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Abstract

Introduction: Breast cancer brain metastases (BCBM) are a challenging consequence of advanced BC. Nanoparticle agents,
including liposomes, have shown enhanced delivery to solid tumors and brain. We compared pharmacokinetics (PK) and
efficacy of PEGylated liposomal doxorubicin (PLD) with non-liposomal doxorubicin (NonL-doxo) in an intracranial model of
BC.

Methods: Athymic mice were inoculated intracerebrally with MDA-MB-231-BR-luciferase-expressing cells. Tumor-bearing
mice were administered PLD or NonL-doxo at 6mg/kg IV61 and were euthanized prior to and 0.083, 1, 3, 6, 24, 72 and 96 h
post-treatment. Samples were processed to measure sum total doxorubicin via HPLC. PLD and NonL-doxo were
administered IV weekly as single agents (6 mg/kg) or in combination (4.5 mg/kg) with the PARP inhibitor, ABT-888, PO
25 mg/kg/day. Efficacy was assessed by survival and bioluminescence.

Results: Treatment with PLD resulted in approximately 1,500-fold higher plasma and 20-fold higher intracranial tumor sum
total doxorubicin AUC compared with NonL-doxo. PLD was detected at 96 h; NonL-doxo was undetectable after 24 h in
plasma and tumor. Median survival of PLD-treated animals was 32 days (d, [CI] 31–38), which was significantly longer than
controls (26d [CI 25–28]; p = 0.0012) or NonL-doxo treatment (23.5d [CI 18–28], p = 0.0002). Combination treatment with
PLD/ABT-888 yielded improved survival compared to NonL-doxo/ABT-888 (35d [CI 31–38] versus 29.5d [CI 25–34]; p = 0.006).

Conclusions: PLD provides both PK and efficacy advantage over NonL-doxo in the treatment of an in vivo model of BCBM.
The results provide preclinical rationale to translate findings into early phase trials of PLD, with or without ABT-888, for
patients with BCBM.
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Introduction

Brain metastases arising from breast cancer are a burgeoning

clinical problem associated with decline in quality of life, loss of

independence, and poor survival [1]. The incidence of brain

metastases is highly subtype-dependent [2] such that patients with

triple negative and Her2-positive advanced breast cancer are at

highest risk for intracranial recurrence [3,4]. Moreover, prognosis

following the development of brain metastases is also associated
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with breast cancer subtype where survival following central

nervous system recurrence is 3 to 4 months for women with

triple-negative disease compared to 9 and 15 months for HER2-

positive and endocrine-sensitive counterparts, respectively [5]. The

current treatment paradigm for breast cancer brain metastases

(BCBM) across all subtypes includes radiation therapy (whole

brain and/or focused brain radiation) and/or surgical resection

[6]. Although studies illustrate systemic therapy sequenced after

cranial radiation improves outcome for many patients with breast

cancer brain metastases, the physical properties of the blood brain

barrier and the relative paucity of targeted agents to treat

intracranial breast cancer remains a significant challenge in the

development of systemic therapies capable of controlling both

intra- and extracranial advanced breast cancer [7,8,9].

The development of chemotherapeutic agents to effectively treat

solid tumors within or outside of the central nervous system

depends, in part, on the ability of these agents to achieve cytotoxic

drug exposure within the tumor(s). Encapsulating common anti-

cancer agents into nanoparticle delivery systems, particularly

liposomes, provides a promising approach to enhance central

nervous system delivery. Although the mechanism of enhanced

brain delivery is not completely understood, it is postulated that

the higher exposure to central nervous system tumors is related to

longevity in blood and altered distribution compared to non-

nanoparticle, standard, small molecule formulations [10,11,12].

Prolonged systemic exposure afforded by nanoparticle technology

may allow for permeation of tumor microcirculation via passive

convection transport through a blood brain barrier potentially

‘‘compromised’’ by the presence of tumor [10,11,12]. Chances for

extravasation improve with prolonged circulation half-life and a

greater number of circulation passages through a tumor bed.

Although factors inherent to intracranial tumor (i.e. increased

intracranial pressure) may dampen the effect of nanoparticle

transport into a tumor compartment, results of prior preclinical

and clinical studies argue that longer circulation time afforded by

nanoparticle formulations may overcome these effects [12,13,14].

However, the benefit of nanoparticle anti-cancer agents, with or

without targeted agents capable of crossing the blood brain

barrier, has yet to be fully examined in an in vivo model system of

intracranial breast cancer.

In the current study, we utilized an intracranial model of

aggressive triple negative breast cancer to evaluate the pharma-

cologic disposition and activity of a chemotherapeutic agent that is

highly active in the treatment of breast cancer, namely the

anthracycline doxorubicin [15], in a PEGylated liposome (PLD)

formulation as compared to non-liposomal doxorubicin (NonL-

doxo). To assess the efficacy of this approach, survival following

treatment with PLD was compared to treatment with NonL-doxo.

Finally, ABT-888, an inhibitor of a poly (ADP-ribose) polymerase

[PARP] and subsequent DNA repair, has been shown to cross the

blood brain barrier [16]. Thus, we sought to augment intracranial

efficacy by combining PLD, a DNA-damaging agent which

intercalates between base pairs of the DNA/RNA strand, thus

preventing macromolecular biosynthesis [17], with ABT-888 in an

intracranial model of breast cancer.

Materials and Methods

Ethics statement
All animal studies were conducted in accordance within the

guidelines of the Guide for the Care and Use of Laboratory

Animals of the National Institutes of Health and with the approval

of the University of North Carolina at Chapel Hill’s Institutional

Animal Care and Use Committee (IACUC) on protocols 09–151

and 10–230.

Cell lines and culture conditions
The MDA-MB-231-BR cell line was selected for study and was

kindly provided as a gift by Toshiyuki Yoneda, PhD (The

University of Texas Health Science Center of San Antonio)[18].

The MDA-MB-231-BR cell line and its parental cell line (MDA-

MB-231) were derived from a metastatic pleural effusion of a 51-

year old white female patient. The MDA-MB-231-BR cell line is a

‘brain-seeking’ subclone that, following serial in vivo and in vitro

selection, more frequently metastasizes to the brain in preclinical

models versus its parental line [18]. The MDA-MB-231-BR cell

line was cultured in DMEM (Life Technologies, Grand Island,

NY) with 10% FBS (fetal bovine serum; Sigma-Aldrich, St. Louis,

MO). The cell line was grown with penicillin/streptomycin (Life

Technologies, Grand Island, NY) at 37uC and 5% carbon dioxide.

Cells were harvested immediately prior to intracranial implanta-

tion. In addition, the identity of the MDA-MB-231-BR cell line

was confirmed by global gene expression analyses (September

2010).

Luciferase transduction of MDA-MB-231-BR
The MDA-MB-231-BR cell line was transduced with the

bicistronic lentiviral vector pTK1261 carrying the firefly Lucifer-

ase under the control of a CMV promoter and a fusion green

fluoresence protein/Blasticidin (PFG/BSD) under translational

control of an IRES. All lentiviral vectors were prepared by using

the calcium phosphate method to transiently transfect 293T cells

with 15 mg vector plasmid, 10 mg packaging plasmid, and 5 mg

envelope plasmid [19]. All vectors were pseudotyped with the

VSV-G envelope protein. Luciferase-expressing vector concentra-

tions were determined by p24gag ELISA.

Pharmacologic agents
Doxorubicin (NonL-doxo) and PEGylated liposomal doxorubi-

cin (PLD, DoxilH) were both obtained from the University of

North Carolina (UNC) Hospitals Pharmacy (Chapel Hill, NC).

The poly-ADP-ribose polymerase (PARP) inhibitor, ABT-888, was

synthesized by the Chemistry Center for Integrative Chemical

Biology and Drug Discovery at UNC (Dr. S. Frye). ABT-888 was

dissolved in PBS (phosphate-buffered saline, Life Technologies,

Grand Island, NY). The molecular weight of pure ABT-888 is

244.29 g/mol, while the molecular weight of the salt form (which

includes 2 HCl molecules) is 317.21 g/mol. All calculations were

performed using the molecular weight of the salt form of ABT-

888. The ability of ABT-888 to inhibit the formation of PAR was

confirmed by measuring PAR levels in MDA-MB-231-BR cellular

extracts using HT PARP in vivo Pharmacodynamic Assay II

(Trevigen, Gaitherburg, MD, data not shown).

Cell viability assay
A mitochondrial dye conversion assay (Cell Titer 96H Aqueous

One Solution Cell Proliferation Assay; Promega Corp., Madison,

WI) was used to measure cell viability after treatment. This assay

was conducted according to manufacturer’s instructions, with

modifications. Briefly, 10,000 MDA-MB-231-BR cells were seeded

in each well of a 96-well plate. Cell counting was performed with

an automated cell counter. Cells were allowed to adhere

overnight, and media was replaced with fresh media containing

a range of drug doses. After the specified treatment period, 20 ml

of tetrazolium compound inner salt (MTS) containing an electron

coupling reagent, phenazine ethosulfate (PES) was added in each
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well and incubated at 37uC for 1 hour (h). The MTS absorbance

was measured spectrophotometrically at 490 nm (minus back-

ground absorbance). All cytotoxic experiments were done in

triplicate.

Single agent and combination treatments in cell lines
The IC50, defined as the inhibitory concentration that caused a

50% reduction in MTS dye conversion (i.e. 50% in vitro response

inhibition), was defined for both ABT-888 and NonL-doxo after

72 h of treatment. Of note, PLD was not tested in vitro as the goal

of our study was to evaluate the differences in PK and efficacy of

PLD vs. NonL-doxo in an in vivo environment. Drug combination

interactions were analyzed using methods developed by Chou and

Talalay [20]. As per prior work [21], the following treatment

schedules were tested: 1) 72 hours (h) NonL-doxo followed by 72 h

ABT-888, 2) 72 h ABT-888 followed by 72 h NonL-doxo, and 3)

72 h concurrent schedule of NonL-doxo and ABT-888 in

combination. Using cell lines plated as described above, treatment

combinations consisting of a constant ratio of 308/1 (ABT888

[uM]/NonL-doxo [uM]) were applied to cells and growth was

measured compared to untreated controls using Cell Viability

assay.

Animal use and intracranial tumor inoculation
The mice were housed within a BSL2 facility and in sterile

caging. Therapeutic studies and assessment for response were

performed with the assistance of the Mouse Phase I Unit (MP1U).

Female, Foxn1nu/nu mice, approximately 20 grams and aged

8 weeks of age were bred in-house from animals purchased from

Charles River Laboratories International, Inc. (Wilmington, MA;

Stock #490) and were used for all studies. Prior to intracerebral

tumor inoculation, mice were anesthetized with ketamine 75 mg/

kg IP61 and DomitorH 1mg/kg IP61. Mice were placed into a

stereotactic frame (Kopf Model 900, Tujunga, CA) prior to

injection of 26105 MDA-MB-231-BR cells in a volume of 5uL of

5% methylcellulose and culture media. Cells were stereotactically-

injected into the right caudate nucleus of the basal ganglia using a

27 gauge needle (from Bregma a:1.0mm, l:-2.0 mm, d:-4.0 mm)

which remained in place for a period of 2 minutes (min) to

minimize reflux through the needle track.

Bioluminescence imaging
All animals were anesthetized via inhalation with 2% vaporized

isoflurane during the imaging process. Approximately 15 min

prior to imaging, all inoculated mice received an intraperitoneal

(IP) injection of D-Luciferin dissolved in PBS (150 mg/kg; Caliper

Life Sciences, Hopkinton, MA). To confirm the presence or

absence of intracranial tumor, mice were imaged using the IVIS

Lumina camera (Caliper Life Sciences, Hopkinton, MA). Images

were analyzed using Living Image 4.0 Software (Caliper Life

Sciences, Hopkinton, MA). All values were recorded as photons/

second and were corrected for the presence of background signal.

Pharmacokinetic study design
On Day 18 day following intracranial injections of 26105

MDA-MB-231-BR cells, mice were pair-matched into 2 treatment

groups. Intracranial tumor formation was confirmed by serial

bioluminescence imaging approximately 1 and 2 weeks post-

injection. Prior to treatment, the average luciferase signal

(photons/second) between groups was not statistically different

(data not shown). Group 1 (n = 23) received NonL-doxo admin-

istered over 10–15 seconds at 6 mg/kg IV61 via tail vein. Group

2 (n = 23) received PLD administered over 10–15 seconds at 6

mg/kg (doxorubicin equivalents) IV61 via tail vein.

Mice (n = 3 per time point, n = 2 prior to administration) were

sacrificed prior to administration, and at 0.083, 1, 3, 6, 24, 72 and

96 hours (h) after administration of NonL-doxo and PLD.

Approximately 1 mL of blood was collected via terminal cardiac

puncture following deep anesthesia (ketamine 100 mg/kg IP 61

and DomitorH 1 mg/kg IP 61) using sodium heparin as an

anticoagulant and centrifuged at 1,500 g for 5 minutes to collect

plasma. Brain tumor, peri-tumoral brain and normal (contralat-

eral, non-tumor) brain were collected from each mouse. Plasma,

tumor, and tissues were placed in cryopreservation vials and

preserved by snap freezing using liquid nitrogen. All samples were

stored at 280uC until analysis.

Sample processing and analytical method
Total tissue and tumor weight was recorded at time of

collection. Whole tissue and tumors were snap frozen in liquid

nitrogen and stored at 280uC until homogenized. To form tissue

and tumor homogenates, the intact tissues and tumors were

thawed and sectioned [11]. The sections were weighed and diluted

in a 1:3 ratio with phosphate buffered saline (PBS) solution.

Finally, these mixtures were homogenized by placing zirconium

oxide beads (15 small and 2 large; Omni International Inc,

Kennesaw, GA) into 2 mL tubes at 3,0006g using a Precellys 24

homogenizer (Omni International Inc, Kennesaw, GA) twice for

15 sec each with a 5 sec wait between each run.

Samples were further processed for the analytical studies using

protein precipitation with acetonitrile. An 800 mL of extraction

solution containing internal standard (acetonitrile with 100 ng/mL

daunorubicin) was added to 200 mL of plasma, tumor or tissue

homogenate into a 2 mL microcentrifuge tube. The samples were

vortexed for 10 min and centrifuged at 10,0006g for 10 min at

4uC. A 900 mL of the supernatant was decanted into clean tubes,

evaporated under nitrogen in TurboVap and reconstituted in

150 mL of 25% acetonitrile solution (containing 0.026 M

Na2HPO4, 3.5 mM triethylamine and pH adjusted to 4.6 with

3M citric acid). The samples were then vortexed, transferred into

auto-sampler vials and analyzed by high-performance liquid

chromatography (HPLC) using fluorescence (FL) detection (exci-

tation wavelength: 490 nm/ emission wavelength: 590 nm). The

HPLC-FL method to measure sum total (encapsulated and

released) doxorubicin in plasma, tumor, and tissues was modified

from previous studies [22,23,24].

Efficacy study design
Mice with luciferase-confirmed intracranial tumor were placed

into the following treatment groups 7 to 14 days following

intracranial inoculation of MDA-MB-231-BR cells: 1) control,

IV (via tail vein) PBS (100 uL) weekly, 2) NonL-doxo 6 mg/kg IV

weekly, (3) PLD 6 mg/kg IV weekly, (4) ABT-888 25 mg/kg/day

via oral gavage (OG), (5) NonL-doxo 4.5 mg/kg IV weekly plus

ABT-888 OG 25 mg/kg/day, or (6) PLD 4.5 mg/kg IV weekly

plus ABT-888 OG 25 mg/kg/day. Treatment was ongoing until

clinical symptoms necessitated sacrifice. Prior to treatment, the

average luciferase signal (photons/second) between groups and

within each experiment was not statistically different (data not

shown). Mice were weighed a minimum of three times/weekly and

were monitored by optical imaging weekly until clinical symptoms

(i.e. decreased response to stimuli, neurologic dysfunction, weight

loss of 20% and/or a Body Composition Score of 2 or less)

necessitated sacrifice.

Liposomal Doxorubicin in CNS Breast Cancer Model
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Statistical analysis
Cell line studies. CalcuSyn (BioSoft, Cambridge, UK) was

used to estimate the IC50 for each drug and to determine the

combination index, which is a measurement of the type of drug

interactions. A combination index (CI) of 1 indicates an additive

response, ,1 indicates a synergistic response, and .1 indicates an

antagonistic response.

Pharmacokinetic analysis. The pharmacokinetics of PLD

and NonL-doxo in plasma, tumor and tissues were analyzed by

noncompartmental analysis using WinNonlin Professional Edition

version 5.2.1 (Pharsight Corp., Cary, NC). The area under the

concentration versus time curve from 0 to ‘ (AUC0–‘) was

calculated using the linear up/log down rule. The plasma volume

of distribution (Vd), clearance (CL), and half-life (t1/2) were

calculated using standard equations. The maximum concentration

(Cmax) and time of Cmax (tmax) were determined by visual

inspection of the concentration versus time data.

Efficacy analysis. The Kaplan-Meier method and Log-rank

tests were used to evaluate and compare overall survival among

treatment groups. Unadjusted p-values are reported. For biolu-

minescence imaging, fold changes were calculated relative to the

start date of treatment. If present, negative imaging values (due to

correction for background) were recorded and set to zero. For

every time point where at least two animals were alive in the

treatment group, the median level and interquartile range (25th–

75th percentile) for bioluminescence imaging were calculated.

Results

Pharmacologic disposition and drug efficacy studies were

conducted in a murine model of intracranial breast cancer.

Briefly, 26105 MDA-MB-231-BR cells were stereotactically

implanted into the right caudate nucleus of Foxn1nu/nu mice.

Intracranial tumor formation was monitored in vivo via biolumi-

nescence imaging (mean signal 4.56106, standard deviation

7.06106 photons/second approximately 7 days post-implanta-

tion). Liposomal and non-liposomal drugs were administered, and

tumor and body tissue drug concentrations determined over time.

The median survival of treated versus untreated animals (26 days,

95% Confidence Interval [CI] 25–28 days) was determined as an

objective measure of efficacy.

Pharmacokinetic study results: plasma, tissue and tumor
pharmacokinetic disposition

Nonliposomal Doxorubicin (NonL-doxo). The concentra-

tion versus time profile of sum total doxorubicin in plasma, brain

tumor, peri-tumoral, and contralateral non-tumor brain after

administration of NonL-doxo is presented in Figure 1. The

pharmacokinetic parameters after administration of NonL-doxo

are presented in Table 1. After administration of NonL-doxo, the

plasma concentration versus time profile of sum total doxorubicin

peaked at 0.083 h (5 min) after administration, and had a bi-

phasic elimination profile as previously reported [12]. After

administration of NonL-doxo, sum total doxorubicin concentra-

tions were undetectable after 3 h in normal (contralateral, non-

tumor) brain, 6 h in peri-tumoral brain, and 24 h in plasma and

brain tumor. The exposure of sum total doxorubicin was higher in

brain tumor compared to normal and peri-tumoral brain from 1 to

24 h.

PEGylated liposomal-doxorubicin (PLD). The concentra-

tion versus time profile of sum total doxorubicin in plasma, brain

tumor, peri-tumoral brain and contralateral non-tumor brain after

administration of PLD is presented in Figure 2. The pharma-

cokinetic parameters after administration of PLD are presented in

Table 1. After administration of PLD, the plasma concentration

versus time profile of sum total doxorubicin had a bi-phasic

elimination profile, and was detectable until 96 h after adminis-

tration. The long circulation of PLD in plasma was consistent with

previous studies [25]. The concentration versus time profiles of

sum total doxorubicin after administration of PLD in normal

(contralateral, non-tumor) and peri-tumoral brain were similar to

the profile in plasma; however, sum total doxorubicin concentra-

tion was undetectable in normal brain after 72 h. The exposure of

sum total doxorubicin in tumor was higher than normal and peri-

tumoral brain and was maintained until 96 h.

The plasma exposure for sum total doxorubicin as measured by

the AUC was approximately 1,500-fold higher after administra-

tion of PLD as compared with NonL-doxo. CL and Vd of sum

total doxorubicin after administration of PLD (CL: 2.65 mL/h/kg,

Vd: 113.5 mL/kg, t1/2: 30 hours) were much lower as compared

to those of NonL-doxo (CL: 3,882.7 mL/h/kg, Vd: 56,238 mL/

kg, t1/2: 10 hours), indicating prolonged circulation and higher

plasma exposures for PLD compared with NonL-doxo. The AUC

of sum total doxorubicin after administration of PLD was

approximately 20-fold higher in brain tumor, 42-fold higher in

normal (contralateral non-tumor) brain, and 84-fold higher in

peri-tumoral brain as compared with NonL-doxo, indicating

greater delivery of sum total doxorubicin to brain tumor and

brain.

Single-agent efficacy results
The therapeutic effect of NonL-doxo versus PLD was assessed

in an intracranial model of breast cancer 7 to 14 days after

stereotactic implantation of the MDA-MB-231-BR cells. Animals

received weekly IV tail vein injections of either PBS control

(100uL), NonL-doxo (6 mg/kg) or PLD (6mg/kg) until clinical

symptoms necessitated sacrifice. The results are the product of 3

independent experiments across which there were no significant

difference in the survival of control group animals (data not shown,

[medians of 27 (CI = 24–31), 26 (CI = 18–28), 24 (CI = 18–29),

p = 0.24]. The median survival of the control and NonL-doxo

treated groups was not statistically different [p = 0.26; medians of

26 (CI = 25–28) and 23.5 days (CI 18–28), respectively; Table 2;

Figure 3A]. In contrast, the median survival of PLD treated

animals was 32 days (CI, 31–38) which was significantly longer

than control (p = 0.0012) and NL- doxo (p = 0.0002) treated

groups.

PARP inhibitor combinations
Combination studies. To further augment therapeutic

efficacy in the intracranial model of breast cancer, combination

anthracycline-based therapy with the PARP inhibitor, ABT-888,

was investigated. In vitro single agent and combination studies

utilizing the MDA-MB-231-BR cell line were performed. As single

agents, the IC50 doses of NonL-doxo and ABT-888 for the MDA-

MB-231-BR cell line were 242 nM and 277 mM at 72 hours,

respectively.

To determine if the combination of NonL-doxo and ABT-888

was additive, synergistic or antagonistic, MDA-MB-231-BR cells

were treated with three schedules: 1) 72 hours NonL-doxo

followed by 72 hours of ABT-888, 2) 72 hours ABT-888 followed

by 72 hours NonL-doxo, and 3) a 72 hours of NonL-doxo and

ABT-888 in combination. As shown in Figure 4A, treatment with

NonL-doxo plus ABT-888 in combination for 72 hours showed

similar results in terms of cell death compared to 72 h of ABT-888

prior to 72 h of NonL-doxo. However, sequencing NonL-doxo

prior to ABT-888 resulted in enhanced cell death. Concordant

with IC50 results and our hypothesis that DNA damage prior to

Liposomal Doxorubicin in CNS Breast Cancer Model
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inhibition of DNA repair would prove most effective, we observed

that treatment with NonL-doxo for 72 h followed by ABT-888 for

72 h was synergistic at most doses (Figure 4B). Both combination

treatment and sequential treatment with ABT-888 prior to NonL-

doxo showed additivity and antagonism at most doses, with

synergy at or above IC50 dosing.

In addition and in preparation for in vivo combination efficacy

studies, a pilot toxicity study of NonL-doxo and ABT-888 was

performed in 6 tumor-free FVB/NJ females aged 6 to 8 weeks

(Jackson Laboratory, Stock #001800). Two mice were evaluated

at each dose level of NonL-doxo: 6 mg/kg, 4.5 mg/kg, and 3 mg/

kg (intraperitoneal) IP weekly63 weeks in combination with ABT-

888 oral gavage (OG) 25 mg/kg/day. Treatment was adminis-

tered for 21 days during which body mass and body composition

score (BCS) were observed for a total of 49 days. Drug toxicity was

noted in a dose-dependent manner. NonL-doxo 6mg/kg IP weekly

with ABT-888 OG 25 mg/kg/day, was associated with early

decline (both animals sacrificed at 30 days). NonL-doxo 4.5 mg/

kg IP weekly in combination with ABT-888 OG 25 mg/kg/day

resulted in one sacrifice (42 days); no other adverse effects were

noted within the cohort. No adverse events were observed in the

3 mg/kg NonL-doxo plus ABT-888 mice throughout the study.

Based on pilot dosing, historical data [16,26], and the investiga-

tors’ experience with PLD dosing, 4.5 mg/kg IV weekly for both

NonL-doxo and PLD combined with ABT-888 25 mg/kg OG

was selected as the maximum tolerated dose for further study.

Survival. Combination therapy of PLD with ABT-888

resulted in improved median overall survival (35 day, CI 31–38)

as compared to control-treated (p,0.0001) and NonL-doxo plus

ABT-888-treated animals (29.5 days, CI 25–34; p = 0.006; see

Table 2 and Figure 3B). Interestingly, the addition of ABT-888

to PLD only minimally improved the survival of animals treated

with PLD alone (35 days, CI 31–38 versus 32 days, CI 31–

38 days, respectively; p= 0.3; data not shown). Both therapies,

PLD alone or with ABT-888 were superior to control-treated

animals (p = 0.0012 and p,0.0001, respectively). Finally, and for

Figure 1. Sum Total Doxorubicin Concentrations from NonL-doxo. Individual and mean sum total doxorubicin concentration in plasma,
brain tumor, contralateral non-tumor brain, and peri-tumoral brain of female athymic nude (nu/nu) mice bearing intracranial MDA-MB-231-BR human
triple-negative breast cancer xenografts following administration of nonliposomal doxorubicin (NonL-doxo) at 6 mg/kg IV61. Samples (n = 3 mice at
each time point) were obtained at 0.083, 1, 3, 6, 24, 72 and 96 hours following administration of NonL-doxo. Concentrations were undetectable after
3 hours (contralateral non-tumor brain), 6 hours (peri-tumoral brain), and 24 hours (plasma and tumor) of administration. (A) 0–96 h; (B) 0–6 h.
doi:10.1371/journal.pone.0061359.g001

Table 1. Pharmcokinetic parameters for PLD and NonL-doxo.

Matrix Pharmacokinetic Parameters

PEGylated liposomal-doxorubicin Non-liposomal doxorubicin

AUC0-(ng/mL?h) tmax(h) Cmax(ng/mL) AUC0-‘(ng/mL?h) tmax(h) Cmax(ng/mL)

Plasma 2,257,480 3 197,020 1,545 0.083 831

Brain Tumor 229,716 3 2,181 12,134 6 570

Normal Brain 13,742 3 854 326 1 92

Peri-Tumoral Brain 23,972 3 725 283 3 32

Noncompartmental pharmacokinetic parameters following administration of PEGylated liposomal-doxorubicin and non-liposomal doxorubicin at 6 mg/kg IV61 in
female athymic nude (nu/nu) mice bearing intracranial MDA-MB-231-BR human triple-negative breast cancer xenografts.
doi:10.1371/journal.pone.0061359.t001
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completeness, single agent therapy with ABT-888 was compared

to control with no differences observed (27 days, [CI 24–31] and

26 days [CI 25–28], p = 0.5; data not shown).

Bioluminescence studies. In addition to overall survival,

dynamic change (fold change from start of treatment as measured

in photons/second) in the signal intensity of intracranial tumors

was evaluated by bioluminescence imaging to assess efficacy of

individual and combination therapeutics (Figure 5A and 5B). As

expected, the highest fold change from baseline in biolumines-

cence was observed in control-treated animals (median 87.8,

Interquartile range [IQR] 38.5–88.5, 3 weeks post-treatment)

followed by ABT-888-treated animals (median 41.8, IQR 0.03–

63.2, 4 weeks post-treatment). The highest median fold-change in

animals treated with either NonL-doxo or PLD as single agents

was 4.6 (IQR 3.36–5.90, 3 weeks post-treatment) and 3.4 (IQR

0.79–4.37, 6 weeks post-treatment), respectively. Interestingly,

among animals treated with combination NonL-doxo plus ABT-

888 and PLD plus ABT-888, a peak in bioluminescence fold-

Figure 2. Sum Total Doxorubicin Concentrations from PLD. Individual and mean sum total doxorubicin concentration in plasma, brain tumor,
contralateral non-tumor brain, and peri-tumoral brain of female athymic nude (nu/nu) mice bearing intracranial MDA-MB-231-BR human triple-
negative breast cancer xenografts following administration of PEGylated liposomal-doxorubicin (PLD) at 6 mg/kg IV61. Samples (n = 3 mice at each
time point) were obtained at 0.083, 1, 3, 6, 24, 72, and 96 hours following administration of PLD. (A) 0–96 h; (B) 0–6 h.
doi:10.1371/journal.pone.0061359.g002

Figure 3. Efficacy Studies in an intracranial model of breast cancer. (A) Median survival (from the time of intracranial cell line injection) of
animals treated with control (PBS, black), non-liposomal doxorubicin (NonL-doxo, green) 6mg/kg IV weekly and PEGylated liposomal doxorubicin
(PLD, blue) 6mg/kg IV weekly in a murine model of intracranial breast cancer. (B) Median survival of animals treated with control (PBS, black), NonL-
doxo 4.5 mg/mg IV weekly plus ABT-888 25 mg/kg OG daily (yellow) versus PLD (red) 4.5mg/mg IV weekly plus ABT-888 25 mg/kg OG daily in a
murine model of intracranial breast cancer.
doi:10.1371/journal.pone.0061359.g003
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change was noted early (median 3.67, IQR 1.58–7.04 and 5.42

IQR 2.01–11.95, respectively, 2 weeks post-treatment), followed

by a decline in signal over time. At 5 weeks post-treatment,

median bioluminescence fold-change was 0.10 (IQR 0.01–0.19)

for NonL-doxo plus ABT-888-treated animals. Finally, 10 weeks

post-treatment, median bioluminescence fold-change was 0.00

(IQR 0.00–0.00) for PLD plus ABT-888 animals.

Discussion

As systemic therapies for breast cancer improve, the develop-

ment of breast cancer brain metastases has emerged as a

significant challenge in the management of patients with advanced

breast cancer [1]. While the blood brain barrier is often

compromised by the presence of intracranial tumor, it remains

an impediment to systemic delivery of promising systemic

therapies, including anthracyclines [27]. We report here, in a

murine model of intracranial breast cancer, that PLD results in

higher and prolonged plasma and intracranial tumor exposure as

compared to NonL-doxo. Specifically, the sum total plasma

AUC0–‘ of PLD was 1,500 times higher than that of NonL-doxo.

Moreover, PLD was detected at 96 hours in plasma illustrating

prolonged exposure as compared to NonL-doxo (undetectable

after 24 hours). The plasma pharmacokinetic results of PLD and

NonL-doxo are consistent with prior studies [10,12,13,14,28].

With regard to intracranial tumor, there were higher sum total

doxorubicin concentrations after administration of PLD compared

to NonL-doxo. Importantly, intracranial tumor sum total doxo-

rubicin concentrations remained elevated at 96 hours, whereas the

concentrations of doxorubicin after administration of NonL-doxo

were non-detectable in brain and brain tumors after 24 hours.

In parallel to improved pharmacologic disposition, we report

improved survival after administration of PLD as compared to

control and NonL-doxo treatment in this MDA-MB-231-BR

model of intracranial breast cancer. In contrast to our in vitro

results, the addition of a small molecule PARP inhibitor capable of

crossing the blood brain barrier, ABT-888[16], to PLD did not

significantly improve survival as compared to single agent PLD.

Interestingly, combination therapy with ABT-888 and PLD

resulted in significant improvements in survival when compared

to NonL-doxo plus ABT-888. In light of prior work illustrating

similar efficacy and an improved toxicity profile (i.e. improved

cardiac toxicity) for PLD as compared to NonL-doxo in patients

with extracranial advanced breast cancer [29], our results provide

sound preclinical rationale to support the design of clinical trials

Table 2. Median survival of intracranial breast cancer model.

Treatment Groups Dose(mg/kg) Mice per group

Median Survival and 95%

CI(days) P value (compared to control)*

Control (PBS) N/A 33 26 (25 – 28) N/A

NonL-doxo 6mg/kg IV 20 23.5 (18 – 28) 0.26

PLD 6mg/kg IV 20 32 (31 – 38) 0.0012

ABT-888 25m/kg OG 18 27 (24 – 31) 0.5

NonL-doxo plus ABT-888 4.5mg/kg IV and 25mg/kg OG 36 29.5 (25 – 34) 0.04

PLD plus ABT-888 4.5mg/kg IV and 25mg/kg OG 35 35 (31 – 38) , 0.0001

Median Survival of an intracranial breast cancer model treated with Control (PBS), non-liposomal doxorubicin (NonL-doxo) versus PEGylated Liposomal Doxorubicin
(PLD).
*P value for NonL-doxo vs. PLD = 0.0002; p value for NonL-doxo/ABT-888 vs. PLD/ABT-888 = 0.006.
Abbreviations: IV, intravenous; OG, oral gavage.
doi:10.1371/journal.pone.0061359.t002

Figure 4. Sequential and combination treatment of the MDA-MB-231-BR cell line with ABT-888 and non-liposomal doxorubicin
(NonL-doxo). (A) Percentage of viable cells treated in each of three treatment arms (72 hours [h] ABT-888 followed by 72 h NonL-doxo [blue], 72 h
NonL-doxo followed by 72 h ABT-888 [red], and 72 h concurrent schedule of NonL-doxo and ABT-888 in combination [green]). (B) Combination index
(CI) analysis in each arm compared to treatment with single agents. Note: CI ,0.1–0.9, synergy; CI 0.9–1.1, additivity; CI .1.1, antagonism.
doi:10.1371/journal.pone.0061359.g004
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evaluating PLD with or without the PARP inhibitor, ABT-888, to

treat patients with breast cancer brain metastases – particularly

those with triple negative disease whose disease often presents both

intra- and extracranially and for whom targeted systemic therapies

are few [4]. However, while our results also support the study of

other nanoparticle anticancer agents in the treatment of primary

and metastatic intracranial tumors, we cannot recommend

translation of our work to PLD with other PARP inhibitors, other

than ABT-888, as the efficacy results of doxorubicin in combina-

tion with PARP inhibitors, (i.e. AG014699, INO-1001) have been

mixed [30,31].

The pharmacokinetics of nanoparticle drugs, e.g. PLD, is

dependent upon the carrier and not the encapsulated drug until

the drug is released from the carrier [32,33,34]. The drug that

remains encapsulated within liposomes or nanoparticles is an

inactive prodrug, thus the drug must be released from the carrier

to be active (active warhead). Nanoparticles and liposomes are

cleared via the mononuclear phagocyte system (MPS), which is

located primarily in the liver and spleen, as well as in the lung,

bone marrow and blood [28,35,36,37]. Nanoparticles and

liposomes can alter both the tissue distribution and the clearance

of drugs because the drug takes on the PK characteristics of the

carrier [10,33,34]. The ability of nanoparticle agents to deliver

drug to brain/brain tumors has not been extensively evaluated.

However, our study suggests that PLD achieved approximately 20-

fold higher exposures of drug into the brain tumors than the

NonL-doxo. Moreover, the results of this study can have a far

reaching impact as there are .300 nanoparticle anticancer agents

containing various anticancer agents as cargo in preclinical and

clinical development that may have enhanced delivery to

intracranial tumors, which may results in greater efficacy for the

treatment of CNS-located epithelial malignancies [33,34,38].

Prior studies also suggest that nanoparticle agents can deliver

more drug to brain than their non-nanoparticle counterparts.

Walsh et al [11] showed that XMT-1001, a macromolecular

camptothecin (CPT) conjugate, administered at 60mg CPT

equivalents/kg in mice bearing HT-29 human colon carcinoma

xenografts delivered 5-fold higher exposures of camptothecin into

brain than irinotecan (administered at 100 mg/kg CPT equiva-

lents). In a study comparing the plasma, tumor, and tissue

pharmacokinetics of PEGylated liposomal CKD-602 (S-CKD602)

and nonliposomal CKD-602 (a camptothecin analog) in mice

bearing A-375 human melanoma xenografts, S-CKD602 deliv-

ered approximately 3-fold higher exposures of the CKD-602 into

brain as compared to non-liposomal CKD-602 [10] after

administration of only 1/30th of the dose of non-liposomal

CKD-602. Siegal et al. showed that PLD achieved 15-fold higher

doxorubicin levels in brain tumors of fisher rats after 48 hours of

administration as compared to NonL-doxo [12].

Although the mechanism of enhanced CNS delivery of

nanoparticles is not completely understood, it is postulated that

higher exposure to CNS tumors is related to nanoparticle

longevity in circulation compared to non-nanoparticle formula-

tions. Penetration of small molecule anti-cancer agents across the

Figure 5. Bioluminescence imaging of TNBC intracranial tumor model. (A) Dynamic changes in intracranial tumor growth after treatment as
measured by bioluminescence imaging in photons/second. Groups are as follows: Control (black), non-liposomal doxorubicin (NonL-doxo, green),
PEGylated liposomal doxorubicin [PLD] (blue), ABT-888 (purple), NonL-doxo/ABT-888 (yellow) and PLD/ABT-888 (red). The median fold changes are
connected over time for each treatment group. The vertical bars indicate the interquartile rages (25th–75th percentiles). Points are only plotted when
there were at least 2 animals in a treatment group. (B) Representative images of intracranial bioluminescence by treatment group 14 days post-
treatment initiation.
doi:10.1371/journal.pone.0061359.g005
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blood brain barrier is limited by molecular weight, polarity, efflux

mechanisms (i.e. P-glycoprotein), and short half-life [8,9]. We

hypothesize that prolonged systemic exposure afforded by

nanoparticle technology allows for permeation of tumor micro-

circulation via passive convection transport through a BBB

potentially ‘‘compromised’’ by the presence of tumor. Chances

for extravasation improve with prolonged circulation half-life and

a greater number of circulation passages through a tumor bed.

Although factors inherent to intracranial tumor (i.e. lack of

lymphatic drainage, increased intracranial pressure) may dampen

the effect of nanoparticle transport into a tumor compartment,

results of preclinical and clinical studies argue that longer

circulation time afforded by nanoparticle formulations abrogate

these effects [12,13,14]. Moreover, several investigators have

sought to augment nanoparticle delivery to the CNS via strategic

targeting of liposomes to receptors selectively expressed by cell

lines and human tumors. As an example, treatment with

doxorubicin encapsulated in interleukin-13 (IL-13)-conjugated

liposomes resulted in improved survival and enhanced tumor

reduction in an intracranial model of glioblastoma multiforme

(GBM) as compared to unconjugated liposomes with the same

doxorubicin concentration [39]. More specific to breast cancer, a

second study has shown that PLD targeting integrin a5b1, over-

expressed in tumor vasculature and cancer cells, results in higher

cytotoxicity when treating MDA-MB-231 a5b1-expressing, breast

cancer cell lines than non-targeted liposomes [40]. Future studies

of targeted liposomes to treat intracranial breast cancer are

warranted.

We recognize that our study has several limitations. First, the

murine model selected to perform both the pharmacokinetic and

efficacy studies of PLD versus NonL-doxo is an intracranial model

of breast cancer per direct intracranial implantation. The goal of

this project; however, was to treat established intracranial tumor to

test intracranial drug delivery and efficacy as opposed to

prevention of colonization of the central nervous system pharma-

cologically (i.e. tumor growth inhibition) in which models of brain

metastases arising from hematogenous injection are routinely used

[27]. Moreover, an intracranial approach has historically been

employed as an accepted model to study both secondary and

primary brain tumors [12,41]. We view our data as a ‘‘proof of

concept’’ such that other pharmacologic agents (both chemother-

apeutics and targeted agents) may be more efficiently delivered to

the central nervous system using similar technology.

Conclusions

In conclusion, results of this study indicate that the pharmaco-

logic and efficacy profile of PLD is superior to that of NonL-doxo

in an intracranial model of established breast cancer brain

metastases. Moreover, the addition of the PARP inhibitor, ABT-

888, to PLD resulted in improved survival as compared to NonL-

doxo plus ABT-888 in this model. Taken together, our results

represent a novel and efficacious strategy in a preclinical setting –

liposomal delivery of a chemotherapeutic alone or in combination

with a small molecule PARP inhibitor – to treat breast cancer

brain metastases. These results provide strong rationale to

translate our findings into early phase trials evaluating PLD, with

or without ABT-888, among patients with breast cancer brain

metastases, including those with triple negative disease, with the

goal of improving outcome for patients with such a devastating

disease.
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