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Introduction

Among the pyrimidine analogs, gemcitabine (2′,2′-difluoro-

deoxycytidine, dFdC; Gemzar®) is one the most widely 

used drugs in clinical oncology and ranked the third anti-

cancer agent prescribed worldwide. It is a cytidine analog, 

where two fluorine atoms have replaced the hydroxyl on 

the ribose. In particular, gemcitabine is a mainstay in pan-

creatic adenocarcinoma [1, 2] and is widely prescribed to 

treat a variety of other solid tumors such as breast, ovarian, 

bladder or non-small-cell lung (NSCLC) cancers [3, 4]. In 

addition to solid tumors, gemcitabine is indicated as well 

in several hematological disorders such as acute leukemia 

[5]. Beyond adult patients, gemcitabine can be an attractive 

option in pediatric cancers because its toxic profile is usu-

ally considered as mild as compared with other cytotoxic 

drugs.

After administration and taken up by the cancer cell, 

gemcitabine undergoes an initial phosphorylation by deox-

ycytidine kinase (dCK) and to a lower extent by the extra-

mitochondrial thymidine kinase 2, followed by a series of 

phosphorylation steps in order to be incorporated into both 

DNA and RNA as its active phosphorylated form gemcit-

abine triphosphate (dFdCTP) [6]. Additionally, gemcit-

abine diphosphate (dFdCDP) inhibits ribonucleotide reduc-

tase (RR), an enzyme in the nucleotide pathway critical for 

the cancer cell to manage its pools of deoxynucleotides. 

The clearance of gemcitabine is mostly driven by rapid and 

extensive inactivation by cytidine deaminase (CDA) to its 

primary metabolite 2′,2′-difluoro-deoxyuridine (dFdU); 
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CDA is expressed ubiquitously at high levels in both 

plasma and the liver, [7]. A 24-h hepatic artery infusion of 

gemcitabine to the liver underlined the important role for 

liver CDA-mediated catabolism to dFdU, since the Cmax 

and area-under-curve of dFdU were similar for the hepatic 

artery infusion and a 24-h intravenous infusion of gemcit-

abine, while gemcitabine plasma levels were much lower 

after the hepatic artery infusion [8]. Figure 1 briefly sum-

marizes these main steps of gemcitabine metabolism and 

mechanisms of action.

Because gemcitabine is the backbone of numerous reg-

imens, several studies have tried to identify molecular or 

genetic determinants of response, both at the somatic and 

the constitutional levels [9]. In addition, recent efforts have 

been made to improve the metabolism and pharmacokinet-

ics (DM-PK) profile of gemcitabine, creating novel chemi-

cal derivatives, prodrugs or nanomedicine forms [10].

Gemcitabine pharmacokinetics 

and pharmacodynamics

Because of its hydrophilic nature, gemcitabine does not 

readily cross the membrane by diffusion, and it is trans-

ported into the cells by membrane nucleoside transporters 

[11]. Following cellular uptake, gemcitabine is phosphoryl-

ated to its active diphosphate (dFdCDP) and triphosphate 

(dFdCTP) metabolites, which inhibit RR and DNA syn-

thesis, respectively [12]. dCK is the rate-limiting enzyme 

in the biotransformation of nucleoside analogs, and sev-

eral studies have suggested that dCK is a limiting factor 

for gemcitabine activity, because its deficiency/modula-

tion is critically involved in acquired resistance in differ-

ent in vitro models [13, 14]. Moreover, pretreatment dCK 

expression level could be used as a predictive parameter 

of tumor sensitivity, as observed with a clear correlation 

Fig. 1  Gemcitabine (dFdC) patterns and mechanisms of action. CDA 

cytidine deaminase, dCK deoxycytidine kinase, NMPK nucleotide 

monophosphate kinase, NDPK nucleotide diphosphate kinase, hENT1 

human equilibrative nucleoside transporter-1, hCNT3 human con-

centrative nucleoside transporter-3. In cancer cells, genetic polymor-

phisms affecting membrane transporters, activating and deactivating 

enzymes and pharmacological targets such as ribonucleotide reduc-

tase, are all associated with treatment efficacy
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between dCK activity and gemcitabine sensitivity in tumor 

cells and xenografts [15].

The dynamics of dFdCDP and dFdCTP formation and 

activity in vivo are complex; dFdCTP is incorporated into 

DNA followed by one or more deoxynucleotides masking 

gemcitabine and preventing DNA repair by 3′5′-exonucle-

ase activity, a process designated as “masked DNA chain 

termination” [16]. This causes an S-phase-specific cell 

cycle arrest and programmed cell death. dFdCTP is also 

incorporated into RNA, thus inhibiting RNA synthesis [17], 

while dFdCDP inhibits RR, inducing a depletion of the cel-

lular pool of deoxynucleoside triphosphates, and blocks the 

de novo DNA synthesis pathway [18].

However, only a proportion of gemcitabine is converted 

into the active di- or triphosphate forms. The majority 

of gemcitabine is rapidly inactivated in the liver and to a 

lesser extent in blood by deamination into dFdU, through 

a reaction catalyzed by CDA. Additionally, 10 % of 

unchanged gemcitabine can undergo renal filtration, and 

within 1 week, more than 90 % of the injected dose is usu-

ally recovered in the urine, either as parent gemcitabine 

(1 %) or dFdU (99 %) [19]. In addition, the formation of 

dFdCTP and dFdCDP from dFdCMP is reduced through 

deamination of dFdCMP to 2′,2′-difluorodeoxyuridine 

monophosphate (dFdUMP) by dCMP deaminase. Notably, 

an elevated concentration of dFdCTP inhibits dCMP deam-

inase, determining a “self-potentiation” of the drug activ-

ity [20], which is also caused by the increase in dFdCTP 

accumulation induced by dFdU in a time-dependent man-

ner [21]. dFdCTP also inhibits CTP synthetase, affect-

ing RNA synthesis by depletion of CTP, while the latter 

decreases dCTP synthesis [22, 23]. Finally, a recent study 

demonstrated that gemcitabine can inhibit the enzyme thy-

midylate synthase presumably through the phosphorylated 

metabolite dFdUMP. Inhibition of this enzyme enhances 

the mis-incorporation of 2′-deoxyuridine into DNA, caus-

ing indirect damage [24].

A considerable inter-patient variability has been 

described in gemcitabine accumulation, and the pharma-

cokinetics of gemcitabine and its main metabolite dFdU 

in plasma have been evaluated in multiple studies. Gem-

citabine plasma concentrations generally reach a plateau 

after 15–30 min during the standard 30 min infusion proto-

col. Linear pharmacokinetics have been described over the 

range 40–3650 mg/m2, and nonlinear pharmacokinetics at 

higher doses [19, 25, 26]. Mean gemcitabine peak plasma 

concentrations ranged from 24 µM at 800 mg/m2 [27] to 

32 µM at 1000 mg/m2 [28], around 53–70 µM at a dose 

of 1250 mg/m2 [29, 30], 68–79 µM at 2350 mg/m2 and 

between 320 and 512 µM at the MTD of 5700 mg/m2 [19]. 

Up to at least at gemcitabine 1250 mg/m2, deamination was 

linear with mean plasma dFdU concentrations being 1.25 

times higher as compared to dFdU levels using gemcitabine 

1000 mg/m2. Linearity was lost at doses higher than 

3650 mg/m2 [19]. The clearance of gemcitabine in the 

plasma is also rapid (i.e., T1/2 of 5–20 min). More than 

75 % of gemcitabine is metabolised to dFdU and excreted 

in the urine in the first 24 h [19]. This clearance is inde-

pendent of dose over the linear range (i.e., up to 3650 mg/

m2), but proportional to creatinine clearance. At the high-

est doses, the clearance was lower; moreover, the clearance 

was 1.5-fold higher in men (8.6 l/m2) compared to women 

(5.7 l/m2) [19]. The pharmacokinetic elimination half-life 

for dFdU varies between 2 and 24 h, and it is still present 

systemically in concentrations greater than 1 µM up to 

1 week after dosing [31]. Of note, since dFdU is not pro-

tein bound, its plasma concentration, up to 460 µM [19], 

depending on the dose administered, is freely available. 

These concentrations are cytotoxic [20, 32] and could have 

significant implications in the clinical use of gemcitabine 

alone or in combination with other therapies, such as radia-

tion [33], since dFdU has a radiosensitizing effect by itself.

Since gemcitabine is often given in combination with 

other cytotoxic and targeted drugs, the effect of combina-

tion therapy on the pharmacokinetics has been investigated 

in several clinical studies, since theoretically co-medication 

can affect both drug metabolism and elimination. How-

ever, in the most widely used combination with cisplatin 

or paclitaxel, no evidence was found for an effect of these 

drugs (as well as oxaliplatin and carboplatin) on both gem-

citabine and dFdU pharmacokinetics, investigated within 

the same patients and between patients [27, 28, 30, 34, 

35]. Similarly, the proteasome inhibitor bortezomib and the 

farnesyltransferase inhibitor SCH66336 did not affect the 

pharmacokinetics of gemcitabine or dFdU, alone or in the 

combination with cisplatin [36, 37]. Moreover, no effect of 

the VEGFR inhibitor SU5416 was observed [29], while the 

EGFR inhibitor gefitinib tended to increase the exposure to 

gemcitabine [38]. However, the other EGFR inhibitor erlo-

tinib did not affect pharmacokinetics of the gemcitabine 

prodrug LY2334737 itself or of gemcitabine and dFdU 

[39]. Hence, from the point of view of pharmacokinetics, 

it can be concluded that in general gemcitabine can safely 

be combined with other drugs, both other cytotoxics and 

novel targeted drugs. Naturally, this does not exclude that 

gemcitabine affects the mechanism of action of other drugs 

or that these other drugs affect intracellular metabolism 

of gemcitabine. Two examples include the potentiation by 

gemcitabine of cisplatin adduct formation and the selective 

effect of bortezomib on intracellular gemcitabine activation 

[27, 40].

Less data are available on the pharmacokinetics of 

dFdCTP, which should be measured with more sensitive 

LCMS assays [41]. However, several studies demonstrated 

that cells exposed to gemcitabine have saturable accumula-

tion of the dFdCTP, and the optimal plasma concentration 
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of gemcitabine that maximized the rate of formation of 

dFdCTP was approximately 20 µmol/l [42, 43]. This is 

accompanied by a change in the pattern of elimination with 

monophasic elimination at low concentrations and biphasic 

elimination described after the threshold has been reached.

Since the optimal intracellular accumulation of dFdCTP 

was achieved with dose rates of 10 mg/m2/min [25, 43], 

a number of phase I trials have explored the possibility 

to prolong the duration of infusion time, while other tri-

als escalated both the dose and infusion duration [25, 44, 

45]. The rationale for prolonged dosing received a major 

boost when a randomised phase II trial in a clinically rel-

evant scenario (pancreatic cancer) demonstrated that pro-

longed infusion at a rate of 10 mg/m2/min, compared to the 

standard dosing regimen with 30 min infusion, was asso-

ciated with increased accumulation of dFdCTP, as well as 

with a significant increase in response rate and a trend for 

increased survival [46]. Similar trials in different tumor 

types confirmed the pharmacokinetic finding, but were 

underpowered to demonstrate survival differences [47]. 

Unfortunately, a large phase III study in pancreatic cancer 

showed that the pharmacological advantage failed to trans-

late into a significant survival advantage [34].

Collectively, these clinical studies indicate that the anti-

tumor effect of gemcitabine is schedule dependent and 

that lower doses can be efficacious. Therefore, it could be 

advantageous to deliver gemcitabine in a manner where it 

can achieve prolonged systemic exposure, good efficacy 

with lower toxicity along with added flexibility of admin-

istration and greater patient convenience, such as using an 

oral formulation [48]. However, administering gemcitabine 

orally to patients has been limited by low oral bioavailabil-

ity, high first-pass clearance, variable systemic exposures 

during dose escalation studies and observation of gastroin-

testinal toxicity including nausea, vomiting and diarrhea.

Dysregulation at the germinal level: 

pharmacogenetics of gemcitabine

Factors extracted from either clinical or pathological data 

such as age, performance status, comorbidity and disease 

stage or grade provide a crude discrimination of prognosis, 

but are often not predictive and not helpful for the choice 

of the best chemotherapeutic regimen for a given patient. 

Novel approaches to stratify patient’s prognosis or toxicity 

may be offered by pharmacogenetic analyses of selected 

candidate polymorphisms that could influence the expres-

sion of genes involved in drug metabolic pathways.

Historically, pharmacogenetics is indeed defined as the 

study of germline mutations (e.g., single-nucleotide poly-

morphisms affecting genes coding for enzymes responsible 

for drug pharmacokinetics), whereas pharmacogenomics 

refers to the role of both acquired and inherited genetic 

differences in relation to drug behavior through a system-

atic examination of genes, gene products and inter- and 

intra-individual variation in gene expression and function 

using new genomic technologies [49]. However, in oncol-

ogy, pharmacogenetics is often considered as concerning 

the individual patient’s features and pharmacogenomics as 

those of the tumor.

CDA deregulations and clinical outcome

Gemcitabine is primarily detoxified in the liver by CDA 

into dFdU, with a Km of approximatively 96 µM [50, 51]. 

Usually, 90 % of gemcitabine is detoxified by CDA, and 

variations in enzymatic activity impact greatly on drug 

pharmacokinetics and pharmacodynamics. Mice with 

impaired CDA displayed sharp overexposure to the drug 

with subsequent unrecoverable hematological toxicities 

[52], thus highlighting the correlation between CDA defi-

ciency, overexposure to gemcitabine and increased risk 

of severe toxicities. Indeed, a variety of studies and case 

reports have found a correlation between CDA deficiency 

syndrome and an increase in severe hematological toxici-

ties in patients undergoing gemcitabine-based therapy [52, 

53]. Of note, the first-ever reported case of toxic death 

related to CDA deficiency in an ovarian cancer patient 

treated with the gemcitabine—carboplatin was published 

in 2007 [53]. Profound functional deficiency was retro-

spectively evidenced, with heterozygous CDA*2 genotype. 

Subsequent genetic investigations revealed a new intronic 

mutation (i.e., 154 + 37G>A) on the CDA gene, likely to 

have caused the lethal toxicities [54]. Of note, other stud-

ies have shown that patients with lower CDA activity 

also tend to display higher response rates and better sur-

vival [55, 56]. On the contrary, it has been observed that 

about 15 % of the Caucasian adult population display CDA 

activities significantly higher than the median values of 

adult populations (i.e., over 6 U/mg), making them prone 

to therapeutic failure because most of standard dosing of 

gemcitabine will be metabolized in the liver before it even 

reaches the tumor tissues [52]. A pilot study involving 40 

patients treated by gemcitabine-based regimens for pancre-

atic cancer confirmed that patients displaying CDA ultra-

metabolizer phenotype were fivefold more at risk to have a 

progressive disease than patients with normal CDA status 

[57]. As expected, these patients had milder toxicities than 

patients with normal or lower CDA activity, an observation 

completely in line with previous reports about CDA and 

gemcitabine-related toxicities. Overall, all these studies, 

conducted by independent groups and involving patients 

treated with gemcitabine used alone or in a combination for 

a variety of settings, demonstrate how CDA status greatly 
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affects clinical outcome in patients undergoing gemcit-

abine-based treatments.

CDA genetic polymorphisms

CDA is coded by the 4-exons gene CDA located on the first 

pair of chromosomes (1p36.2-p35). CDA is formed by four 

identical subunits, all presenting a zinc atom in the active 

site. It is mostly expressed in liver and placenta, but high 

levels of CDA are also expressed in mature neutrophils and 

erythrocytes [58]. CDA is responsible for the physiological 

deamination of cytidine and 2′-deoxycytidine into uridine 

and 2′-deoxyuridine, respectively. Because a wide inter-

patient variability has been observed with CDA, numerous 

studies have been undertaken to screen for possible muta-

tions and polymorphisms affecting the CDA gene since the 

mid-70s, both in germinal cells and in cancer cells [59–62]. 

As of today, up to 1000 genetic variations affecting CDA 

have been described. The most studied polymorphisms are 

the two non-synonymous 79A>C (rs2072671) and 208G>A 

(rs60369023) substitutions and the synonymous 435C>T 

(rs1048977) variant [63–66]. Beside these polymorphisms 

affecting coding regions, many other mutations of the pro-

moter region such as the −31delC deletion (rs3215400) 

or −92A>G (rs602950), or in intronic regions such as the 

154 + 37G>A polymorphism (rs12059454) have been 

described [54, 67–70]. All these genetic variations lead 

to inconsistent and sometimes conflictual results in term 

of resulting phenotypic status [69, 70], as reported in the 

Table 1.

Indeed, the large inter-individual variability reported 

with CDA activity is only partly explained by the genetic 

background. In addition, because more than 1000 genetic 

variations have been evidenced, SNP-candidate studies 

are probably underpowered strategies, yielding conflict-

ual data [51, 55, 64, 68, 71, 72]. For instance, the 79A>C 

polymorphism (i.e., CDA*2) leads to lysine to glutamine 

permutation in position 27, with no impact on the catalytic 

site eventually, but other factors might play a role. Of note, 

ethnicity plays a crucial role in the allelic frequencies of 

this variant because minor allele frequency (MAF) ranges 

from 10 % in African population, 15 % in Asian popula-

tion, but up to 35 % in Caucasians [73, 74]. The phenotypic 

impact of this allelic variant and its consequence in the 

clinical outcome in patients treated with nucleoside ana-

logs remain controversial: a decrease in CDA activity has 

been measured for the Lys27Lys variant [75, 76], whereas 

other studies suggest no variation [52, 77] or lower activ-

ity for the Gln27Gln variant [78, 79]. These differences may 

be partly explained by variations in study design such as 

patient selection, ethnicity and treatment regimens [80–82]. 

A pivotal study has recently been published, collecting data 

about CDA catalytic activity according to substrates, both T
a
b
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natural and synthetic [83]. This biochemical study, inspired 

from a previous work in 2012 by Baker and collaborators 

[79], highlights that catalytic efficiency of CDA enzyme is 

dependent on the genetic sequence encoding for the pro-

tein, but also on the drugs used as substrates. Surprisingly, 

an increase in CDA catalytic efficiency was observed for 

the CDA27Gln protein with natural cytidine analogs and 

cytarabine, but surprisingly a decrease was found for other 

substrates such as 5-azacytidine, 6-azacytidine and fazara-

bine. This is in agreement with the results of the study by 

Giovannetti et al. [75], in which CDA27Gln activity was 

investigated with gemcitabine, with a decrease in deami-

nase activity being observed with this polymorphism.

In addition to the CDA*2 allelic variant, another poly-

morphism has been studied extensively: CDA*3, resulting 

from the substitution of alanine to threonine in position 70 

because of the 208G>A SNP in the coding sequence. With 

the CDA*3 variant, impact on CDA phenotype is more uni-

vocal because researchers all agree that a decrease in CDA 

activity is found for the protein encoded by 208 A/A vari-

ant [68, 74, 83]. Indeed, deaminase activity was found to be 

100-fold lower than normal CDA with respect to all tested 

drugs with this allelic variant [57]. Of note and unlike 

CDA*2, which is found in every population, but in differ-

ent proportions, CDA*3 has never been detected in Cauca-

sian populations, but is only found in Africans and Asians. 

To date, the clinical impact of CDA*3 genotype in patients 

treated with gemcitabine has been repeatedly reported in 

Japanese patients only [74, 83, 84]. In addition, two studies 

have aimed at establishing the respective MAF of 79A>C, 

208G>A and 435C>T in both Asian and Caucasian popula-

tions [67, 85]. Few differences were observed in MAF of 

435C>T allelic variant when comparing these two ethnici-

ties, whereas discrepancies were evidenced for the 79A>C 

and 208G>A variants. For the CDA*2 allelic variant, twice 

as many individuals carry a wild-type genotype with a 

lower incidence of C/C genotype in Asians, as compared 

with white people. The discrepancy is more marked for the 

rs60369023 variant because no individual, whether in Afri-

can-Americans, Chinese-Americans, or Caucasian-Amer-

icans, was carrying the minor allele A. Only 11 patients 

were heterozygous among over 400 Korean and Japanese 

patients, and none of them was found to be homozygous for 

the CDA*3 variant [85]. These data confirm that screening 

for 208G>A single-nucleotide polymorphism has a clini-

cal, yet limited, meaning in Asian or more significantly in 

Japanese populations only. As mentioned above, numerous 

other genetic variations have been identified, but no study 

has established a clear link between a given genotype and 

the resulting phenotype yet, apart for the −31delC variant 

(rs532545), a CDA promoter deletion possibly resulting 

in an amplification of the CDA gene with functional (i.e., 

ultrametabolizer phenotype) impact eventually [71]. These 

data call for more sophisticated multigenic or haplotype-

based studies to establish a clear genotype-to-phenotype 

relationship with CDA and gemcitabine.

Dysregulation at the tumor level: 

pharmacogenomics of gemcitabine

Several determinants for efficacy have been identified 

with gemcitabine at the tumor level. Because gemcitabine 

requires facilitated transport for cellular uptake [11], sev-

eral studies evaluated the expression levels of the plasma 

membrane human equilibrative nucleoside transporter-1 

(hENT1) and human concentrative nucleoside transporter-3 

(hCNT3), showing their prognostic and predictive roles of 

drug activity in patients undergoing gemcitabine-based reg-

imen [86–89]. Higher uptake in cancer cells with high lev-

els of both transporters could explain the marked increase 

in disease-free survival and overall survival observed in 

pancreatic cancer patients administered with gemcitabine. 

Of note, several polymorphisms affecting the genes coding 

for hENT1 and hCNT3 have been described. These poly-

morphisms might impact protein expression, but the func-

tional and clinical significance of these polymorphisms 

have yet to be defined [10].

Other determinants for response at the tumor level 

include the expression of dCK, the rate-limiting enzyme 

activating the prodrug gemcitabine to active nucleotides 

[90], deoxycytidylate deaminase that metabolizes active 

phosphorylated nucleotides into inactive metabolites [6] 

and RR that is one of the gemcitabine targets [91]. These 

genes have many polymorphisms, which could impact on 

drug efficacy, but the relevance of all these markers has not 

been fully confirmed at the bedside. Large prospective con-

trol studies are necessary to confirm the role of these deter-

minants in response to gemcitabine.

However, the candidate-gene approach used in most of 

these studies cannot establish if a positive association is 

due to linkage with untyped functional variant alleles or 

due to intragene interaction. Drug efficacy and toxicity may 

also be influenced by other genes and pathways, which will 

be undetected by single-polymorphism analysis. Therefore, 

alternative approaches through the broader application of 

new genomic technologies might be necessary to identify 

novels biomarkers of gemcitabine efficacy and toxicity, 

and to bring us closer to tailor-made therapy for individual 

patients [92]. Li et al. [93] used such a method to identify 

novel genes involved in gemcitabine metabolism. After 

analyzing data with 26,653 probe sets, the researchers iden-

tified 15 genes where mRNA expression correlated with 

cytidine analog sensitivity and, from there, selected FKBP5 

for further functional variation. FKBP5 is a gene involved 

in steroid receptor mutation and is a binding partner for 
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rapamycin, suggesting that it may have a role in the apop-

tosis pathway. Overexpression of FKBP5 correlated with 

increased gemcitabine chemosensitivity. Using FKBP5 

siRNA-treated cells, the researchers showed a decrease in 

downstream enzyme caspase-3/7 activity, confirming that 

the activation of the apoptotic pathway was affected by the 

downregulation of FKBP5 expression.

Recently, it has also been shown that tumor blood perfu-

sion and vessels’ density could be associated with response 

to drug-based therapy, probably in relation with a drug 

delivery issue. In this respect, the Hedgehog signaling 

pathway has been suggested as being a new determinant 

of response with gemcitabine, since it is associated with 

production of a desmoplastic tumor stroma and a reduced 

tumoral perfusion eventually, probably through the expres-

sion of Gli family transcriptor factors. As a result, Hedge-

hog signaling could prevent at least partly gemcitabine to 

be delivered to tumors [94, 95]. This rising concern in both 

experimental and clinical oncology about the role Hedge-

hog protein plays, highlights the fact that beyond pharma-

cological molecular determinants, the issue of drug deliv-

ery becomes more and more critical [96, 97]. This issue 

is currently addressed by recent efforts to develop “gem-

citabine 2.0.” forms likely to display improved distribution 

and cellular uptake profiles.

Gemcitabine prodrugs

In order to overcome various forms of drug resistance and/

or to improve drug delivery, recent studies evaluated sev-

eral gemcitabine prodrugs. Since many clinical studies 

showed that a low expression of hENT1 was associated 

with a poor survival of pancreatic cancer patients receiving 

gemcitabine [97–99], Clavis Pharma developed an elaidic 

acid prodrug modified at the 5′-sugar position, CP-4126, 

which was able to bypass hENT1. CP-4126 was similarly 

effective as gemcitabine in various model systems in vivo 

and showed an oral efficacy, possibly because CP-4126 

could also inhibit CDA, preventing or reducing its first-

pass effect [98]. Because of its efficacy in phase II stud-

ies, CP-4126 (as CO-101) was tested in a phase II rand-

omized, multicenter trial in comparison with gemcitabine 

as first-line therapy in metastatic pancreatic cancer patients 

[99]. Mandatory tumor biopsy specimens were evaluated 

for their hENT1 expression in both treatment groups. The 

similar effect of CO-101 and gemcitabine demonstrated an 

effective conversion of the prodrug to gemcitabine. How-

ever, the study did not reach its anticipated endpoint, an 

increased efficacy of CO-101 compared to gemcitabine 

in the low hENT1 group of patients. Of note, no differ-

ence in survival was found also between the low and high 

hENT group treated with gemcitabine, suggesting that the 

role of hENT1 is less important in metastatic disease than 

after surgery, as shown in the patients in the earlier adju-

vant studies. However, it is also possible that the lack of 

difference between the patients with low and high hENT1 

expression was due to a lower specificity of the antibody, 

which was different from that used in earlier studies.

Another gemcitabine prodrug currently in clinical devel-

opment is LY2334737, which has valproic acid attached to 

the N4 of the base. Valproic acid is cleaved off by carboxy-

lesterase 2 (CES2), which is high in the liver and gastroin-

testinal tract, resulting in an early cleavage of the molecule, 

as well as in a better antitumor activity in tumors with a 

high CES2 activity. A phase I dose-finding study with oral 

administration (daily for 14 days, with 1 week rest) showed 

linear pharmacokinetics, until the maximal tolerated dose 

of 40 mg in Caucasian and 30 mg in Japanese patients, with 

a lower toxicity profile compared to oral gemcitabine [39, 

100]. However, using other schedules (every other day for 

21 days followed by 1 week rest, or daily for 7 days every 

other week), the maximal tolerated dose was 90 mg/m2, 

which was recommended for phase II studies for the every 

other day schedule [101].

Nucana developed another type of prodrug, NUC-1031, 

which is a gemcitabine analog to which a phosphorami-

date ProTide moiety has been added. This novel nucleotide 

evades all three main cellular resistance mechanisms asso-

ciated with gemcitabine (i.e., nucleoside transport, dCK-

mediated activation and CDA-mediated degradation). NUC-

1031 showed activity in cell culture and in in vivo models, 

including xenografts resistant to systemic gemcitabine treat-

ment, while dFdCTP reaching tenfold higher levels in white 

blood cells than was found for gemcitabine at similar doses 

[102, 103]. More recently, NUC-1031 showed clear signs of 

clinical activity in patients with gynecological cancers. This 

agent was well tolerated, and a phase Ib study of NUC-1031 

in combination with carboplatin is ongoing, while phase III 

studies are planned in both platinum sensitive and refractory 

gynecological cancers [104].

Another approach to increase delivery consists in the 

use nanoparticles that can be designed to allow controlled/

sustained drug release [105]. These systems are more sta-

ble than liposomes, but retain their low immunogenic-

ity. Gemcitabine-loaded gold nanoparticles targeted to 

the epidermal growth factor receptor with cetuximab had 

an increased targeting and activity of gemcitabine in pan-

creatic tumors in vitro and in mouse tumor models [106]. 

Similarly, gemcitabine covalently coupled with the natural 

lipid 1,1′,2-tris-nor-squalenic acid (squalene) at its 4-amino 

moiety, resulting in 4-(N)-tris-nor-squalenoyl-gemcitabine, 

which spontaneously assemble into a hexagonal structure 

with an aqueous core, was active in both human and murine 

leukemia resistant cell lines and tumors [107].
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Gemcitabine can also be covalently coupled via poly-

ethylene glycol (PEG) to another molecule that can target 

the complex to tumor cells, such as for PEG-gemcitabine 

conjugates to folic acid, binding specifically to the folate 

receptors, which are highly overexpressed on the surface 

of many cancers [108]. Finally, gemcitabine can also be 

loaded in PEGylated liposomes [109].

Conclusions and perspectives

There are few drugs in oncology that are as old, but still 

so widely used as chemotherapeutic targets such as gem-

citabine. Gemcitabine is indeed approved and commonly 

used, alone or in combination, for the treatment of several 

tumor types, such as NSCLC, pancreatic, bladder, ovarian 

and breast cancer. In order to improve its antitumor activ-

ity while reducing toxic effects, many studies investigated 

pharmacokinetics [110] and/or the impact of genetic pol-

ymorphisms and CDA activity [51, 55], as well as tumor-

specific expression of hENT1 mRNA and protein [87, 88], 

on gemcitabine toxicity and efficacy. These factors appear 

to be the most promising predictive indicators of outcome 

in patients receiving gemcitabine chemotherapy [9, 10].

However, most pharmacogenetic studies were retro-

spective and monocentric, without multiple correction and 

validation in broader populations. Most phenotypic stud-

ies used different methods and specimens; for example, a 

number of assays have been used to determine CDA activ-

ity in various blood compartments [111]. Moreover, most 

clinical trials on gemcitabine combinations were performed 

without previous preclinical studies evaluating molecular 

mechanisms and markers of drug synergistic interaction, 

while pharmacogenomics studies on tumor specimens did 

not evaluate tumor heterogeneity and possible evolution of 

cancer cells after tumor relapse, which should be faithfully 

documented within multiple samples of the single tumor as 

well as repeated biopsies.

Therefore, future efforts should be redirected at iden-

tifying, both in preclinical models and in the clinical set-

ting, either sensitive or non-responding genotypes or phe-

notypes. These profiles should be identified with validated 

methods, which should be used for the appropriate patient 

enrollment into subsequent prospective studies.

Hopefully, in the near future, the availability of validated 

genetic/phenotypic platforms will lead to the selection of 

key factors responsible of the chemosensitivity and toxicity 

to gemcitabine-based treatments and guide in the choice of 

more effective rationally based tailor-made treatments for 

each patient.
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