investigating Schisandra’s effect
on xenobiotic metabolism, two outcomes emerged (inhibition or
induction), each dependent upon the duration of administration.
When single doses of Schisandra extracts (<250 mg/kg) were ad-
ministered to rats concomitantly with CYP3A and/or ABCB1 sub-
strates (e.g., midazolam [311], nifedipine [309], paclitaxel [314],
tacrolimus [312]), drug AUCs more than doubled, suggesting inhi-
bition. However, when administration periods exceeded 6 days,
rat XME and transporter function were consistently induced
[310,311,315,316].

Unlike the murine study results, prospective clinical trials assess-
ing Schisandra’s effect on CYP3A and/or ABCB1 substrate phar-
macokinetics were not biphasic. Whether Schisandra was admin-
istered once or for up to 14 consecutive days, AUCs of talinolol
(ABCB1 substrate) [172], tacrolimus (CYP3A4/ABCB1 substrate)
[317,318], and midazolam (CYP3A4 substrate) [319] were in-
creased 1.5-, 2.1-, and 2.0-fold, respectively. Based on these data,

it appears that Schisandra is a potent inhibitor, not an inducer, of
human XMEs and transporters. Such species differences may
stem from the fact that humans not only received lower mg/kg
doses of Schisandra, but that gomisin C concentrations necessary
for PXR activation in humans are twice those required for murine
species [311]. Accordingly, the clinical data currently available
strongly suggests that Schisandra extracts pose a significant risk
for elevating blood levels of drugs that are CYP3A and/or ABCB1
substrates.

Interaction risk: high.

Milk Thistle

v

Silybum marianum L. Gaertn. (family Asteraceae), commonly
known as milk thistle, is an herbaceous plant native to the Medi-
terranean region, although it has been naturalized throughout
the world [320]. Extracts of milk thistle fruits (achenes) yield a
collection of flavanolignans and flavonoids collectively known
as silymarin [320,321]. The principal phytochemical components
in silymarin are silybin A, silybin B, isosilybin A, isosilybin B, sily-
christin, isosilychristin, silydianin, and taxifolin [321] (© Fig. 11).
Milk thistle extracts are touted for their antioxidant and hepato-
protectant properties, and their utility as therapy for treating
various liver diseases (e.g., cirrhosis, hepatitis, hepatotoxicity)
has been examined in numerous clinical trials [322-326]. While
many smaller trials have revealed improvements in various clini-
cal indicies, several larger studies have yielded equivocal results.
However, an unequivocal conclusion gleaned from the clinical
studies is that milk thistle has an excellent safety profile [322-
326].

Milk thistle is one of the few popular botanicals in which the
pharmacokinetic profile of its principal phytochemicals has been
thoroughly examined in humans [327-331]. Components of
standard milk thistle extracts, as a general rule, have very low
oral bioavailability and short elimination half-lives. This stems
from a combination of the poor water solubility of silymarin phy-
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tochemicals coupled with extensive presytemic metabolism
(both phase I and II) and biliary secretion. As an example, Cpax
values for unconjugated silybin A and B (the two most prevalent
flavanolignans in milk thistle products) rarely exceeded 20 ng/
mL for single 600 mg doses of milk thistle extract in healthy vol-
unteers [330]. Even when milk thistle extract (700 mg) was ad-
ministered every 8 hours for 7 days, the maximum steady state
concentrations of silybin A and B rarely exceeded 1.5pug/mL
[331]. At doses exceeding 1500 mg daily, there was also evidence
of nonlinear pharmacokinetics [331]. Liver disease, however,
does increase milk thistle flavanolignan exposure. Systemic con-
centrations of silybin and isosilybin diastereomers may be 3-5-
fold higher in patients with cirrhotic or nonalcoholic fatty liver
disease, which may account for milk thistle’s purported efficacy
in these populations [329,331].

Given its popularity as one of the most utilized botanical supple-
ments in the world, milk thistle’s ability to modulate human
XMEs and transporters has received considerable attention. A va-
riety of in vitro methodologies have been utilized to assess the ef-
fect of milk thistle extracts or individual flavanolignans on XME
[10,36,37,112,332-340], ABC efflux transporter [36,37,112,
337,341-346], and SLC1B1 uptake transporter [347] activity.
The majority of studies are in general agreement that flavanolig-
nan concentrations in excess of 10 uM are required for inhibition
of most CYP isoforms, and even higher concentrations are needed
for ABCB1 and ABCG2 inhibition. Of all the CYP isoforms tested,
CYP2C9 appears to be the most sensitive with ICsg values ~8 pM
for human liver microsomes. At concentrations exceeding 30 uM,
silybin diastereomers have been reported to function as mecha-
nism-based inhibitors of CYP2C9 and 3A4 [336]. UGT1A1, how-
ever, may be the XME most easily inhibited by milk thistle with
an ICsq value of 1.4 uM [336]. SLC1B1 also exhibited an ICsq value
less than 4 uM for silymarin [347].

Because milk thistle flavanolignans exhibit poor oral bioavailabil-
ity, several technologies have been employed to enhance this
property [348]. One of the more successful has been complexa-
tion of silymarin components with phosphatidylcholine. Mar-
keted as Silipide® and Siliphos®, these phosphatidylcholine com-
plexes, or phytosomes, exhibit improvements in flavanolignan
bioavailability three to five times those of conventional milk this-
tle extract formulations [348-352]. In addition, recent clinical
studies in prostate cancer patients have shown that doses of Sili-
phos® ranging from 2.5 to 20 grams daily for up to 4 weeks pro-
duced Cpax values between 10 and 100 pM for unconjugated sily-
bin diastereomers [353,354]. Conceivably, these concentrations
are sufficient for inhibition of various XMEs and efflux transport-
ers, and episodes of hyperbilirubinemia reported in these studies
may indeed reflect inhibition of UGT activity [353,354].

To date, a considerable number of prospective human studies
have examined milk thistle’s drug interaction potential. Supple-
mentation regimens utilizing standard milk thistle extracts had
no observable effects on the clinical pharmacokinetics of amino-
pyrine (nonspecific CYP probe) [355], caffeine (CYP1A2 probe)
[50], chlorzoxazone (CYP2E1 probe) [148], debrisoquine (CYP2D6
probe) [49,50], digoxin (ABCB1 substrate) [11], indinavir (CYP3A4
substrate) [356-358], irinotecan (CYP3A4/UGT1A1 substrate)
[359], midazolam (CYP3A4 probe) [12,50], nifedipine (CYP3A4
substrate) [360], phenylbutazone (nonspecific CYP probe) [355],
ranitidine (CYP3A4/ABCB1 substrate) [361], and rosuvastatin
(ABCB1/SLC1A1 substrate) [347]. Taken together, these findings
imply that standard milk thistle products generate flavanolignan
concentrations in vivo that are incapable of affecting most human

XMEs and transporters. However, a few clinical studies challenge
this assumption. For example, 14 days of silymarin supplementa-
tion (140 mg thrice daily) increased the AUC of talinolol (ABCB1
substrate) in healthy volunteers by 36% (a finding suggestive of
ABCB1 inhibition); however, this effect is not considered clinical-
ly relevant [362]. In contrast, 140 mg of silymarin administered
to healthy adults for 9 days reduced the mean AUC for metronida-
zole (CYP3A4/ABCB1 substrate) by 29% [363], and while this ef-
fect hints at possible induction, it too is of little clinical concern.
More concerning is a recent finding that silymarin inhibits the
metabolism of losartan to its active metabolite E-3174, and that
the magnitude of the interaction is dependent upon CYP2C9 ge-
notype [364]. In subjects with the CYP2C9*1/*1 genotype, a 14-
day course of silymarin produced a 2-fold increase in losartan
AUC and Cyay, but these parameters were not affected in subjects
with the CYP2C9*1/*3 genotype. This finding supports that of
Brantley et al. who noted that CYP2C9 appeared most vulnerable
to inhibition by clinically achievable concentrations of silybin B
[340].

At present, no prospective studies have examined the effects of
phytosomal milk thistle preparations on the pharmacokinetic
profiles of conventional medications. As such, it remains to be
seen whether milk thistle products with enhanced bioavailability
pose a greater risk for herb-drug interactions. A recent clinical
trial of Siliphos® for treatment of chemotherapy-related hepato-
toxicity in childhood acute lymphoblastic leukemia suggests oth-
erwise, as investigators observed no adverse interactions be-
tween milk thistle and methotrexate, 6-mercaptopurine, or vin-
cristine during the 28-day course of supplementation [365].
Therefore, based upon the existing clinical data, the drug interac-
tion risk for milk thistle products appears minimal.

Interaction risk: low.

St. John’s Wort

v

With more than 2000 peer-reviewed articles published on its
safety and efficacy, St. John's wort (Hypericum perforatum L.;
family Clusiaceae) is the most studied botanical dietary supple-
ment in the world. Hypericum perforatum is a yellow-flowering,
perennial herb indigenous to Europe that has been introduced to
many temperate areas of the world and grows wild in many
meadows. The common name comes from its traditional flower-
ing and harvesting on 24 June, the birthday of John the Baptist
(St.John's Day).

Extracts of H. perforatum have gained international recognition
for their antidepressant activity although the efficacy of many
St. John’s wort (SJW) products remains questionable [366].
Nevertheless, many clinical trials have demonstrated efficacy su-
perior to placebo and comparable to standard antidepressants
but with fewer side effects than conventional antidepressive
agents [367]. When used as a single agent, a favorable risk/bene-
fit ratio has made St. John’s wort one of the most readily con-
sumed dietary supplements in the world. In turn, the popularity
of SJW has also contributed to its distinction as being one of the
most problematic dietary supplements with regard to herb-drug
interactions.

Both the antidepressant effect and drug interaction potential of
SJW hinge upon the extract’s content of hyperforin, a bicyclic poly-
prenylated acylphloroglucinol found exclusively in Hypericum
species [368] (© Fig. 12). As an antidepressant, hyperforin func-
tions as broad-based neurotransmitter reuptake inhibitor, affect-
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Fig. 12 Representative phytochemicals (phloroglucinols, napthodianthrones, flavonoid glycosides) present in St. John’s wort.

ing the synaptosomal uptake of serotonin, dopamine, norepi-
nephrine, glutamate, and gamma-aminobutyric acid with similar
efficiency. Hyperforin’s mode of action appears unique in that the
phytochemical does not interact directly with uptake transporters
but elevates intracellular sodium concentration, thereby inhibit-
ing gradient-driven neurotransmitter reuptake [368]. As previ-
ously mentioned in Part 1 of this review, recent investigations re-
veal that hyperforin and other SJW-related phytochemicals (e.g.,
adhyperfroin, hypericins, flavanol glycosides) act synergistically
through both pharmacodynamic and pharmacokinetic mecha-
nisms to alleviate depression [369].

While recognized as a natural antidepressant, SJW is equally well
known for its ability to induce the activity of several XMEs and
transporters, thereby reducing the efficacy of a multitude of pre-
scription medications. As discussed in Part 1 of this review, the
clinical severity of SJW-mediated interactions was first recog-
nized in 1999-2000. At that time, several clinics around the
world reported that concomitant use of SJW and cyclosporine
produced dramatic reductions in blood levels of the immunosup-
pressant among organ transplant recipients resulting in graft re-
jection. Since that time, a plethora of clinical studies have borne
out SJW’s effect on the pharmacokinetics of various medications
[370-374].

Hyperforin, a principal mediator of SJW’s antidepressive action,
lies at the heart of the herb’s drug interaction potential. The
prenylated phloroglucinol is a high-affinity ligand for human PXR,
an orphan nuclear receptor selectively expressed in the liver and
intestine that mediates the induction of XME and efflux transport-
er gene transcription [375-377]. According to one estimate, hy-
perforin is the most potent PXR activator discovered to date
[375], with a half-maximal effective concentration (ECsg) of
23 nM - a value well below plasma concentrations often achieved
in humans (~100-300nM) [378,379]. (Unlike many of the
unique phytochemicals described previously, hyperforin is bio-
available and exhibits an elimination half-life of 8-12 hours, thus
allowing for significant accumulation with repeated dosing [378,
379].) Of the XMEs and transporters regulated by PXR, those most
affected by SJW are CYP subfamilies 2C and 3A as well as several
ABC efflux transporters [370-373]. As a result, more than 70% of
all prescription medications are susceptible to SJW-mediated in-
teractions, the consequences of which are decreased oral bio-
availability, enhanced systemic clearance, and reduced drug effi-
cacy.

As with all botanicals, phytochemical content can vary consider-
ably and such is the case with hyperforin [380,381]. Most SJW ex-
tracts are currently standardized to contain 3% hyperforin, yet
many brands may possess amounts well below this value. Several
clinical studies have demonstrated that SJW extracts containing
less than 1% hyperforin are less likely to produce clinically rele-
vant herb-drug interactions [381-384]. Unfortunately for con-
sumers, few SJW products are specifically labeled as having low
hyperforin content. Accordingly, to avoid significant drug interac-
tions, consumers should avoid concomitant use of SJW and pre-
scription medications.

In addition to content variability, another factor affecting the
magnitude of hyperforin’s effect on CYP3A expression and drug
efficacy is PXR haplotype. Like many CYPs, PXR is polymorphic,
and certain mutations produce significant functional defects in
terms of CYP3A transcription. Recent studies indicate that indi-
viduals with the H1/H1 haplotype pair appear more susceptible
to SJW-mediated CYP3A induction than subjects with H1/H2 or
H2/H2 pairings [385]. Furthermore, once SJW has been discon-
tinued, as much as a week may be required before CYP3A activity
returns to basal levels [386].

SJW’s penchant for producing herb-drug interactions has been
scrutinized in several recent reviews [370-374]. © Table 1 sum-
marizes those drugs in which SJW produces clinically significant
interactions.

Interaction risk: high.

Conclusions and Future Perspectives

v

Humans possess a complex system of gastrointestinal XMEs and
transporters that are proficient at precluding absorption and fa-
cilitating elimination of numerous structurally diverse dietary
phytochemicals. As a result, most botanical dietary supplements
pose only minimal risks for modulating human drug metabolism.
However, several distinct PSMs can either inactivate or highjack
the controls of this innate gastrointestinal defense network.
MDP-PSMs, functioning as mechanism-based inhibitors of CYPs,
may potentiate the toxicity of allopathic medications, whereas
potent nuclear receptor ligands like hyperforin may dramatically
reduce drug efficacy. What differentiates these PSMs as signifi-
cant modulators of human drug disposition from the multitude
of others is their combination of favorable physicochemical prop-
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Table 1 Drug interactions with St. John’s wort confirmed in human studies.

Drug category Effect of SJW on drug conc. Reference

Antianginals

Ivabradine decrease plasma level of drug [389]

Antiarrhythmics

Digoxin decrease plasma level of drug [49,390-392]

Anticoagulants

Warfarin decrease plasma level of drug [168,216]

Anticonvulsants

Mephenytoin decrease plasma level of drug [393]

Antidepressants

Amitriptyline decrease plasma level of drug [391]

Antifungals

Voriconazole decrease plasma level of drug [394]

Antihistamines

Fexofenadine mixed, generally decreases [395-397]
plasma level of drug

Antihyperlipidemics

Simvastatin decrease plasma level of drug [398]

Atorvastatin decrease plasma level of drug [399]

Anxiolytics

Midazolam decrease plasma level of drug [90,98,384,386,

395,397,400]

Alprazolam decrease plasma level of drug [401,402]

Quazepam decrease plasma level of drug [403]

Antivirals

Indinavir decrease plasma level of drug [356]

Nevirapine decrease plasma level of drug [404]

B-adrenergic blockers

Talinolol decrease plasma level of drug [405]

Calcium channel blockers

Verapamil decrease plasma level of drug [406]

Nifedipine decrease plasma level of drug [153,385]

Cancer chemotherapeutics

Irinotecan decrease plasma level of drug [407]

Imatinib decrease plasma level of drug [408,409]

Hormonal contraceptives

Ethinylestradiol decrease plasma level of drug [410-412]

Norethindrone decrease plasma level of drug [410,411]

Ketodesogestrel decrease plasma level of drug [412]

Hypoglycemic drugs

Cliclazide decrease plasma level of drug [413]

Immunosuppressants

Cyclosporine decrease plasma level of drug [395,414-416]

Tacrolimus decrease plasma level of drug [417-419]

Opioids

Methadone decrease plasma level of drug [420]

Proton pump inhibitors

Omeprazole decrease plasma level of drug [421]

Skeletal muscle relaxants

Chlorzoxazone decrease plasma level of drug [90,98]

5a-reductase inhibitors

Finasteride decrease plasma level of drug [422]

erties and unique pharmacophores. As discussed in previous sec-
tions, many PSMs modulate human XMEs and transporters in vi-
tro, but due to various factors, this activity is rarely realized in
vivo.

Recognizing that poor dissolution characteristics represent major
obstacles to phytochemical bioavailability and efficacy, several
dietary supplement manufacturers have recently incorporated
novel methods of formulating botanical extracts as a means of
improving oral absorption [387,388]. Such innovative formula-
tion technologies include liposomes, self-emulsifying microemul-

sions, microspheres, phosphatidylcholine complexation (phyto-
somes), and nanoparticles, as well as the incorporation of piperine
as a CYP3A4 and ABCB1 inhibitor [387,388]. In each instance,
when compared to conventional extract formulations, the oral
bioavailability of various phytochemicals can be increased sev-
eral fold. To date, no clinical assessments of the herb-drug inter-
action potential of botanical extracts incorporating these novel
formulations have been reported. Accordingly, many botanicals
whose drug interaction potential is minimized when adminis-
tered as conventional dry extracts may increase significantly
upon ingestion of formulations utilizing novel delivery systems.
Phytochemicals that heretofore had been casualties of man’s
xenobiotic defense system may emerge as inducers and/or inhib-
itors of human XMEs and transporters. Improved phytochemical
delivery, therefore, may open up a new theater of operations in
the “drug war” between humans and plants.

Currently, thousands of botanical supplements are available in
the United States and abroad, and hundreds of new products are
introduced onto the market each year. Not surprisingly, the vast
majority of these botanicals have yet to be evaluated in a clinical
setting. From a practical perspective, most may not warrant clin-
ical study; logistics alone clearly preclude such an endeavor.
Nevertheless, in vitro studies and compelling case reports suggest
that many more botanical supplements may indeed be potent
modulators of human drug disposition.
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