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PREFACE

This book is written for the pharmacokineticist who

performs pharmacokinetic-pharmacodynamic modeling

and is occasionally asked to model data that may have

nothing to do with pharmacokinetics, but may be

important in other areas of drug development. The em-

phasis of this book is on modeling in drug development

since that is my own area of expertise and because

ultimately all pharmacokinetic-pharmacodynamic mod-

eling is applied to the therapeutic use of drugs in clinical

practice. Throughout this book, pharmacokinetic and

pharmacodynamic models will be used without deriv-

ation and little in the way of explanation. It is expected

the reader has basic knowledge of pharmacokinetics and

simple pharmacodynamic models. If not, the reader is

referred to Gibaldi and Perrier (1982), Wagner (1993), or

Shargel and Yu (1999) for background material. The

reader is also expected to have had a 1-year introductory

course in statistics that covers basics of probability,

regression, and analysis of variance. A 1-semester course

in matrix algebra is desired but not needed.

The material in this text begins with a broad over-

view of modeling, which I call ‘The Art of Modeling’.

This chapter is meant to introduce some of the broad

topics associated with modeling, such as model selection

criterion, model validation, the importance of good

communication, and ethics. The next chapter is linear

regression, which is the foundation for most parametric

modeling. From there nonlinear regression is covered,

followed by variance models, weighting, and transform-

ations. Lastly, case studies in linear and nonlinear

models are presented to illustrate the theory that was

presented in the previous chapters. In the material pre-

sented to this point, a key assumption is that each sub-

ject contributes a single observation to the data set.

Next, the book moves to mixed effects models, which

allow for multiple observations to be measured on the

same individual. The next chapter is linear mixed effects

models, which is meant as a brief introduction to the

topic. Next is the theory of nonlinear mixed effects

models, which form the foundation for population phar-

macokinetic-pharmacodynamic modeling. This is fol-

lowed by a chapter on practical issues in nonlinear

mixed effects modeling, such as how weight, genetic, or

racial information is incorporated into a model. The last

chapter in this section presents some case studies on

population pharmacokinetic-pharmacodynamic model-

ing. A key concept in this book is the inter-relatedness

between the material. For example, nonlinear mixed

effects models are simply extensions of linear mixed

effects models, which are themselves extensions of

linear models, etc. Thus, in order to understand the

more complex chapters, it is necessary to understand

the foundation material, e.g., what is a variance model

and how are they used, how can a linear covariate

model be built into a nonlinear mixed effects model, etc.

I wrote this book to be as reader-friendly as pos-

sible. Those parts of the book that are non-technical are

written in an almost conversational tone with anecdotes

and interesting quotes interspersed throughout. I love

quotations and each chapter begins with one I thought

especially poignant about the forthcoming material in

the chapter. When mathematics are needed, I tried to



make those sections self-contained. Variables are defined

in each chapter so the reader does not have to search for

‘‘now what is G again?’’

John of Salisbury (1115–1180), a twelfth century

English philosopher and historian, once wrote:

We are like dwarves sitting on the shoulders of

giants. We see more, and things more distant than

they did, not because our sight is superior or because

we are taller than they, but because they raise us up,

and by their great stature add to ours.

I would like to thank the many giants that helped

me understand things I was unclear about during the

writing of this text and the reviewers that took the time

to read the chapters and offer their opinions on how

each could be improved. Without your help I would

have been lost in many places. I would like to ask that

if you do spot any mistakes or typographical errors to

please contact me at peter.bonate@gmail.com.

I would also like to thank my wife, Diana, for her

encouragement and my children, Robyn and Ryan, for

reminding me that there is indeed more to life than

writing ‘‘Daddy’s Big Book of Science’’, which is what

they called this while I was writing it.

Peter L. Bonate

Genzyme Corporation

San Antonio, Texas

June 2005
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Chapter 1
The Art of Modeling

Drawn by my eager wish, desirous of seeing the

great confusion of the various strange forms created

by ingenious nature, I wandered for some time

among the shadowed cliffs, and came to the en-

trance of a great cavern. I remained before it for a

while, stupefied, and ignorant of the existence of

such a thing, with my back bent and my left hand

resting on my knee, and shading my eyes with my

right, with lids lowered and closed, and often bend-

ing this way and that to see whether I could discern

anything within; but that was denied me by the great

darkness inside. And after I stayed a while, suddenly

there arose in me two things, fear and desire—fear

because of the menacing dark cave, and desire to see

whether there were any miraculous things within.

—Leonardo da Vinci (1452–1519), Renaissance

scientist and philosopher

INTRODUCTION

The focus of this book is primarily on the develop-

ment of pharmacokinetic and pharmacokinetic-pharma-

codynamic models. Models that are reported in the

literature are not picked out of thin air. Useful models

take time and effort and what is rarely shown is the

process that went into developing that model. The pur-

pose of this chapter is to discuss model development, to

explain the process, and to introduce concepts that will

be used throughout this book. Those criteria used to

select a model extend to whether the model is a linear

model or a nonlinear mixed effects model and that is

why this material is provided first. If the reader can

understand what makes a good or validated model,

then the particular type of model is irrelevant.

WHAT IS A MODEL AND WHY ARE THEY MADE?

A system is a collection of objects that interact to

create a unified whole, such as a cell culture system, a

rat, or a human. The type of models that are of interest

in this book are mathematical models that represent the

system of interest and ‘‘can be used to explore the struc-

ture and behavior of the system’’ (Wastney et al., 1997). A

more simplistic definition might be that a mathematical

model defines how you think your data were generated.

Most famous mathematical models can be found in

chemistry and physics, such as:

. Boyle’s law, PV ¼ constant, which states that

for a given mass at fixed temperature the pres-

sure (P) times the volume (V) of a gas is a

constant;

. Newton’s second law of motion, F ¼ ma, which

states that the force (F) acting on an object is

equal to its mass (m) times its acceleration (a);

and

. E ¼ mc2, perhaps the most famous equation of

the last century, which most people believe has

to do with Einstein’s theory of relativity, but in

actuality has nothing to do with it. This equa-

tion is founded on the basis that matter and

energy are really different forms of the same

thing and states that that the amount of energy

(E) that could be produced is equal to the mass

(m) of an atom times the speed of light (c)

squared.

1



Mathematical models in biology tend to be more com-

plex, but are all based on the same foundations used to

develop models in the more physically oriented sciences.

In defining a mathematical model it is helpful to

distinguish between the various components of the

model. Models are built using experimentally derived

data. This so-called data generating process is dependent

on system inputs, system dynamics, and the device used

to measure the output from a system (Fig. 1.1). But in

addition to these systematic processes are the sources of

error that confound our measurements. These errors

may be measurement errors but also include process

noise that is part of the system. One goal of mathemat-

ical modeling is to differentiate the ‘‘information’’ or

systematic component in the system from the noise or

random components in the system, i.e.,

DATA ¼ SYSTEMATIC COMPONENTþ ERROR:

Hence, models usually consist of a structural model or

systematic component plus a statistical model that de-

scribes the error component of the model. Early in the

modeling process the focus may lie with the systematic

component and then move to a more holistic approach

involving the error components. For example, the 1-

compartment model after bolus administration is

C ¼ D

V
exp �CL

V
t

� �
þe: (1:1)

The first term on the right hand side of Eq. (1.1) is

the structural model having two inputs (also called

independent variables), D (dose) and t (time), and one

output (also called the dependent variable), C (concen-

tration). The variables V (volume of distribution) and

CL (clearance) are referred to as model parameters

which must be estimated from the observed concentra-

tion data. The second term in Eq. (1.1) is the error

component (also called the variance model). e represents
the deviation between model predicted concentrations

and observed concentrations.

Modeling is done for a number of reasons depend-

ing on the point of view. Scientifically, modeling ‘‘pro-

vides a systematic way of organizing data and

observations of a system at the cell, tissue, organ, or

whole animal (human) levels’’ and ‘‘affords the oppor-

tunity to better understand and predict physiological

phenomena’’ (Epstein, 1994). Financially, companies

utilize modeling as a way to better leverage business

decisions and this has been shown to result in substantial

cost savings over traditional experiments (Van Buskirk,

2000). And on a personal level, modelers model because

it’s fun and challenging.

Beyond characterizing data, once a model is devel-

oped, it can be used to answer ‘‘what if ’’ questions—a

process known as simulation. Hence, modeling and

simulation (M&S) are often used in the same breath

by modelers. But there are many important differences

between modeling and simulation. A model looks back

in time. Given a set of outputs (data), the model

attempts to find a set of parameters that explain the

data generating process. Simulation looks forward in

time. Given a model and a set of parameters, what

happens if the inputs are varied. In simulation, the

model is fixed and the inputs are varied. In modeling,

the inputs and outputs are fixed, but what happens in

between is varied. More about the differences between

M&S will become evident using examples throughout

the book.

The implementation of mathematics into biology,

physiology, pharmacology, and medicine is not new, but

its use has grown in the last three decades as computer

speeds have increased and scientists have begun to see

the power of modeling to answer scientific questions. A

conference was held in 1989 at the National Institutes of

Health called ‘‘Modeling in Biomedical Research: An

Assessment of Current and Potential Approaches.’’

One conclusion from that conference was that ‘‘biomed-

ical research will be most effectively advanced by the

continued application of a combination of models—math-

ematical, computer, physical, cell, tissue culture and ani-

mal—in a complementary and interactive manner.’’

System
dynamics

Exogenous
measurement

systemOutput

Measured
data

Measurement
errors

Process noise
and/or

Modeling noise

Inputs

Figure 1.1 Diagram of the system under study. Redrawn with from DiStefano and Landaw (1984). Reprinted with permission from The American
Physiological Society, Copyright 1984.
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Today, the interplay between these different types of

models has never been greater. As scientists become

more ‘‘mathletic’’ and as the drive to decrease the use

of living animals in medical research increases, math-

ematical models will play an increasingly important

part of medical research.

The use of modeling in drug development, for

which many of the examples in this book have been

culled, is also becoming increasingly important. Aarons

et al. (2001) and Balant and Gex-Fabry (2000) present

comprehensive reviews on the applications and use of

M&S in drug development. The cost to develop a new

drug in 2003 was estimated at 802 million dollars

(DiMasi, Hansen, and Grabowski, 2003). Clearly, drug

companies must find ways to reduce costs and expedite

getting a drug to market. Two recent papers written by

financial advisors suggest that M&S will play a ‘‘vital

role’’ in drug development by enabling scientists to pre-

dict how drugs will act in whole systems, organs, and at

the sub-cellular level, to predict clinical trial outcomes

before they are actually conducted, and to adapt clinical

trials on the fly as patient data is accumulated without

compromising its statistical validity, thereby lowering

costs and potentially speeding development (IBM Busi-

ness Consulting Services, 2003; PricewaterhouseCoo-

pers, 1999).

These reports also criticize the pharmaceutical in-

dustry for slowly adopting M&S as a research and de-

velopment tool. Perhaps drug companies have failed to

routinely implement M&S as part of the development

process because modelers have failed to show that the

methodology can indeed lower the cost of drug develop-

ment, expedite development time, or result in faster and

more efficient approval times by regulatory agencies.

Thankfully, regulatory agencies have issued recent

guidances advocating a more integral role for M&S in

the development process through the establishment of

exposure-response relationships thereby forcing drug

companies to increase the role of M&S in the develop-

ment of drugs (United States Department of Health

and Human Services et al., 2003). Currently, however,

M&S groups within industry tend to be fringe or splinter

groups, usually within the clinical pharmacology or

clinical pharmacokinetics department, that operate spor-

adically on drug development projects or in cases where

they are called in to ‘‘save’’ failed clinical trials. But, if

the financial advisors are correct, then the role of M&S

in drug development will only increase over time, to the

benefit of those who love to model and to the company

as well.

One theme that will be stressed throughout this

book is the concept that there is and can never be a

true model for a biological system. Biological systems

are inherently nonlinear of potentially infinite dimension

with feedback loops, possibly circadian variation, and

are exceedingly complex with sometimes very tight con-

trol. It is folly to think that given the limited number of

subjects and number of observations collected per sub-

ject in clinical or preclinical studies that the true model

could be uncovered and its parameters estimated with

any degree of precision. No modeler could ever develop

a model with the degree of precision that explains such a

system in the presence of the many uncontrolled vari-

ables that influence the data generating process. How-

ever, it may be possible that a reasonable approximation

or simplification to the true data generating model could

be developed.

Because the true model can never be identified,

there can never be a ‘‘right’’ model. Box (1976) stated,

in one of the most famous adages in pharmacokinetics,

that ‘‘all models are wrong, some are useful.’’ This quote is

made time and again, yet it is not uncommon to hear

pharmacokineticists talk about the ‘‘right model’’ or

even worse ‘‘the wrong model.’’ All models are

wrong—there is no right model. Granted some models

are better than others, but models are really in the eye of

the beholder. A modeler may choose one model over

another, especially when the model is complex, because

along the model development process there are many

forks in the road. One modeler may choose one path,

whereas another may choose another path. At the end of

the process, each modeler may have a model that

is different from the other modeler, each with equal

credibility. So which model is the right model? Well,

neither is.

There is a famous film director from Japan named

Kurosawa who directed a movie called Rashomon

(1950). The story itself is violent, involving rape and

murder, but is told in flashbacks from the point of

view of each of the participants. With each narrator

the characters are essentially the same, as are most of

the details, but each person’s story is different. In the

end, Kurosawa never reveals what truly happened. The

point is that reality is relative. Each modeler views a

model from a different point of view, each of which

may be a valid interpretation of the data, none of

which may be correct. In Rashomon, all the presenters

could be telling the truth or none of them could be telling

the truth. This is called the Rashomon effect—there may

be a multitude of models that describe a set of data

giving the same degree of predictability and error (Brei-

man, 2002). The tendency in our profession to use the

phrase ‘‘the right model’’ needs to be changed. Should

the term ‘‘better model’’ be used? ‘‘Is there a better

model?’’ ‘‘Model A is better than Model B.’’ Consider

the case where a model is developed. New data is

collected and the original model is revised to explain

the new data. Does the development of the second
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model mean that the first model was wrong? Certainly

not, it means the second model is better.

It is unfortunate that as a profession we choose

to sabotage ourselves with a poor choice of words

to professionals outside our field. We need to move be-

yond using the phrase ‘‘the right model’’ since those

outside our profession may not understand the nuances

between ‘‘the right model,’’ ‘‘the best model,’’ ‘‘a

better model,’’ or ‘‘the wrong model.’’ In doing so,

we will avoid confusion and add credibility to our results.

MODELING AS PROBLEM SOLVING

Modeling is an exercise in problem solving and

there are steps that can be taken to maximize the prob-

ability of solving the problem. The following outlines the

steps for effective problem solving:

1. One of Steven Covey’s ‘‘7 Habits for Highly

Effective People’’ (1989) is to ‘‘begin with the end in

mind.’’ This is a good modeling advice. Recognize and

define the problem. Define your destination before you

go off on a modeling adventure. What use do you want

your model to serve? If you are part of a team, such as a

project team in a pharmaceutical company, get team

members to agree to the problem and how you have

defined it before you go off to solve it.

2. Analyze the problem. What data are available

to solve the problem? Given the data available can the

problem be solved? Has proper attention to study design

and data collection been done to achieve the objective?

Question whether a model is even necessary. Perhaps a

noncompartmental analysis of the data will suffice in-

stead. If the goal is to model multiple-dose data from

single dose data, then something simple like the super-

position principle may be useful.

3. Identify alternative solutions. Review past

solutions for current problems. Perhaps something that

you are trying to do has already been done and reported

in the literature for a different drug. Sometimes it is

possible to break a complex problem into a series of

simpler problems. Sometimes you will need to be cre-

ative though and possibly need to brainstorm with

others.

4. Evaluate the possible solutions.Define criteria for

choosing a solution. Is time more important than cost?

What is the most cost- and time-effective alternative to

answer the question? Understand who will use the results

and what will be the best way to communicate those

results. Perhaps modeling is not the optimal solution.

5. Decide on a solution, keeping in mind that rarely

will any single solution be perfect. Identify limitations of

all proposed solutions.

6. Visualize the steps needed to get there. We have

all heard stories of how great athletes visualize a race

or a game beforehand to provide a competitive edge

over their opponents. They visualize the steps leading

to winning the event, such as starting from a runner’s

block, and then visualize the actual winning of the event,

such as crossing the finish line. Modeling is no different.

For example, suppose the goal is to identify those

patient characteristics, like age, that might be predictive

of exposure for a new drug. It will be useful to plan

the steps needed to achieve the goal, such as collecting

all the relevant data, developing a pharmacokinetic

model, and then using linear regression to examine

the relationship between area under the curve

(a measure of exposure) and patient characteristics.

Having a strategy before you start will always lead

you to the finish line faster than starting without a

strategy.

7. Implement the strategy by building a solution

incrementally. Don’t try to solve the problem all at

once. If no solution can be found, try reformulating

the problem. Examine the assumptions and look for

hidden constraints. Perhaps some of the assumptions

are unnecessary or are overly complex.

8. Remember that there are other alternatives,

ones that you did not examine, so try to avoid

totally focusing on the one solution you implemented.

Take time to reflect at the completion of a project.

What hurdles occurred during the process? What would

you do differently next time if the same hurdle occurs?

What would you do differently in general?

Despite the best plans, roadblocks are often

encountered in developing complex models. For ex-

ample, a modeler may envision what the model should

look like but once the model is actually fit to the data,

the parameter estimates may be poorly estimated or the

goodness of fit of the model is poor, in which case,

another model is often needed. It is not uncommon

though for the modeler to be uncertain about what

that next model should be. Hence, the modeler encoun-

ters a mental roadblock.

Getting past the roadblock is what separates a good

modeler from a great modeler, an inexperienced modeler

from an experienced modeler. Often the solution can be

drawn from past experience from models or methods

seen in the literature. Sometimes, though, creativity

and insight are required, another aspect that makes

modeling an art. Hewlett-Packard published a short

series of on-line articles on how inventors invent. Thir-

teen of their best inventors were interviewed and asked

how they overcome roadblocks and get creative. Most

replied the same thing: switch gears and do something

else. Many replied that their creative obstacles were

4 The Art of Modeling



overcome, even inspired some said, while doing some-

thing mundane, like sleeping, showering, or simply walk-

ing down the hallway. Others thought that bouncing

ideas off colleagues were useful.

Modeling can be very rewarding to the modeler, as

is solving any complex problem. But it is easy to ‘‘spin

your wheels’’ and lose focus or get caught in obstacles

that seem insurmountable. Just remember, to remain

focused on the end result, but stay flexible and open to

new ideas that may develop during the process. As

McCullough and Nelder (1989) put it—don’t fall in

love with your models. It is easy to get ‘‘locked into’’ a

model and build a model out of pure nonsense.

TYPE OF MODELS

Models represent the system under study. But no

system is measured without error. Humans have yet to

create a device that measures something with absolute

certainty (recall Fig. 1.1). Rescigno and Beck (1987) call

the system to be studied the primary system, and what is

used to study the primary system by the investigator the

secondary system. Under these definitions, a model can

be considered a type of secondary system used to test

properties of the primary system. To form a model, a set

of inputs and outputs must be available. Inputs perturb

the system in some manner. For example, if the system

under study were a human, then administering a dose of

drug into the subject would represent the input. The

blood samples used for pharmacokinetic analysis and

any pharmacodynamic endpoints that are measured

would then represent the set of outputs. Both the inputs

and outputs cannot be measured perfectly and are sub-

ject to error, both systematic and random in nature. It is

typically assumed that the input errors are negligible.

When the input errors are not this gives rise to a special

class of models called error-in-variables models, which

will be discussed in the chapter on Linear Models and

Regression.

Models can be classified into many different cat-

egories. Using the nomenclature of DiStefano and

Landaw (1984), pharmacokinetic models can generally

be broken down into two types: models of data and

models of systems. Models of data, usually referred to

as empirical models, require few assumptions about the

data generating mechanism. Examples include allo-

metric scaling and sum of exponentials used to charac-

terize a concentration-time profile. Empirical models are

useful when little is known about the underlying phys-

ical process from which the data are generated yet one

still must make some conclusions regarding the data.

While empirical models may be useful at prediction

they should not be extrapolated.

Model of systems, or mechanistic models, are based

on physical and physiological principles and should

have as many features of the system incorporated into

the model as the data allow (Thakur, 1991). Factors

such as transport to tissues dependent on blood flow,

kinetics of receptor binding, and intracellular diffusion

processes may all play a role. These models usually take

the form of differential equations or partial differential

equations based on mass-balance, product-precursor,

or mass-action principles. Examples of mechanistic

models include physiological-based pharmacokinetic

models where the transport into and out of tissues is

modeled as a function of blood flow and permeability

between the blood and tissue. While one places greater

trust in mechanistic models because they are based on

theory, an analyst should always ask the question ‘‘What

if the theory is wrong?’’ for then a mechanistic model

may not be representing the system. Some models

may also be hybrid models, mechanistic in places

where the physiology and pharmacology of the system

are understood and empirical in places that are still

black boxes.

Models of systems can also be categorized into

various types based on the attributes of the system,

including:

. Time-variant vs. time-invariant,

. Deterministic vs. stochastic,

. Static vs. dynamic,

. Lumped vs. distributed,

. Linear vs. nonlinear, and

. Continuous vs. discrete.

Each of these categories can then be combined

into more descriptive categories, e.g., a nonlinear, time-

variant system or a static, time-invariant discrete

system.

Time-variant means that the parameters of the sys-

tem change over time, such as an autoinduction process

that increases a drug’s hepatic clearance with repeated

administration. Time-invariant or stationary parameters

do not change over time. It is typically assumed that a

drug’s pharmacokinetics are stationary over time so that

the principle of superposition1 applies. With a static

model, the output depends only on the input and does

1 Superposition was developed in physics to explain the behavior of

waves that pass simultaneously through the same region in space. In

pharmacokinetics, superposition states that concentration-time profiles

passing through the same relative region in time are additive. For

example, if two doses are taken 24 hours apart and the concentration

6 hours and 30 hours after the first dose was 100 and 10 ng/mL,

respectively, then the concentration 6 hours after the second dose

(which is 30 hours after the first dose) would be equal to 110 ng/mL

(100 ng/mL þ 10 ng/mL). Thron (1974) presents a comprehensive

review of linearity and the meaning of superposition.
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not vary over time. In the analysis of kinetic systems,

static models are restricted to steady-state conditions

and one example is the physiological modeling of circu-

latory systems. In contrast, the output of a dynamic

system changes over time. In a lumped system, the vari-

ous organs are ‘‘lumped’’ into single groups. The classic

example is a compartmental system. In a 1-compartment

model the entire body is treated as a single compartment.

In a 2-compartment model the richly perfused organs

are treated as the central compartment with the slowly

perfused, poorly distributed organs, like fat and skin,

treated as the peripheral compartment. In a distributed

system, the spatial aspects of a system are built into the

model. Rarely are these seen in the pharmacokinetics

field since their solution typically requires partial differ-

ential equations, which few pharmacokineticists are

familiar with and few software packages are equipped

to solve.

All biological systems are complex, nonlinear sys-

tems. Model or function nonlinearity is defined when the

derivative of a model with respect to a model parameter

depends on any parameter in the model, such as when

clearance follows Michaelis–Menten kinetics, or when

the derivative does not exist, such as a change-point

model. Estimation of parameters in a nonlinear system

is more difficult than a linear system and often involves

numerical optimization techniques. System nonlinearity

can arise when the rate of change in a component of the

system depends on the state of another component in

the system, such as might arise when a component of

the system shows feedback. Even though nonlinearity

applies to all physiological and pharmacokinetic sys-

tems, often a useful assumption is one of linearity. For

example, the dose of a drug given may result in drug

concentrations much less than the Michaelis constant for

metabolism, in which case the system can be approxi-

mated by a linear one. Most drugs are assumed to have

linear pharmacokinetics, although some drugs, like

many anti-cancer agents, demonstrate nonlinear behav-

ior. Sometimes a nonlinear equation can be transformed

to a linear one, such as the Lineweaver–Burke trans-

formation of the Hill equation in enzyme kinetics,

although this is not recommended because the trans-

formation often distorts the distribution of the random

error component of the model (Garfinkel and Fegley,

1984).

Models are also classified into whether they are

deterministic or stochastic. Stochastic (Greek for

‘‘guess’’) systems involve chance or probability, whereas

a deterministic system does not. In a deterministic model

no randomness is assumed to be present, an assumption

that is clearly not realistic. Stochastic models assume

random variability and take into account that variabi-

lity. There is no such thing as a deterministic model—all

measurements have some error associated with them

and, as such, are stochastic models by definition. How-

ever, deterministic models are useful to understand the

properties of a system in the absence of natural vari-

ation. Simulations may be done using the systematic

component of a model to understand the behavior of

the system under different conditions.

Two types of models are usually seen in pharmaco-

kinetics: a pharmacokinetic model, which relates dose

and dosing frequency to drug concentrations, and a

pharmacodynamic model, which relates drug concentra-

tions to an effect, such as change in stomach pH, a

physiologic marker, such a glucose concentration, or

an outcome, such as absence or presence of an adverse

event. The pharmacokinetic model predicts the concen-

tration-time profile of the drug in the sampled biological

fluid, usually plasma or serum after the administered

dose. The pharmacodynamic model predicts the ob-

served effect given the concentration provided by the

pharmacokinetic model. Derendorf and Meibohm

(1999) review pharmacokinetic/pharmacodynamic rela-

tionships and provide some useful classifications for

these models. The pharmacokinetic and pharmacody-

namic model may be either mechanistic or empirical or

both.

PROPERTIES OF A USEFUL MODEL

Models are either useful or less useful. So what

makes one model more useful than another? Rescigno,

Beck, and Thakur (1987) state that models should be

judged by three points of view: retrodiction, prediction,

and understanding. Retrodiction is simply the ability to

recall what happened in an experiment—does the model

conform to the original data from the primary system,

i.e., is the model consistent with experimental know-

ledge. The model must also be predictive. What will

happen in future experiments? Lastly, does the model

increase our understanding of the primary system under

study or does the model increase our understanding of

the grand primary system. For example, suppose the

model is one of renal transport kinetics. Does the

model increase our understanding of the physiology of

the kidney? If the model does not help us decide how to

answer questions about the primary system or how it fits

into the world, the model may be of little value.

These properties reported by Rescigno, Beck, and

Thakur (1987) should, however, be treated as a minimal

set of properties for a useful model. Table 1.1 presents

some other properties of a useful model. Foremost is

that the model is actually used and even more import-

antly, is used to make a decision. Modeling for the sake

of modeling, while useful for educational purposes and
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possible publication, is of no practical value if the model

is not used by anyone. Second, the model should be

logically consistent, which means that the model has

mathematical and biological plausibility. For example,

are the parameters related to clearance consistent with

organ blood flow? Is the pharmacodynamic model con-

sistent with the known biology of the system? Are the

parameter estimates unique, consistent, and precisely

estimated? If the parameters are not precisely defined,

certain aspects of the model may be overparameterized

or the data set itself may be insufficient to obtain precise

parameter estimates, in which case more data must be

collected.

Third, is the model validated? Model validation is a

contentious topic and will be discussed in more detail

throughout the book and later in the chapter. Some

would argue that a model is only useful if it has been

validated, while others may argue that there are situ-

ations where an exploratory model is very useful. Gen-

erally, the degree of validation is dependent on the field

of interest (engineering may require more validation

than biomedical sciences) and application of the model.

Related to validation is flexibility, which is another

property of a useful model. Can more data be added to

the model without having to change its structure. If so,

the model is more useful than one that changes every

time more data is added.

The next two properties, appropriate level of detail

and as simple as possible, are two sides of the same coin

because model detail increases at the expense of simpli-

city. Modeler’s refer to this aspect of model development

as Occam’s razor. Formulated by William of Occam in

the late Middle ages in response to increasingly complex

theories being developed without an increase in predict-

ability, Occam’s razor is considered today to be one of

the fundamental philosophies of modeling—the so-

called principle of parsimony (Domingos, 1999). As ori-

ginally stated, ‘‘Entities should not be multiplied beyond

necessity,’’ the theory has mutated into many other fa-

miliar forms, such as Einstein’s quote ‘‘Everything should

be made as simple as possible, but not simpler.’’ In basic

terms, Occam’s razor states that the simplest model

should be chosen. By choosing the simpler model,

those concepts or variables not needed to explain the

data are eliminated, thereby reducing the chance for

redundancies, inconsistencies, or ambiguities in the

model. But what exactly is the simplest model is not

entirely clear. One common interpretation is if two

models fit a data set equally well, choose the model

with the smaller number of estimable parameters. But

modeling is not always that easy. Sometimes a more

complex model will be chosen because it is more consist-

ent with theory.

Models should be judged on what they were in-

tended to do. For example, if a model was developed

in young adults and has good accuracy and prediction

under different dosing regimens, should the model be

deemed inadequate when it is applied to geriatric pa-

tients and does not predict with any degree of accuracy?

Similarly, if a model characterizes one aspect of the data

well but fails to characterize another aspect of the data,

is the model still a good model? These philosophical

questions should probably be answered on a case by

case basis and different individuals may answer them

differently. In the latter example, it may be that the

system is quite complex and the modeler is really inter-

ested only in making predictions about that part of the

system. In this case, the model can still be of value. In the

former example, the model is still a good model, just one

that it is not very generalized.

For a model to be useful, it must be developed on-

time. A great solution that is arrived at too late is of no

value to anyone. It is better to have a model that can

provide rough answers in a useable time frame than an

elegant model that is done too late. Also, models that are

completed late look unfavorably upon the modeler and

next time may not be assigned a project or worse, the use

of a model in the future to solve a problem may not be

considered as an option by the project team. This latter

consequence reflects badly on modelers all over, not just

on the modeler who was late, because then project teams

see modeling as taking too many man-hours and being

unreliable.

A useful model is one that serves as an effective

communication tool. Often pharmacokineticists are

asked by project teams in the pharmaceutical industry

to interpret safety or efficacy data in relation to drug

concentrations. Is there a relationship between the two?

A quantitative approach to the problem would be to

develop a model relating drug concentrations to effect

(exposure-response). The model can then be presented

Table 1.1 Properties of a useful model.

. Ability characterize the observed data and to include the most

important features of the data.

. Makes accurate and precise predictions.

. Increases understanding of the system.

. The model is actually used.

. The model is completed on time.

. Logically consistent, plausible.

. Validated by empirical observations.

. Robust to small changes in the data.

. Appropriate level of precision and detail.

. As simple as possible.

. Judged on what it is intended to do.

. Has flexibility.

. Is effective as a communication tool.

. Serves many different purposes.

. May allow for extrapolation outside the data range.
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to the team as evidence that indeed there is a predictable,

controllable relationship between dose or concentra-

tion and outcome. Unfortunately many managers and

people on project teams are neither math literate nor

pharmacokinetic literate so the pharmacokineticist

is caught between Scylla and Charybdis. A complex

model, which may be needed for complex data, may be

just as difficult to communicate as presenting the data

itself. Still, a complex model presented effectively by a

model communicator (pun intended) can be very com-

pelling and aid in decision-making. More will be dis-

cussed on model communication later in the chapter.

Lastly, a useful model should serve many different

purposes. The model may be used to characterize data

for a report or publication, may be used to better under-

stand the system under study, may be used to make

predictions for future studies, or all of the above. The

more purposes a model can serve the more useful it will

become.

As an example, consider the data plotted in

Fig. 1.2. The observed data were simulated using the

model

C ¼ 8 exp (� 0:3t)þ 2 exp (� 0:01t)þ e (1:2)

where e is normally distributed random error with mean

zero and variance 4. As already stated, there may be a

multitude of models that describe a set of data each with

equal predictability and error (Rashomon effect). Four

models were fit to the data

C ¼ b1 þ b2

1

t
þ b3

1

t2
(1:3)

C ¼ b1 þ b2

1

t
þ b3

1

t2
þ b4

1

t3
(1:4)

C ¼ b1 þ b2

1

t
þ b3

1

t2
þ b4

1

t3
þ b5

1

t4
(1:5)

C ¼ Aexp (�at)þ B exp (�bt): (1:6)

Equations (1.3)–(1.5) are inverse polynomials up

to fourth degree and have estimable parameters b. Equa-
tion (1.6) is the model used to generate the data and has

estimable parameters {A, a, B, b}.
Which model is more useful? Table 1.2 shows the

residual sum of squares (which will be discussed in

greater detail later) for each model. For now, the smaller

the residual sum of squares, the ‘‘better’’ the model. In

theory, one would expect that the form of the equation
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Figure 1.2 Scatter plots of simulated concentration-time data (.) and fitted models (solid lines). Data were simulated using a 2-term polyexponential model
and were fit with inverse order polynomials up to degree four and to a 2-term exponential equation. The residual sum of squares for each model is shown in
Table 2.
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used to generate the data would result in the best model.

In other words, one would expect Eq. (1.6) to be the

superior model to the other models since it is of the same

form as data generating model. However, both Eqs. (1.4)

and (1.5) resulted in smaller residual sum of squares than

Eq. (1.6) which means these inverse polynomial models

better predicted the observed concentrations than the

exponential model. Occam’s razor would lead us to

choose Equation (1.4) over Eq. (1.5) since the former

has fewer estimable parameters. This example illustrates

why there is no such thing as a right model. Equation

(1.4) is clearly the wrong model, but it in fact has better

predictive properties than the equation used to generate

the data. If interest were solely in being able to make

predictions about the data at some point in time, say at

36 hours post-dose when no samples were collected, an

inverse polynomial may be more useful as it will be more

accurate than an exponential model.

So why aren’t inverse polynomials used more fre-

quently if they can have better predictive properties than

exponential equations? The polyexponential equation is

consistent with the theory for an n-compartmental sys-

tem, which is one of the properties of a useful model. In

this particular case, a two-term exponential equation is

consistent with a 2-compartment model following bolus

intravenous administration. The model parameters from

the two-term exponential equation also directly translate

to pharmacokinetic parameters, such as volume of dis-

tribution. There is no similar theory for inverse polyno-

mials—they are strictly empirical equations. The

parameters of an inverse polynomial have no physio-

logical meaning. A useful model may also allow for

extrapolations outside the range of data measured. For

example, given a two-term exponential model [Eq. (1.6)]

the limits for such a model are AþB when time equals

zero and zero when time goes to infinity. This is what

one would expect. Following bolus administration, con-

centrations are at their maximal and finite in value at

time equal zero. As time goes towards infinity, all the

drug in the body is eventually removed and concentra-

tions approach zero. But for an inverse polynomial, at

time equal zero, the dependent variable is undefined

because inverse time (i.e., 1/0) does not exist. Taking

the limit as time approaches zero, the dependent variable

blows up towards infinity, which clearly is not possible

as drug concentrations in the body must be finite since a

finite amount of drug is given. At the other end of the

time scale, when time approaches infinity, the dependent

variable approaches the intercept term (b1) because all

the inverse time terms approach zero. So, the inverse

polynomial model predicts concentrations to remain in

the body infinitely equal in concentration to the model

intercept. These concepts are illustrated in Fig 1.3. This

example illustrates the hazards of extrapolating an em-

pirical model outside the data range. So, despite better

predictive properties, pharmacokineticists rely on

models with pharmacokinetic interpretations that are

consistent with theory.

In summary, a useful model, like the concept of a

good model, is in the eye of the beholder. The model

may fail at predicting certain aspects of the data, but if

the modeler is not concerned with that portion of the

data that is unexplainable, the model may still have

value. Another modeler may argue, however, that the

model is not useful since it fails to explain all aspects of

the data. In another case, a modeler may also be quite

satisfied at developing a model given the data on hand,

but a project team may find the model to be useless if

it cannot be used to help guide clinical development.

Modelers must ever strive to make their models useful.

Table 1.2 Summary statistics for models fit to the data

shown in Fig. 1.2.

Model

Number of

estimable

parameters

Residual

sum of

squares

Second order inverse polynomial 3 15.7

Third order inverse polynomial 4 1.80

Fourth order inverse polynomial 5 1.61

Two-term exponential model 4 2.47
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Figure 1.3 Extrapolation of the cubic inverse polynomial model and expo-
nential model as time goes to zero and infinity. Observed data are denoted by
.. The solid line denotes the two-term exponential model, while the dashed
line indicates the inverse polynomial of degree three. The dotted line denotes
the intercept of the inverse polynomial model. In terms of residual sum of
squares, the inverse polynomial model is the superior model but does not
allow for extrapolation beyond the observed data range nor does the inverse
polynomial model terms have any physiological meaning.
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THE MODEL DEVELOPMENT PROCESS

Mesterton-Gibbons (1989) describes the modeling

process as being as simple as ABC. Clearly that’s not

true, but it does make for a nice, catchy mnemonic. ‘A’ is

for assume. Often there is inadequate information

at the outset to solve a problem, except for the most

simplest cases, so assumptions are needed right from the

beginning. These assumptions may be in the form of

parameter values, or model structure, or distributional

assumptions, like the distribution of the model residuals.

A model that has poor predictability may not be a

poor model at all. Indeed, the problem may simply be

that the assumptions are wrong. Next, ‘B’ is for borrow.

Few models are developed in a vacuum. Most models

are based on other models. Hence, knowledge is bor-

rowed from the literature, from previous experience, or

from colleagues and then a starting model is built to

evaluate. ‘C’ is then to criticize the model and the as-

sumptions the model was predicated upon. Modeling is

iterative. If the model does not meet our needs then we

go back to ‘A,’ modify our assumptions, and then start

over again, hopefully learning from what we have just

done.

While clever, most books on modeling don’t use this

simple mnemonic and instead present a more formal

process initially proposed by Box and Hill (1967). They

stated that the process of model-building can be thought

to involve three stages:

1. Identification of the model,

2. Fitting the model, and

3. Diagnostically check the adequacy of the fit.

Although these stages have been repeatedly reported

throughout the statistical literature, they are really only

the middle part of the process. Chatfield (1988)

expanded the number of stages to five, which include

the original three by Box and Hill:

1. Look at the data,

2. Formulate a sensible model,

3. Fit the model to the data,

4. Diagnostically check the adequacy of the fit, and

5. Present the results and conclusions.

Models are not static—they change over time as more

data and experience with the drug are accumulated.

Basic assumptions made about a model may later be

shown to be inaccurate. Hence, a more comprehensive

model development process is:

1. Analyze the problem,

2. Identify relevant variables to collect,

3. Perform the experiment and collect data,

4. Look at, clean the data, and format for

modeling,

5. Formulate a model,

6. Fit the model to the data,

7. Diagnostically check the adequacy of the fit,

8. Validate the model,

9. Update the model as appropriate (go back to

Step 5),

10. Interpret the results, and

11. Communicate the results.

Figure 1.4 illustrates this process graphically.

The first step of the process should be to identify the

problem, which has already been extensively discussed.

The next step is to identify the relevant variables to

collect. Data are usually not cheap to collect. There is

ordinarily a fine line between money available to per-

form an experiment and the cost of collecting data. We

want to collect as much data as possible, but if a variable

is not needed then perhaps it should not be collected.

Once the variables to be collected are identified, the

accuracy and bias of the measurement methods should

be examined because collected data are of no value if it is

biased or inaccurate. Sometimes, however, the modeler

is not involved in choosing which variables to collect and

is brought in to analyze data after an experiment is

already completed. It may be that the data needed to

solve the problem was not collected or that only some of

the data were collected, in which case some creative

thinking may be needed to obtain a solution.

The next step is to perform the experiment and

collect the data. Whether the data is a small scale animal

study or a large scale clinical trial, the basics of data

collection are the same. The validity of the results of

any study are dependent on the quality of data collected.

Therefore, data collection, whether stored electronically

or on paper, must be designed to ensure high quality.

Two keys to good quality are randomization and

blinding, although in practice sometimes neither of

these can be done. Document everything from a regula-

tory point of view; if it isn’t documented, it never

happened.

Rarely, however, will the data be in a format suit-

able for analysis. The more complex the data, the more

pre-processing will be needed to put the data in a format

suitable for analysis. The next step then is to look at the

data and clean as needed. Check the quality of the data.

Have the data been entered to suitable precision, for

instance, two places behind the decimal? Perform de-

scriptive statistics and look at histograms to examine

for discordant results. It is not uncommon in large clin-

ical multi-national clinical trials for clinical chemistry

data to be of different units between the United States
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and Europe. Merging of data must then be transformed

to a common unit before analysis can proceed. Data

may have been wrongly entered into the computer. It is

not uncommon to clean a data set and do an initial

model fitting to the data only to find that something

was missed and more data cleaning is needed. Whatever

cleaning is done to the data should be documented in

whatever final report is written on the analysis. Also,

what quality control checks were made on the data

should be documented. If data need to be transformed

prior to analysis, such as a log-transformation on a

dependent variable, then this too should be clearly docu-

mented in the report.

Once the data is cleaned and placed in a suitable

format for analysis, herein begins the typical stages of

model development reported by most books. Model

development tends to be iterative in that a base model

is chosen and evaluated. If the model is rejected, a new

model is generated and evaluated. Once a suitable model

is chosen, the model is validated to examine its general-

izability. When a final model is found, the results are

interpreted and presented, either in written or oral for-

mat. This process of model development is an empirical

one, dependent on the data set used to build the model.

Sometimes this is referred to as exploratory data analy-

sis, data mining, or data dredging. Rare is the model in

drug development built on theory, and then tested using

experimental data—the so-called confirmatory model.

For particularly complex models, such as multi-

compartment, multiple input-output experiments, one

trick to modeling such data is to break the model down

into subsystems. So for instance, suppose concentration-

time data for parent drug and metabolite are available

and it is known the metabolite is formed by irreversible

metabolism of parent drug. One way to model the data

is to first define and fit a model for parent drug, ignoring

the metabolite. Then once that model is identified, ana-

lyze the metabolite data using a forcing function based

on the parent concentration-time profile as the input to

the metabolite model. Once both models are identified,

combine them together and then re-fit the joint model.

A similar approach can be made for pharmacokinetic-

pharmacodynamic models where the pharmacodynamic

model is a simple function of the concentration data.

First, find the pharmacokinetic model and fix the model

parameters. Then find the pharmacodynamic model

keeping the pharmacokinetic model fixed. Once both

models are fitted, combine the models and fit the joint

model simultaneously.

Within the empirical model development frame-

work, model development iterates until a suitable

model is chosen. But model development may also

occur globally across researchers. An excellent example

of between-scientist model development is with the

models used to characterize the pharmacokinetics of

paclitaxel (Taxol1), an agent that is used in the treat-

ment of various cancers. Paclitaxel is a poorly soluble

drug given by infusion and formulated in a mixture of

alcohol and a polyoxyethylated castor oil called Cremo-

phor EL (50/50, v/v). Early studies reported that pacli-

taxel pharmacokinetics could be characterized by a 2-

compartment model with first-order elimination (Brown

et al., 1991; Longnecker et al., 1987; Wierkin et al.,

1987). Large between-subject variability was observed

in the parameter estimates, e.g., clearance ranged from

53 to 1260mL=min=m2 (Longnecker et al., 1987). Model

predicted concentrations were judged to be reasonably

close to observed concentrations and later studies, using

noncompartmental analysis, produced similar pharma-

cokinetic estimates (Grem et al., 1987; Wiernik et al.,

1987). But these early studies used long infusion times, 6

to 26 hours in length.

When paclitaxel was given as short infusion, hyper-

sensitivity reactions typically occurred. Hence, paclitaxel

was typically given by prolonged infusion. It was specu-

Collect and
clean the

data

Formulate
model

Check
model

Interpret and communicate
results

Validate
model

Analyze the problem

Fit the
model

Perform
experiment

Figure 1.4 The model development process.
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lated that decreasing the length of infusion and preme-

dicating with a corticosteroid and anti-histamine would

decrease the occurrence of hypersensitivity reactions,

and be more convenient for the patient. In a clinical

study testing this hypothesis, the shorter infusion with

premedication did indeed result in a lower incidence of

hypersensitivity reactions and was also shown to be less

neutropenic (Eisenhauer et al., 1994). Unfortunately,

paclitaxel concentrations were not determined in this

study. In a similar repeated study that did measure

paclitaxel plasma concentrations, when paclitaxel was

given as either a 3 or 24 hour infusion, systemic clear-

ance estimates after the 24 hour infusion were greater

than after the 3 hour infusion (Huizing et al., 1993).

A 3-compartment model was now more consistent with

the data, which the authors attributed to having a more

sensitive analytical assay thereby detecting the presence

of another phase in the concentration-time profile. The

authors also speculated that saturable pharmacokinetics

was occurring but did not attempt to include this phe-

nomenon in their model.

Dose-dependent clearance and distribution was

then later observed in a Phase 1 study in children with

solid tumors (Sonnichsen et al., 1994). In a study in

adults with ovarian cancer, Gianni et al. (1995) used

a 3-compartment model with saturable intercompart-

mental clearance into Compartment 2 and saturable,

Michaelis–Menten elimination kinetics from the central

compartment to describe the kinetics after 3 hour and 24

hour infusion. Now at this point one would typically

assume that the mechanism for nonlinear elimination

from the central compartment is either saturable protein

binding or saturable metabolism. But the story is not

that simple. Sparreboom et al. (1996a) speculated that

since Cremophor EL is known to form micelles in aque-

ous solution, even many hours after dilution below

the critical micellular concentration, and can modulate

P-glycoprotein efflux, that the nonlinearity in pharma-

cokinetics was not due to paclitaxel, but due to the

vehicle, Cremophor EL. This hypothesis was later con-

firmed in a study in mice (Sparreboom et al., 1996b).

An in vitro study was then conducted with human

red blood cells (RBCs) which showed that the blood to

plasma ratio in the absence of Cremophor EL was 1.07,

but after the addition of Cremophor EL giving concen-

trations similar to those seen at the end of a 3 hour

infusion of 175mg=m2 paclitaxel, the blood to plasma

ratio decreased to 0.69 (Sparreboom et al., 1999). Hence,

Cremophor EL decreased the unbound fraction of pacli-

taxel available for distribution into tissues in a concen-

tration-dependent manner, which explains the saturable

tissue distribution phenomenon in multi-compartmental

models. The presence of many compartments within the

blood that paclitaxel may distribute into (unbound,

plasma protein bound, RBCs, and Cremophor EL-

derived micelles) also explains the nonlinear elimination

kinetics from the central compartment. Current models

now measure paclitaxel in each of these blood compart-

ments and use a 3-compartment model with saturable

elimination and saturable tissue distribution due to sat-

urable transport, which is quite different than the first

model developed for paclitaxel (Henningsson et al.,

2001; van Zuylen et al., 2001). But the story is not

over. Karlsson et al. (1997) have argued that, using

plasma paclitaxel concentrations as the dependent vari-

able, the current model for saturable tissue distribution

due to saturable transport cannot be kinetically distin-

guished from a model with linear transport processes but

with saturable, noninstantaneous tissue binding. So the

modeling process continues. This example illustrates

how since 1987 the pharmacokinetic models for pacli-

taxel have changed from simple linear pharmacokinetic

models to complex nonlinear ones. Is there a universal

model for paclitaxel pharmacokinetics? Yes. Will it ever

be found? Maybe. Meanwhile, science and modeling

progress.

GOODNESS OF FIT CRITERIA

Once a model is developed, the next step is to either

assess how ‘‘good’’ the model is or to compare the model

to alternative models in order to determine which model

is ‘‘better.’’ The words ‘‘good’’ and ‘‘better’’ are used

because they are meant to represent semi-quantitative

terms that intuitively one has a feeling for, but cannot

really be defined. Goodness of fit criteria are either

graphical in nature or are presented as some metric,

like the coefficient of determination (R2, which will be

discussed later). Metric-like criteria have an advantage

in that they are quantifiable. For example, a model with

an R2 of 0.9 can be judged superior to a model with an

R2 of 0.3, all other things being equal. However, few

things beat a good graphical analysis to demonstrate the

validity of a model and with today’s software packages

one would be remiss if these graphics were not examined

on a routine basis.

Residuals and Residual Analysis

If Y is the observed data vector and ŶY is the model

predicted data vector, ordinary residuals are the differ-

ence between observed and model predicted values

ei ¼ Yi�ŶYi (1:7)

where i ¼ 1, 2, . . . , n. Positive residuals indicate that

the model underpredicts the observation, whereas
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negative residuals indicate that model overpredicts the

observation. Residuals are usually assumed to be inde-

pendent, normally distributed with mean zero and

variance s2 if the model is appropriate. The examination

of residuals as part of the model evaluation process is

referred to as residual analysis, which is useful because it

can aid in isolating outliers or erroneous data points,

i.e., observations that are discordant from the others,

can aid in determining if the model assumptions are

wrong or whether a different structural model should be

used, and can aid in detecting observations that exert

undue influence on the reported model parameters.

Other types of residuals exist, such as Studentized or

weighted residuals (which will be discussed later in the

chapter).

An unbiased model should have residuals whose

mean value is near zero. For a linear model the residuals

always sum to zero, but for a nonlinear model this is

not always the case. Conceptually one metric of good-

ness of fit is the squared difference between observed

and predicted values, which has many different names,

including the squared residuals, the sum of squares error

(SSE), the residual sum of squares, or error sum of

squares

SSE ¼
Xn
i¼1

Yi�ŶYi

� �2
¼
Xn
i¼1

e2i : (1:8)

The problem with SSE is that SSE decreases as the

number of model parameters increases. Alternatively

one could calculate the variance of the residuals called

the mean square error (MSE)

MSE ¼ SSE

n� p
(1:9)

where p is the total number of estimable parameters

in the model and the denominator is collectively referred

to as the degrees of freedom2. MSE is an unbiased esti-

mate of the error variance term s2 if the model is appro-

priate.

The residuals themselves also contain important

information on the quality of the model and a large

part of model evaluation consists of residual analysis.

Most residual analyses involve graphical examination

of systematic trends or departures from the expected

values. The following plots are often created and exam-

ined after model creation:

1. Scatter plot of predicted value (ordinate) versus

residual (abscissa). No systematic trend in the residuals

should be observed with the data appearing as a shotgun

blast. Systematic trends are indicative of model misspe-

cification. See Fig. 1.5 for an example.

2. Plot of absolute or squared residuals versus pre-

dicted value. Again, no systematic trend in the residuals

should be observed and the plot should appear as a

shotgun blast. Heteroscedasticity or misspecification of

the variance model is evident if a positive trend in

squared or absolute residuals with increasing predicted

2 Defining degrees of freedom in a simple manner is difficult. First

consider that there are n ‘‘pieces of information’’ contained within a

data set having n observations. From these n pieces of information,

either a parameter or variability can be estimated with each item being

estimated decreasing the information in the data set by one degree of

freedom. The degrees of freedom then is the number of pieces of

information less all the estimated items. For example, given a data set

in which the mean was estimated, the degrees of freedom then is n� 1.

With a model having p-estimable parameters, the degrees of freedom is

n� p.
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Figure 1.5 Sample residual plot. Paired (x, Y) data were simulated using the
model Y ¼ 13 þ 1.25x þ 0:265x2. To each Y value was added random error
from a normal distribution with mean zero and standard deviation 25. The top
plot is a plot ordinary residuals versus predicted values when the fitted model
was a second-order polynomial, the same model as the data-generating model.
The bottom plot is the same plot when the fitted model was linear model (no
quadratic term). Residual plots should appear as a shotgun blast (like the top
plot) with no systematic trend (like the bottom plot).

The Art of Modeling 13



values is observed. More will be discussed on this plot in

the chapter on Variance Models, Weighting, and Trans-

formations.

3. The residuals should also be uncorrelated so that

if the residuals, e1, e2, e3, etc., are lagged and plotted,

i.e., e1 vs. e2, e2 vs. e3, etc., there should be no trend in

the plot. When the residuals are correlated, such a pro-

cess is termed ‘autocorrelation’ and unfortunately, this

plot is rarely examined in pharmacokinetic/pharmaco-

dynamic models.

4. A histogram of residuals. The histogram

should show approximate normality with the center of

mass located near zero (Fig. 1.6). Histograms, while easy

to generate, do not easily detect subtle deviations from

normality. More on histogram analysis is presented else-

where in this chapter.

5. Normal probability plots or, half-normal

plots are recommended instead of histograms for detect-

ing deviations from normality. For a normally distrib-

uted random variable X with mean 0 and variance s2, a

good approximation to the expected value of the ith

observation is

E(Xi) ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
F�1 i� 0:375

nþ 0:25

� �� �
(1:10)

where F�1(f) denotes the fth percentile of the standard

normal distribution. A standard normal plot plots the

expected value of the residual against the value of the

residual itself (ordered from smallest to largest). One

criticism of the normal plot is what has been called

‘supernormality’ (Atkinson, 1985) in that residuals

from non-normal distributions will tend to appear

more normal than they truly are. Thus an adequate

normal plot in and of itself is not confirmatory for a

normal distribution. A modification of the normal plot,

used to combat supernormality, is the half-normal plot

where

ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
F�1 nþ iþ 0:5

2nþ 9=8

� �� �
(1:11)

is plotted against the absolute value of the ith residual,

again sorted from smallest to largest. Half-normal plots

tend to show more sensitivity to kurtosis at the expense

of not showing skewness but are more sensitive at detect-

ing outliers and influential observations than normal

plots.

6. Another type of plot, called a QQ (quantile-

quantile) plot, plots the residuals ordered from smallest

to largest against

F�1 i� 0:5

n

� �
: (1:12)

Normal, half-normal, and QQ plots that are linear

are consistent with normality, whereas non-normal dis-

tributions tend to have systematic deviations from

linearity. It should be noted that some software pack-

ages omit the
ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
term in Eq. (1.10) since this omis-

sion has no impact on the nature of the plot, simply a

change in intercept. Atkinson (1981) suggests plotting a

‘‘envelope’’ around the plot using simulation to aid in

the interpretation of the plot but no software packages

do this and so the reader is referred there for more

details.

Figure 1.7 presents an example of the normal, half-

normal, and QQ plot for simulated data from a normal,

chi-squared distribution with four degrees of freedom,

and Student’s T-distribution with four degrees of free-

dom. It must be stressed that these plots are not always

conclusive and that with small sample sizes normality

can easily be mistaken for non-normality.
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Figure 1.6 Histogram of residuals from data in Fig. 1.5. Top plot is
quadratic model. Bottom plot is plot of linear model.
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7. A plot of residuals against explanatory variables

not included in the model is useful to detect whether the

explanatory variable should be included in the model.

The plot should show no systematic trend if the explana-

tory variable is not predictive, but if the plot shows a

systematic trend then this is evidence that perhaps the

variable should be included in the model.

8. If one of the independent variables is time, a

scatter plot of residuals versus time is useful. The plot

should show random variation centered around zero.

Systematic trends in the plot indicate the model does

not predict the time trend accurately. More formally a

runs test or Durbin–Watson test can be performed to

test for lack of randomness.

9. If multiple observations are available on each

sampling unit, such as a subject in a clinical trial, a

plot of residuals versus subject number may be informa-

tive at detecting systematic deviations between subjects.

Each subject’s residuals should be centered around zero

with approximately the same variance. Subjects that

show systematic deviance from the model will tend

to have all residuals above or below the zero line. This

plot becomes more useful as the number of observations

per subject increases because with a small number of
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Figure 1.7 Normal, half-normal, and QQ plots for 100 simulated observations from a normal distribution (left), chi-squared distribution with four degrees of
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should all show approximate linearity with no curvatures. The normal plot and QQ plot are usually indistinguishable. The half-normal plot is usually more
sensitive at detecting departures from normality than the normal or QQ plot.

The Art of Modeling 15



observations per subject, the sensitivity of the plot at

detecting deviance from the model decreases.

Many of the plots just suggested are not limited to

ordinary residuals. Weighted residuals, partial residuals,

studentized residuals, and others can all be used to aid in

model diagnostics. Beyond residual plots, other plots are

also informative and can help in detecting model inad-

equacies. One notable plot is a scatter plot of observed

versus predicted values usually with the line of unity

overlaid on the plot (Fig. 1.8). The model should show

random variation around the line of unity. Systematic

deviations from the line indicate model misspecification

whereas if the variance of the predicted values increases

as the observed values increase then the variance model

may be inappropriate.

While informal, an informative graph can be help-

ful in detecting gross violations of the model assump-

tions. A graph is also an effective means to communicate

how well a model performs. Subtle differences between

two competing models, however, usually cannot be dif-

ferentiated by the basis of graphics unless the two

models are highly dissimilar. It should also be noted

that data transformations (which will be discussed in

later chapters) may also affect these plots considerably.

For further details on residual analysis the reader is

referred to Atkinson (1985) or Cook and Weisberg

(1982).

Goodness of Fit Metrics

Along with graphical assessment one may present

metrics, actual numbers, that attempt to quantify the

goodness of fit of the model. Two such metrics were

presented in the previous section, SSE and MSE, and

in this section other metrics will be presented. Formal

hypothesis tests may be done on these metrics, such as

comparing the metric from one model against another.

However, many test statistics based on these metrics

tend to be sensitive to the assumption of the underlying

distribution, e.g., normally distributed, such that the

results from these tests should be treated with skepticism

(Cook and Weisberg, 1982).

Common modifications to SSE and MSE lead to a

class of metrics called discrimination functions. These

functions, like the Akaike Information Criteria (AIC),

are then used to choose between competing models. One

problem with functions like the AIC andMSE is that the

actual value of the function is impossible to interpret

without some frame of reference. For instance, how can

one interpret a MSE or an AIC of 45? Is that a good or

bad? Further, some discrimination functions are

designed to be maximized whereas others are designed

to be minimized. In this book, the model with the smal-

lest discrimination function is superior to all other

models having the same number of estimable param-

eters, unless otherwise noted. This class of functions

will be discussed in greater detail in the section on

Model Selection Criteria.

Three goodness of fit metrics bear particular atten-

tion: the coefficient of determination, the correlation

coefficient, and the concordance coefficient. The coeffi-

cient of determination (R2) is simply

R2 ¼ 1� SSE

SST
¼ 1�

Pn
i¼1

Yi � ŶYi

� �2
Pn
i¼1

Yi �Y
� 	2 : (1:13)

where Y is the mean of the observed Y values. The

reason R2 is so often used is its ease of interpretation—

it explains the proportion of variation ‘‘explained’’ by
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Figure 1.8 Plot of observed versus predicted values for the data in Fig. 1.5.
The top plot shows reasonable goodness of fit while the bottom plot shows a
systematic trend suggesting the model is not a reasonable approximation to
the data. Solid line is line of unity. Note that both plots have very high
correlation coefficients, despite one having a systematic trend from the line
of unity.
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the model and ranges from 0 to 1 with 1 being a perfect

fit to the data. Still what constitutes a good R2 is debat-

able and depends on what is being measured. The R2 for

an analytical assay should be very high, probably greater

than 0.98, while an R2 greater than 0.4 may be accept-

able some cases, like correlating apparent oral clearance

to creatinine clearance.

R2 is not perfect and has many flaws. Many cau-

tionary notes have been written on the misuse of R2

(Healy, 1984; Kvalseth, 1985). For example, with linear

models having no-intercept or with nonlinear models, it

may be possible for SSE to be larger than SST leading

R2 to be negative. R2 is also influenced by the range of

the observations with the wider the range of the inde-

pendent variable, the larger R2 tends to be (Helland,

1987). Further, when additional terms are added to

a model, R2 will always increase because SSE will always

decrease. Since R2 can be artificially increased due

to additional model parameters, an adjusted R2 is often

used that adjusts R2 for the additional degrees of

freedom

R2
adj ¼ 1� n� 1

n� p

� �
SSE

SST
: (1:14)

Thus, the adjusted R2 may decrease when additional

terms are added to the model and they do not contribute

to the goodness of fit.

Related to the coefficient of determination is the

correlation coefficient, r, which is almost exclusively

used in the association between two variables, X and

Y. In relation to goodness of fit, X is the observed

dependent variable, e.g., plasma drug concentrations,

and Y is the model predicted dependent variable, e.g.,

predicted plasma drug concentrations, such as the plot

shown in Figure 8. In the case of two variables r has

maximum likelihood estimator

r̂r ¼ r ¼
Pn
i¼1

(Yi �Y)(Xi �X)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

(Xi �X)2
Pn
i¼1

(Yi �Y)2

s : (1:15)

r is a biased estimator for r, but becomes less biased as n

goes to infinity. Since the covariance between two ran-

dom variables is bounded by the product of the individ-

ual standard deviations, r is bounded by �1. r is also

called Pearson’s correlation coefficient for his pioneering

work in this area, although the symbol ‘r’ was first noted

by Sir Frances Galton for his work on regression to-

wards the mean (which he called reversion) (Pearson,

1920; Zar, 1984).

Pearson’s product-moment correlation coefficient,

often simply referred to as the correlation coefficient, r,

has two interesting properties. First,ffiffiffiffiffiffi
R2

p
¼ �r : (1:16)

Similarly, the maximum likelihood estimate for r2 is R2,

which is why the coefficient of determination is usually

mentioned in the same breath as the correlation coeffi-

cient. Second, r is scale invariant. If X and/or Y is

multiplied by 10 or 1000, r does not change.

The correlation coefficient, r, is probably the

most misused statistic in science. Much has been written

criticizing the reporting of correlation coefficients. Fore-

most is the argument that X and Y must be bivariate

normal for correlation results to be valid (Analytical

Methods Committee and Royal Society of Chemistry,

1988), which is not exactly correct. The interpretation

of the correlation coefficient depends on whether X and

Y is random or fixed. If X and Y are random, then

indeed they should be bivariate normal and r is an

estimate of r, the population correlation coefficient.

However, if x is fixed and Y is a function of x, then r is

interpreted as the square root of the coefficient of deter-

mination. In both instances, the correlation coefficients

are identical. However, the interpretation is subtly

different.

Second, reporting of correlation coefficients with-

out a graphical depiction of the data can be exceedingly

misleading. Figure 1.9 shows four plots with misleading

correlation coefficients [these examples were suggested

by Harmatz and Greenblatt (1992)]. In all four cases, the

correlation coefficients were highly significant, but

clearly there is something going on in the underlying

structure of the data. The bottom left plot also shows

how a single data point can produce a highly significant

correlation coefficient.

Third, correlation coefficients have been criticized

for their use in assessing goodness of fit (Harmatz and

Greenblatt, 1992). Correlation coefficients are a measure

of association, not a measure of goodness of fit. A model

may have a high correlation but still have poor predict-

ive qualities. One particular area where correlation co-

efficients have been abused is in the assessment of

linearity of an analytical method for measuring drug

concentrations in biological fluids. The correlation coef-

ficient does not indicate linearity or lack thereof. Figure

1.10 shows an example of a scatter plot where nonlinear-

ity is occurring at high concentrations, but still leads to

an exceedingly significant correlation coefficient. An-

other area where correlations are inappropriately used

is in the assessment of dose proportionality in clinical

studies of new chemical entities.
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Fourth, the correlation coefficient is reported not

for their magnitude, but for their significance, e.g., p <
0.01. Tests of this nature are simply testing whether the

correlation coefficient equals zero or not. Since the sig-

nificance of a correlation coefficient is dependent on the

sample size, large sample sizes easily can lead to signifi-

cant correlations. For example, a correlation coefficient

of 0.20, which under a linear model indicates that 4% of

the variance is explained by the predictor variables,

becomes significant at p57 0:05 when the sample size is

more than 100. A more relevant hypothesis test is the

one-sided null hypothesis that the correlation is greater

than some value deemed by the analyst to have value,

such as r > 0:95.
One other point needs mentioning in regard to cor-

relation, and that is correlation does not imply causality.

These last words are highlighted to stress their import-

ance. Table 1.3 presents the nine tenets for causality as

presented by Hill (1965). Correlation by its nature im-

plies that X and Y can be reversed without loss of

generality. Causality implies cause and effect. Just be-

cause a significant correlation has been detected between

X and Y, it is entirely possible that the relationship is not
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Figure 1.9 Example plots of misleading correlation coefficients suggested by Harmatz and Greenblatt (1992). Note that, in contrast to R2, the correlation
coefficient is independent of the scale of the X- and Y-axes.
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Figure 1.10 Example of a misleading correlation coefficient used in assess-
ing linearity. The correlation coefficient for the simple linear model is quite
high (r ¼ 0.9860) but notice that the model systematically overpredicts higher
concentrations, while underpredicts concentrations in the middle of the data
range. This model shows systematic bias in its prediction despite having an
excellent correlation.
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due to an unknown, unobservable variable Z. For

example, if X acts on Z and Z acts on Y, but Z is

unobservable, an artifactual relationship between X

and Y may exist. Still, it is easy to lose sight of the fact

that just because a variable is correlated with another

does not mean that a causal relationship exists.

Sheiner and Beal (1981) have pointed out the errors

involved in using the correlation coefficient to assess

the goodness of fit (GOF) in pharmacokinetic models.

Pearson’s correlation coefficient overestimates the

predictability of the model because it represents the

‘‘best’’ linear line between two variables. A more appro-

priate estimator would be a measure of the deviation

from the line of unity because if a model perfectly

predicts the observed data then all the predicted values

should be equal to all the observed values and a scatter

plot of observed vs. predicted values should form

a straight line whose origin is at the point (0,0)

and whose slope is equal to a 458 line. Any deviation

from this line represents both random and systemic

error.

At the time the Sheiner and Beal (1981) paper was

published, there were no good measures to assess the

deviation from a 458 line. Lin (1989) developed the

concordance coefficient to assess the reproducibility of

two assay methods and was designed to correct some of

the problems associated with the correlation coefficient,

thereby measuring what Sheiner and Beal (1981) pro-

posed almost 10 years earlier. The concordance coeffi-

cient (rc) between X and Y measures the degree of

agreement between X and Y by assessing the degree to

which data pairs fall on the 458 line through the origin

and can be estimated by

r̂rc ¼
2Sxy

S2x þ S2y þ (X�Y)2
: (1:17)

where

S2x ¼

Pn
i¼1

(Xi �X)2

n
, (1:18)

S2Y ¼

Pn
i¼1

(Yi �Y)2

n
, and (1:19)

Sxy ¼

Pn
i¼1

(Xi �X)(Yi �Y)

n
: (1:20)

The concordance coefficient has the following pro-

perties:

1. �157 jrj57 rc57 jrj57 1,

2. rc ¼ 0 if and only if r ¼ 0,

3. rc ¼ r if and only if mx ¼ my and sx ¼ sy,

4. rc ¼ � 1 if and only if readings are in perfect

agreement or perfect reversal, and

5. jrcj can be < 1 even if jrj ¼ 1.

The reader is referred to Lin (1981) for details on calcu-

lating the variance of the concordance coefficient, which

is not easily done. One disadvantage to the concordance

coefficient is that, like the correlation coefficient and

coefficient of determination, there are no guidelines as

to what constitutes good agreement between observed

and predicted values. This is left to the analyst to decide.

Similarly the concordance coefficient can be just as mis-

leading as a correlation coefficient and all the caveats

regarding use of the correlation coefficient apply to the

concordance coefficient as well. Vonesh, Chinchilli, and

Pu (1996) present the use of concordance coefficient in

population models.

In summary, the measures presented in this section

represent metrics that assess the goodness of fit in a

Table 1.3 Basic tenets of causality as proposed by Hill (1965).

Tenet Meaning

. Strength of association A high correlation between the causal variable and outcome is needed.

. Consistency The results should be repeatable and consistent across studies.

. Specificity The outcome is specific for the causal variable.

. Temporality Changes in the causal variable should lead to changes in the outcome variable.

. Biological gradient The more intense the causal variable the more intense the outcome variable.

. Biologic plausibility There should be biological basis for the cause and effect.

. Biologic coherence Implies a cause-and-effect interpretation.

. Experimental evidence Experimental evidence supports the theory and is consistent with causality.

. Analogy Similar to other cause-and-effect outcomes.

Note: Hill originally applied these criteria to the causality between risk factors and disease in epidemiology. These criteria have been modified to reflect causality
between a causal variable and outcome variable in general.
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