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ABSTRACT OF DISSERTATION 

 

 

PHARMACOLOGIC INDUCTION OF THE MELANOCORTIN 1 RECEPTOR (MC1R) 
PATHWAY PROVIDES PROTECTION AGAINST SUNBURN AND ENHANCES 

EXPRESSION OF ANTIOXIDANT ENZYMES IN THE SKIN. 

The inability to tan properly after sun exposure strongly correlates with increased 
incidence of skin cancer. The melanocortin 1 receptor (MC1R) is a transmembrane Gs-
coupled cell surface receptor found on epidermal melanocytes that transmits pro-survival 
and pro-differentiation signals mediated by the second messenger cAMP. Humans 
carrying loss-of-function polymorphisms in MC1R signaling exhibit higher incidences of 
skin cancers including melanoma.  
 

This study focused on the physiologic effects of topical application of forskolin, an 
adenylate cyclase activator, in extension (Mc1re/e) K14-SCF animals, which model the fair-
skinned UV-sensitive human.  Twice daily application of the drug promoted accelerated 
pigmentation, increased skin darkening due to epidermal deposition of melanin pigment, 
and induced epidermal melanin, which protected the skin against UV injury as judged by 
“minimal erythematous dose” (MED).   Moreover, MC1R signaling regulated the 
expression of antioxidant enzymes at the transcriptional level.  The human melanoma cell 
line A375, known to harbor a loss-of-function signaling mutation in MC1R, was used to 
determine effects of cAMP stimulation on the expression of antioxidant enzymes.  We 
observed increases in expression of genes that control the biosynthesis and regulation of 
glutathione including the transcription factor nuclear factor (erythroid-derived 2)-like 2 
(Nrf2), glutathione peroxidase, GPX, and glutathione reductase GSR. In addition, there is 
an increase in manganese superoxide dismutase (MnSOD) at the protein level. There was 
accumulation of MnSOD in the mitochondria after pharmacologic induction of cAMP with 
forskolin. Addition of the oxidative agent H2O2 enhanced the expression of MnSOD at the 
protein level as early as one hour after MC1R stimulation. Oxygen consumption rate on 
mitochondria was measured using Seahorse analysis; pharmacologic activation of 
MC1R/cAMP signaling did not affect mitochondrial metabolism. In addition, topical 
application of a crude extract of Solidago inhibited UV-induced inflammation in K14-SCF 
mice.  Several UV-induced cytokines, including TNF-α, were down-regulated at the 
transcriptional level after topical application of Solidago extract.  

 
Together, these results indicate that MC1R signaling protects melanocytes from 

UV damage by regulating antioxidant enzyme expression and suggest that pharmacologic 
cAMP induction may be a useful preventive mechanism against UV-mediated skin 
sunburn and oxidative injury.  

 

 



 
 
 
KEYWORDS: UV, skin cancer, melanocortin 1 receptor (Mc1r), forskolin, cAMP. 
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CHAPTER 1 

INTRODUCTION 

THE SKIN 

The skin is the largest organ of the human body with an average area of 1.5 square meters 

and it consists of 16% of total body mass. The skin provides physical protection to the 

body from environmental, chemical and microbiologic treats. The skin thickness varies 

around the body with a range of 1.0 mm in the eyelids and 4 mm in the ball of the foot 

(Stucker, Struk et al. 2002). Epithelial, mesenchymal, granular, and neurovascular 

components come together to compose the skin.  Once it is fully developed, there are two 

main layers: the epidermis and the dermis.   

THE EPIDERMIS 

The epidermis consists of mainly keratinocytes and it is the outmost layer of the skin. The 

epidermis can be as thin as 0.1mm and it is characterized by several functional layers of 

differentiated keratinocytes (Fig. 1-1). The epidermis is a self-renewing tissue; there is 

constant division of keratinocyte stem cells in the stratum basale to move from the basal 

layer to form nascent epidermal keratinocytes.  These cells accumulate keratin, melanin 

pigment and form tight junctions with each other.  The outermost layer of the epidermis 

consists of terminal differentiated corneocytes that are dead, yet intact cells that are 

essential to create the protective physiochemical barrier of the epidermis through tight-

linkages (Goodman, Miller et al. 2002).  

MELANOCYTES 

The skin is organized into “epidermal melanin units” wherein many keratinocytes interact 

with one melanocyte (Fig 1-1). Melanocytes are the second most common cell type in the 

epidermis (Barker, Dixon et al. 1995). Melanocytes are derived from neural crest cells that 
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have migratory characteristics together with peripheral and enteric neurons that migrate 

to specific locations during embryonic development. These cells are called melanoblast 

cells, which are un-pigmented and undifferentiated precursors of melanocytes that commit 

a dorsal-ventral migration to its final location in the body. Melanoblast differentiate to 

melanocytes once established in the basal layer of the epidermis.   However, melanocytes 

are also found in the inner ear, the iris and behind the retina. Once located in the skin, 

melanocytes synthetize melanin in melanosomes. The melanosomes are vesicles 

responsible for the storage and transport of melanin to keratinocytes upon exposure to 

solar radiation. Keratinocytes receive melanin pigments from melanosomes (Easty, Patel 

et al. 1988, Lowings, Yavuzer et al. 1992) providing a barrier against accumulation of 

damaging levels UV radiation.  

THE DERMIS 

The dermis is located directly below the epidermis and it can be as thick as 2mm. The 

epidermis and the dermis are separated by a thin basement membrane. The dermis is a 

supportive layer of the skin with most dermal cells being derived from mesoderm. The 

most common feature of the dermis is the presence of hair follicles among other 

components of cutaneous structures including nerves, blood vessels, sebaceous glands 

and sweat glands. The presence of immune cells in the dermis contributes to the immune 

responses, and fibroblast cells participate in the formation of the extracellular matrix and 

collagen.  

 

 

 

2 
 



 

 

 

 

Figure 1-1. Schematic representation of epidermal differentiation.  

The epidermal unit shows the presence of melanocytes at the basal membrane. The 

keratinocytes are located around the melanocytes and start to differentiate from the 

stratum basale. There are three differentiation stages stratum spinosum, granulosum 
and lucidum. Each layer is characterized by the induction and accumulation of different 

skin markers such as keratins, cornifin, filaggrin among others while the cells are 

differentiated to the surface. The corneum layer is composed of dead that serve as 

the outer layer of the skin.  
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ULTRAVIOLET (UV) AND SOLAR RADIATION 

Due to its anatomic location at the external boundary of the body, the skin is exposed to 

a variety of environmental factors such as UV radiation that derives naturally from the sun. 

UV radiation is composed of UVA, UVB and UVC components based on photon 

wavelength. UVA has the longest wavelengths (315-400 nm), UVB mid-range in the 

spectrum (290-320 nm) and UVC has the shortest wavelengths (100-280 nm).  Ambient 

sunlight exposure is composed primarily of UVA (90-95%) and UVB (5-10%) energy, with 

most solar UVC absorbed by the ozone layer  (Fig. 1-2). UV radiation is an environmental 

factor that induces skin pathologies, including erythema (Wenczl, Pool et al. 1997, Amaro-

Ortiz, Vanover et al. 2013, D'Orazio, Jarrett et al. 2013), inflammation (Rees 2004), aging 

effects (Dalziel 1991), sunburn (Autier and Dore 1998, Mallet, Kypriotou et al. 2013) and 

cancer. Unprotected exposure to solar radiation is very common and this leads to 

deleterious cutaneous effects.   

UVA and UVB spectra penetrate the skin differently. Variations in skin thickness and the 

presence of melanin influence absorption of UV light. Epidermal melanin is able to transmit 

and reflect UV emissions of less than 300 nm (Anderson and Parrish 1981) which explains 

why UVA penetrates the skin more deeply than UVB despite UVA having a lower energy 

profile to UVB. Similarly to melanin, other molecules like urocanic acid and the amino acids 

tryptophan and tyrosine can absorb lower UV wavelength. On the other hand, the dermis 

seems to have more transmittance and reflectance for longer wavelength such as the one 

emitted by UVA. Dermal scattering is higher at lower wavelength allowing UVA-visible-

infrared spectrum wavelengths to penetrate the dermis (Anderson and Parrish 1981). 

Other components of the dermis such as hemoglobin, bilirubin and beta-carotene are 

major absorbents of visible radiation compared to melanin in which the absorption of 

visible spectrum is negligible (Anderson and Parrish 1981, Parrish, Zaynoun et al. 1981). 
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Reproduced with permission from Amaro-Ortiz A., Yan B., D'Orazio J.A. Molecules. 

2014; 19(5):6202-6219. 

 

Figure 1-2.  UV exposure of the skin. 

UV radiation in ambient sunlight is composed primarily of UVA and UVB energy. The 

ozone absorbs most UVC; therefore, although it is highly bioactive, terrestrial 
organisms are not exposed to significant levels of UVC. UVB can cause direct damage 

to DNA and reach the epidermis. UVA can penetrate the dermis and increases levels 

of ROS that indirectly induce DNA mutagenesis. The outcomes of both, UVA and UVB, 

in the skin are listed. 
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UVB is a well-characterized mutagen and inducer of skin cancers (Barker, Dixon et al. 

1995, Darwiche, Bazzi et al. 2005, Ahsan, Reagan-Shaw et al. 2007, Grant 2008), but 

recent studies have implicated an increasing role for UVA as a carcinogen (Paunel, Dejam 

et al. 2005, Venditti, Bruge et al. 2011, Akhalaya, Maksimov et al. 2014) likely through its 

pro-oxidative effects and possibly through other mechanisms such as telomere shortening 

(Yin and Jiang 2013). In addition, UVA is less able to induce melanin production compared 

to UVB, leaving the skin less able to protect itself against further UV insult (Atillasoy, 

Seykora et al. 1998, Grant 2008, Wendt, Schanab et al. 2012, Flament, Bazin et al. 2013, 

Yin and Jiang 2013).  Increasing attention is being paid to the potential impact of UVA 

radiation to areas of the body rarely exposed to natural UV, including the vulva and oral 

mucosa, even focusing on differential cellular repair and apoptosis depending on anatomic 

site (Breger, Baeva et al. 2013).   Much of solar UV energy is absorbed by stratospheric 

ozone, and the gradual depletion of stratospheric ozone over the last several decades has 

resulted in higher levels of solar UV radiation that strikes the surface of the Earth (Norval, 

Lucas et al. 2011).  Increased ambient UV radiation from global climate change may be 

an important factor to explain the increasing prevalence of melanoma and skin cancer 

over the last several decades (Armstrong and Kricker 2001, Diffey 2004, Garbe and Leiter 

2009, Rigel, Russak et al. 2010).  Both direct and indirect DNA changes interfere with 

transcription and replication, and render skin cells susceptible to mutagenesis.  UV 

radiation induces a variety of free radical and oxidative molecules, which because of their 

chemical reactivity alter the molecular structure and damage lipids, proteins and nucleic 

acids (Chedekel and Zeise 1988).   

UV-INDUCED DIRECT DNA DAMAGE 

UV light has direct effects on DNA bases. The bases most susceptible to UV injury are 

pyrimidines. The rates of UV signature lesions include two third cyclobutane pyrimidine 
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dimers (CPD) and one third 6-4 pyrimidine photoproducts (6-4PP) caused by UV (Roza, 

van der Wulp et al. 1988, Estil, Olsen et al. 1997). CPD are formed when there is a base 

substitution of a cytosine  thymine at a di-pyrimidine site. On the other hand, 6-4PP are 

formed when two adjacent pyrimidines undergo photochemical reaction at the 6th and 4th 

position of the pyrimidine residues forming a novel 5-6 double bond with the exocyclic 

moiety of an adjacent 3' pyrimidine (Johns and Butler 1964, Sarasin 1999). The shift of 

the helical distortion in the backbone of DNA caused by 6-4PP blocks DNA replication. 

Both of these lesions distort the double helix and can lead to mutation. An individual skin 

cell may accumulate up to 100,000 such lesions from one day’s worth of sun exposure 

(Hoeijmakers 2009). These UV lesions if not repaired can lead mutagenesis. There are 

mechanisms of DNA repair available for the removal of these lesions.  

MECHANISM OF DNA DAMAGE REPAIR 

The nucleotide excision repair (NER) pathway is the main mechanism for the repair of 

CPD and 6-4PP. The NER pathway involves two types of repair, Transcription Coupled 

(TCR) and Global Genome Repair (GCR) (Gillet and Scharer 2006) that only differ in their 

damage recognition complex. Deficiency in any of the enzymes involved in NER leads to 

Xeroderma Pigmentosum (XP), a clinical condition characterized by chronic and 

excessive UV sensitivity. Many of the enzymes involved in this pathway have been named 

after this condition. TCR involves RNA polymerase which stalls at a lesion in the DNA 

template of actively transcribed genes. GGR is not dependent on transcription but senses 

damage by the XPC-HHR23B complex that recognizes distortions in the DNA helix. After 

damage is found, there is recruitment of other NER factors like XPE. XPA unwinds the 

DNA followed by RPA that stabilized the DNA for the recruitment of XPB and XPD.  XPG 

and XPF promote excision of the damaged oligonucleotide and DNA polymerase 

promotes DNA synthesis with a DNA ligase finalizing the repair process.   
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The NER pathway may fail to repair UV-damage DNA. In those cases, the translesion 

DNA synthesis (TLS) pathway is the cellular mechanism (DNA damage tolerance) in 

response to DNA lesions caused during replication. This pathway includes three 

polymerases η, ζ and REV1 that repairs DNA in an error-free (mutation avoiding) or error-

prone (mutation generating) mechanism (Goodman, Miller et al. 2002, Tsaalbi-Shtylik, 

Verspuy et al. 2009). During replication via an error-free mechanism, pol η uses the un-

damaged strand as a template to prevent mutation while REV1 creates a deletion by by-

passing the damaged region during replication (Tsaalbi-Shtylik, Verspuy et al. 2009). 

Other types of UV lesions are found on C-phosphate-G (CpG) sites such as methylation 

of cytosine, 5mC (Ikehata, Kumagai et al. 2013). This mutation is common in the tumor 

suppressor gene p53 (van Kranen, de Gruijl et al. 1995, Cui, Widlund et al. 2007). 

UV-INDUCED INDIRECT DNA DAMAGE 

UV radiation also damages cellular macromolecules indirectly, through production of 

oxidative free radicals (Meyskens, Farmer et al. 2001).  Several DNA modifications can 

result from oxidative injury, including 7, 8-dihydro-8-oxoguanine (8-OHdG), which 

promotes mutagenesis (specifically GC-TA transversion mutations) (Schulz, Mahler et al. 

2000). UVA-induced ROS in the skin causes oxidation at the eighth position of guanine 

producing 8-OhdG (Nishimura 2002, Kunisada, Sakumi et al. 2005). This DNA product, if 

not repaired, will pair with an adenine instead of cytosine. Then, in the next step of 

replication, the adenine will pair with a thymine inducing a mutation. Cellular maintenance 

pathways exist to inactivate oxidative species as well as to repair the DNA damage these 

species may cause.   

MECHANISM OF DNA DAMAGE REPAIR 

The base excision repair pathway (BER) is the main molecular mechanism by which cells 

reverse free radical damage in DNA to avoid oxidative mutagenesis (Wyatt, Allan et al. 
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1999, Liu, Prasad et al. 2007).  This pathway is initiated by lesion-specific glycosylases 

that scan DNA for specific alterations including deaminated, alkylated or oxidized bases. 

The glycosylase known to remove 8-OhdG is called 8-oxoguanine glycosylase, OGG. 

OGG has been studied as a key DNA repair enzyme after UV- induced DNA oxidation 

(Kadekaro, Chen et al. 2012). The glycosylase cleaves the N-glycosidic bond that 

connects the base to the sugar, creating an abasic site (AP site). The generation of the 

AP site recruits an AP endonuclease to hydrolyze the phosphodiester bond while the 

glycosylase cleave the 3’ AP-Site. The residues that are formed are processed by 

deoxyribose phosphodiesterase that removes the residual deoxyribose phosphate unit to 

facilitate DNA synthesis with a DNA polymerase and a DNA ligase seals the strand (Wyatt, 

Allan et al. 1999).  

MELANIN 

UV radiation can directly damage the skin. Melanin deposited in keratinocytes can 

efficiently block the penetration of UV radiation in the skin (Hollis and Scheibner 1988). A 

critical mediator of UV sensitivity and skin cancer risk is skin complexion, which is 

determined primary by the amount and type of melanin present in the epidermis. Melanin 

is derived from the amino acid tyrosine. Melanin is a large bio-aggregate of pigmented 

chemical species (Fig. 1-3). Tyrosine is converted through various steps to melanin 

(Jimbow, Alena et al. 1992, Fuller, Drake et al. 2000). Tyrosinase is the rate-limiting 

biosynthetic enzyme in the melanogenesis pathway, as it catalyzes the first two steps of 

melanin synthesis (conversion of tyrosine to DOPA and then to DOPAquinone).  There 

are two major “mature” forms of melanin known as eumelanin and pheomelanin 

(Wakamatsu, Kavanagh et al. 2006, Ito and Wakamatsu 2011). The synthesis of melanin 

occurs by successive oxidation and cyclization steps (Kim, Song et al. 2010, Kim 2014, 

Kim, Baek et al. 2015).   
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Figure 1-3. The synthesis of melanin. 

There are two forms of melanin: dark/black eumelanin and light/red pheomelanin. Both 
eumelanin and pheumelanin are derived from the amino acid tyrosine.  Tyrosinase 

catalyzes the rate limiting reaction from the synthesis of melanin. The incorporation of 

cysteine in the biosynthesis of melanin leads to the light/red color of pheomelanin. 

There are other enzymes that trigger the synthesis of dark/black eumelanin (Tyrp1, 
Tyrp2, tautomerase). The expression of mutated Tyrosinase has a phenotype of 

albinism. 
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Eumelanin protects against UV exposure by interfering with UV entry into the deeper, 

sensitive layers of the skin. Eumelanin is a dark brown/black pigment in contrast to 

pheomelanin, which is a light red pigment less able to block UV. Pheomelanin is a sulfur 

containing pigment that may actually potentiates UV injury in the skin. Pheomelanin 

contributes to free radical formation and oxidative cellular damage (Mitra, Luo et al. 2012). 

In addition, the structure of pheomelanin is photosensitive and increases pro-oxidant 

levels in the skin (Salopek, Yamada et al. 1991). Therefore, individuals with high levels of 

pheomelanin and low levels of eumelanin in the skin are UV sensitive and are at a greater 

risk for developing skin cancers including melanoma (Wakamatsu, Kavanagh et al. 2006).   

If the skin is continually stimulated for melanin production, the melanin will stay and deposit 

in keratinocytes until the UV exposure is removed. Dark pigmented skin is protected 

against formation of CPD (Yamaguchi, Coelho et al. 2008), photoproducts (de Lima-

Bessa, Armelini et al. 2008), and a decrease in oxidative stress (Jenkins and Grossman 

2013).   

Various inhered and environmental factors control the ratio of eumelanin-to-pheomelanin 

in total amount of melanin. When melanocytic cytoplasmic cAMP levels are high, 

eumelanin production is favored compared to lower levels of cAMP that induce the 

synthesis of pheomelanin.  Individuals can be categorized by phenotype of skin 

complexion using the Fitzpatrick Scale. This scale ranges from very fair skin (e. g. 

Northern Europeans type I) to very dark (e. g. for Aboriginal African type VI). Risk of 

sunburn is linked to not only UV dose and intensity of UV exposure, but also by hereditary 

factors that influence cutaneous response to UV radiation.  Many factors determine 

melanocytic response to UV. Skin cancer risk is inversely proportional to phenotype scale 

in which a type 1 skin complexion has a higher risk than type VI. 
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SKIN CANCER  

Skin cancer is the most diagnosed cancer in United States and it is caused by an 

uncontrolled growth of genetically mutated skin cells. There are keratinocyte and 

melanocyte malignancies that, together, are by far the most numerous cancers diagnosed 

today (Lo and Fisher 2014).  Skin pigmentation is one of the most important determinants 

of UV sensitivity.  Melanoma, the most deadly form of skin cancer, occurs roughly twenty 

times more frequently in light-skinned persons compared to their dark-skinned (Tucker 

2009, Psaty, Scope et al. 2010, Udayakumar, Mahato et al. 2010).  Because of low innate 

levels of eumelanin pigment in the epidermis, fair-skinned individuals are much more 

prone to acute and chronic effects of UV radiation including sunburns, photo-aging and 

skin cancers (Conley and Pack 1963, Evans, Kopf et al. 1988, Gibson, Donald et al. 1997).   

Besides innate skin pigmentation, the ability to tan after sun exposure is also another 

important determinant of UV sensitivity (Suzuki, Im et al. 1999, Abdel-Malek, Knittel et al. 

2008, Munoz-Hidalgo, Lopez-Gines et al. 2014). 

NON MELANONOMA SKIN CANCER 

Non-melanoma skin cancer (NMSC) develops from abnormal keratinocytes. These types 

of cancer include basal cell (BCC) or squamous cell carcinomas (SCC), which are 

generally diagnosed early and are treated surgically. Actinic keratosis (AK) was identified 

as an early stage of NMSC and if left untreated, up to ten percent of cases of AK can 

develop into SCC. There is an estimate increase of 200 percent in the diagnosis of SCC 

in USA since 1990. This type of cancer is generated in outer layers of the epidermis, 

starting in a localized area in the skin and caused by long-term exposure to solar radiation. 

BCC accounts for 80% of NMSC cases and almost never metastasizes (Gupta, Daigle et 

al. 2014). BCC is generated from deeper areas of the epidermis and has been 

characterized for its slow growth. BCC is caused after long-term exposure to the sun or 
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occasional intense episodes that lead to sunburn. There are different therapeutic options 

after being diagnosed with NMSC. Electro-desiccation of a tumor has cure rates of 95%. 

Other procedures include tissue removal by surgery, cryosurgery, laser surgery, topical 

medication, radiation, and among others. 

MELANOMA 

Melanoma accounts for almost 10,000 deaths each year in the US alone, despite 

representing a small fraction of the total number of skin malignancies (Bristow, Casil et al. 

2013). Melanoma, derived from melanocytes, is usually curable at early stages. However, 

once it advances and invades other tissues, it is generally resistant to cancer treatments. 

It is prone to spreading throughout the body from its site of origin (most frequent in the 

epidermis).  For a variety of reasons, the prevalence of melanoma has been steadily 

increasing in Western countries for decades.  Whereas only one in approximately 1,500 

Americans were diagnosed with melanoma in his/her lifetime in the 1930’s, today that 

number has increased to roughly one in sixty people.  Risk factors include family history 

of skin cancer, weakened immune response, moles, and sun exposure. There are two 

types of moles: benign moles and atypical moles, also known as dysplastic nevi. Even 

without family history, individuals with a high number of moles face a high risk of 

developing melanoma.  

MELANOMA PROGRESSION 

Most melanomas are derived from moles (nevi). At the molecular level, dysplastic nevi 

have an 80% frequency in mutations of BRAF, an oncogene that controls melanocytes 

cell growth (Fig. 1-4). Specifically, BRAFV600E leads to an increase in cell proliferation 

followed by cell senescence triggered by CDK4 activation, a regulator of cell cycle 

(Bertolotto 2013, Munoz-Hidalgo, Lopez-Gines et al. 2014). CDK4 loss leads to a radial 

phase growth in the progression of melanoma and, PTEN mutation leads to the activation 
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Reproduced with permission from Miller, A. J. and M. C. Mihm, Jr. (2006). N Engl J 
Med 355(1): 51-65. Copyright Massachusetts Medical Society 

 

Figure 1-4. The progression of skin cancer. 

Benign nevi show a BRAF mutation and activation of the MAPK signaling pathway. 
Atypical dysplastic nevi show loss of cyclin dependent kinase inhibitor (CDKN2A) and 

PTEN leading to an impaired cell cycle control. The growth phase of melanoma is 

characterized by up-regulation of cell adhesion signaling pathway. Other genes that 

loss regulated signaling are E-cadherin, N-cadherin, MMP-2 and TRPM1 a 
melanocyte-specific gene melastatin 1 (Miller and Mihm 2006). 

14 
 



of PI3K-AKT pathway that favors early stages of invasive melanoma. The activation of E-

cadherin and WNT5A lead to the invasion into the dermis, the vertical growth phase. At 

this point, the aggressiveness of the cells lead to metastatic effects due to the loss of 

regulation of cellular proliferation, cell survival and apoptosis pathways.  

Current therapeutic treatment for patients with melanoma is an initial procedure involving 

the surgical removal of the localized tumors. However, for specific cases, a physician 

might recommend a round of chemotherapeutic drugs targeting different oncogenes such 

as BRAF and MEK. The use of vemurafenib (Grimaldi, Cassidy et al. 2014), a BRAF 

inhibitor and trametinib a MEK inhibitor (Yajima, Kumasaka et al. 2012) are increasingly 

used in treatment of melanoma. Usually, these treatments are recommended for advance 

stages of melanoma leading to a better prognosis for survival. However, only a percentage 

of melanoma cases have mutations in BRAF, restricting therapeutic options for patients. 

Melanoma occurs roughly twenty times more frequently in light-skinned persons 

compared to dark-skinned individuals (Aubin, Humbey et al. 2001). The incidence of 

melanoma in the United States has increased dramatically over the last several decades, 

particularly among fair-skinned individuals.  Strong molecular and epidemiologic evidence 

supports the hypothesis that UV radiation is a major mutagenic environmental carcinogen 

responsible for melanoma (Gallagher, McLean et al. 1990, Kraemer, Lee et al. 1994, 

Wang, Yu et al. 2009, Pleasance, Cheetham et al. 2010, Parkin, Mesher et al. 2011, 

Wang, Smith et al. 2014). The role of UVA in melanoma formation is suggested by the 

observation of rising melanoma incidence over the last several decades and sunscreen 

use in the 1980s when only UVB-blocking sunscreens were used. UV exposure is thought 

to be a causal factor in the majority of melanoma cases.  Clearly the more UV a person is 

exposed to (particularly strong intermittent doses such as those that cause sunburns), the 

higher his/her risk of melanoma.   
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Melanoma risk can be determine by the amount of sunlight exposure, occupational and 

recreational outdoor activities, amount of clothing/sun protection worn as well as proximity 

to the equator and altitude. However, a contributor factor for melanoma of increasing 

importance is the use of artificial UV (Dore and Chignol 2012).  Proliferation of tanning 

beds use has played a role in this increase (Fisher and James 2010, Weinstock and Fisher 

2010). There are more than one million people in United States of America using tanning 

beds per day (Spencer and Amonette 1998, Grimaldi, Cassidy et al. 2014). Several 

studies have estimated that indoor tanning bed use before the age of thirty-five, for 

example, increases lifetime risk of melanoma by as much as 75% (Schulman and Fisher 

2009, Karagas, Zens et al. 2014).  Even more than chronic lifetime UV exposure, 

melanoma risk seems particularly linked with sunburns (Pfahlberg, Kolmel et al. 2001), 

especially those early in life (Lew, Sober et al. 1983, Autier, Dore et al. 1998).    

OXIDATIVE INJURY 

The role of oxidative injury in the skin has been studied (Bickers and Athar 2006, 

Svobodova, Zdarilova et al. 2007, Piao, Ahn et al. 2014). Long exposure to UV radiation 

increases risk of keratinocytes malignancies (Potter, Gohde et al. 2000). Consequently, 

UVA has been found to have a role in the increased production of ROS (reactive oxygen 

species) in the skin. (Nataraj, Black et al. 1996) ROS are oxygen-like radical anions and 

molecules that due to their unstable electrons are very reactive. ROS are identified as 

superoxide radical O2
.-
, hydroxyl radical OH

.
 and hydrogen peroxide, H2O2. Similar to ROS, 

reactive nitrogen species (RNS) such as nitric oxide (NO) and peroxynitrite (OONO-) 

increase the generation of oxidative stress.  Oxidative stress is an imbalance in the 

generation of ROS and the antioxidant enzymes in the cells. Figure 1-5 shows a simplified 

scheme of the location of these species in the cell. Antioxidant enzymes are the main 
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Reproduced with permission from Amaro-Ortiz A., Yan B., D'Orazio J.A. Molecules. 

2014; 19(5):6202-6219. 

 

Figure 1-5. Antioxidant enzymes and oxidative stress. 

UV induces a variety of free radical and oxidative molecules, which because of their 

chemical reactivity damage lipids, proteins and nucleic acids. Antioxidant enzymes 

mediate the removal of ROS, with different enzymes functioning in specific 

compartments (e.g. MnSOD localized to mitochondria). If not removed, ROS may 
react with DNA and other cell signal proteins, impairing their function. GSH, 

Glutathione. ECSOD, Extracellular Superoxide dismutase. Cu/Zn SOD, copper/zinc 

superoxide dismutase. MnSOD, Manganese Superoxide dismutase. 
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regulators of the levels of ROS, acting to minimize ROS-mediated formation of DNA and 

proteins adducts and impairment of cellular function.  

ROS are produced by cells during normal metabolic activities such as mitochondrial 

oxidative phosphorylation. Without inactivation, ROS can damage macromolecules 

including lipids, proteins and DNA.  UV, particularly longer-wavelength UVA, is a well-

known inducer of ROS, and UV-induced oxidative stress may be an important contributive 

factor for melanoma (Bossi, Gartsbein et al. 2008, Afanas'ev 2010, Choi, Uehara et al. 

2012).  ROS can inappropriately activate signaling pathways, interfere with genome 

maintenance, and affect apoptosis.  Numerous studies have tested the effects of solar 

radiation and oxidative stress on the skin  (Hu 2005, Poljsak and Dahmane 2012, Gabe, 

Osanai et al. 2014), and oxidative stress has been linked to age-related loss of skin 

elasticity (Langton, Sherratt et al. 2010, Mahmood, Akhtar et al. 2011, Naylor, Watson et 

al. 2011), defective cellular signaling (Prunier, Masson-Genteuil et al. 2012) and photo-

aging (Stohs 1995, Lee, Cho et al. 2012).    

ANTIOXIDANT ENZYME EXPRESSION  

The term oxidative stress combines the excess of ROS with lower levels of antioxidant 

enzymes.  The major antioxidant in most types of cell is glutathione (GSH). The role of 

GSH is to facilitate the depletion of H2O2 to H2O.  GSH is oxidized by glutathione 

peroxidase, GPX. GPX takes GSH and converts it to GSSG in order to reduce H2O2 to 

H2O.  Then, GSSG is recycled by glutathione reductase, GSR. GSR together with the co-

factor NADPH produces GSH and NAD(P)+. Another antioxidant enzyme that controls the 

levels of H2O2 is catalase. Catalase is a nuclear-encoded protein that is located in 

peroxisomes and its levels increase after UV exposure (Schallreuter, Moore et al. 1999) 

in melanocytes (Song, Mosby et al. 2009, Kadekaro, Chen et al. 2012). When there is 

depletion of GSH due to an increase in the levels of ROS, there is activation of the 
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transcription factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) (Fig. 1-6) (Kokot, 

Metze et al. 2009). Nrf2 regulates the expression of glutamate cysteine ligase, GCLC, the 

enzyme that controls the catalytic limiting step for the synthesis of GSH. GCLC is known 

as γ-glutamyl cysteine synthase (Gipp, Chang et al. 1992). Therefore, there is recovery in 

the expression of GSH in a functional cell.  Also, Nrf2 is involved in the regulation of GSR 

and glutathione-S-transferase, GSTA. GSTA is involved in the reduction of ROS-induced 

oxidized proteins (Kokot, Metze et al. 2009).  The concentration of GSH decreases with 

skin tumor progression (Engin 1976, Bickers and Athar 2006). Levels of SOD are 

decreased in basal cell carcinoma (Nakagami, Inamura et al. 1991). As expected, several 

studies have found that there is an increase in the oxidative state of skin cancer cell lines 

(Engin 1976, Nakagami, Inamura et al. 1991, Liebler and Burr 2000, Schallreuter and 

Wood 2001). Taken together, the regulation of oxidative stress is the key to decreasing 

the burden of UVA-induced oxidative stress. 

SUPEROXIDE DISMUTASE 

Superoxide radical ( O2
.-

 ) is generated by photoexcitation of triplet oxygen � O2
3 � that by 

transferring an electron to an intermediate singlet oxygen specie � O2
1 �  induces the 

formation of O2
.-
 (Mayeda and Bard 1974). Specific antioxidant enzymes that decrease 

levels of O2
.-
 radicals are called superoxide dismutases (SOD). They are found among 

different locations in the cells but their common role is the removal of superoxide radicals 

from the cell. Cu/ZnSOD is found in the cytoplasm and mitochondrial membrane. ECSOD 

is found anchored in the plasma membrane and its role is to regulate O2
.-
 radicals produced 

during lipid peroxidation such as 4-hydroxy-nonenal and malondialdehyde.  In addition, 

there is endogenous production of O2
.-
 by the electron transport chain in the mitochondria. 

Levels of O2
.-
 in the mitochondria are depleted by MnSOD converting O2

.-
 to H2O2 for further 

conversion to H2O by GPX or catalase. Polymorphisms in SODs are associated with 
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Figure 1-6. The signaling pathway of Nrf2 and NfκB after cell injury. 

Endogenous and exogenous activators induce the release of Nrf2 from its inhibitor 

keap1 leading to keap1 degradation. Nrf2 translocates to the nucleus and binds to 

antioxidant response element (ARE) promoting the expression of different genes. 

Some of these genes are regulators of glutathione synthesis, the transporters MRP 1, 
3, & 4 among other antioxidant genes. On the other hand, IκBα inhibits NF-κB in the 
cytoplasm. The phosphorylation of IκBα leads to its degradation and further 
phosphorylation of NF-κB. Nf-κB translocates to the nucleus binding to the κB site in 
DNA promoting the regulation of apoptotic genes, cell cycle regulators inflammatory 

signaling and immune responses. 
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cardiovascular and neurodegenerative disorders (Berneburg, Gremmel et al. 2005, 

Boutte, Woltjer et al. 2006, Zhang, Yang et al. 2009, Lai, Xu et al. 2013). Cu/ZnSOD and 

ECSOD are inhibited by H2O2; MnSOD is inactivated by peroxynitrite. The gene 

expression of SOD is regulated by nuclear factor kappa B, NF-κB (Dhar, Xu et al. 2010) 

(Fig. 1-6). NF-κB is inhibited in the cytoplasm by inhibitor kappa beta, IKβ (Dhar and St 

Clair 2012).  NF-κB is activated by UV-mediated MAP Kinase pathway that phosphorylates 

IKβ. This inhibits IKβ and releases NF-κB to translocate to the nucleus and together with 

a co-regulator, activates the expression of many gene-encoding receptors, cytokines and 

antioxidant enzymes such as SOD. IKβ inhibits NF-κB translocation to the nucleus. 

Interestingly, the receptor of 1α,25-Dihydroxyvitamin D3, the active form of vitamin D, 

interacts with IKβ inhibiting NF-κB activity (Chen, Zhang et al. 2013). UV induces the 

generation of 1α,25-Dihydroxyvitamin D3 and by activating its receptor, stabilized IKβ and 

induces an attenuation of NF-κB nuclear translocation. Nonetheless, there is positive 

feedback for the degradation of IKβ upon the presence of endogenous or exogenous 

cellular stress activators. The kinetics for expression of several antioxidant enzymes at 

the transcriptional level usually is within hours (Lundqvist, Yde et al. 2014).  

SKIN AGING AND ANTIOXIDANT DEFENSES 

Because it triggers cellular damage pathways, oxidative stress activates cellular 

senescence, which is thought to directly lead to photo-aging (Velarde, Flynn et al. 2012, 

Yun, Kwon et al. 2012, Sakura, Chiba et al. 2013).  Cellular senescence is associated with 

a reduced capacity to divide and proliferate, sometimes in conjunction with the shortening 

of telomeres (Kashino, Kodama et al. 2003, Yokoo, Furumoto et al. 2004, Davis, Wyllie et 

al. 2007, Makrantonaki and Zouboulis 2007).  Yokoo et al. found that exposing cells to a 

pro-oxidant agent (H2O2) impaired telomerase function which eventually resulted in 

telomere shortening, decreased proliferation, and cellular enlargement (Yokoo, Furumoto 
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et al. 2004).   Wrinkling of the skin is one of the most overt signs of photo-aging, and UV 

exposure can induce wrinkling over time (Raschke, Koop et al. 2004, Cornacchione, 

Sadick et al. 2007, Felippi, Oliveira et al. 2012, Kong, Shi et al. 2013).  Though the 

molecular mechanism(s) of wrinkling are likely to be complex, UV exposure may reduce 

elastic properties of the skin to alter the three-dimensional structure of elastic fibers 

(Imokawa 2009).  

There is a lot of interest in the study of antioxidant enzyme depletion leading to skin aging. 

The constant exposure to UV, allows the skin to show early symptoms of aging such as 

wrinkles, dryness and stiffness. Several natural products may reduce UV-induced 

oxidative damage. One mechanism of action of these natural agents is in the activation of 

the ascorbic acid pathway and reducing the levels of lipid peroxidation (Villacorta, Zhang 

et al. 2007). Another mechanism of antioxidant control is the activation of the Nrf2 pathway 

that has been implicated as a beneficial effect of resveratrol (Soeur, Eilstein et al. 2015). 

The use of resveratrol in human keratinocyte induces accumulation of cellular glutathione.  

Similar studies in mice showed that the main component in licorice root, 18B-glycyrrhetinic 

acid, induces expression of SOD and GPX (Kong, Shi et al. 2013). The use of natural 

flavonoids showed a beneficial effect against UV-induced inflammation (Masnec, Kotrulja 

et al. 2010, Nichols and Katiyar 2010). For example, flavonoids such as solidago induced 

anti-inflammatory signaling in reticulo-endothelial systems (Apati, Houghton et al. 2006, 

Wu, Takahashi et al. 2007, Lutz, Kulshrestha et al. 2014).  

MELANOCORTIN 1 RECEPTOR (MC1R) 

The MC1R is a 7-transmembrane protein located in the plasma membrane of 

melanocytes. MC1R is located on chromosome 16q24.3 in human and in mouse 

chromosome 8: 123,407,107-123,410,744. It is a 34.7 kilodalton transmembrane Gs-

coupled hormonal receptor (Smith, Box et al. 2001). The role of MC1R is to control the 
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ratio of eumelanin and pheomelanin synthetized in the skin and hair of many species. In 

mice, MC1R deficiency on C57BL/6J mice causes red/pink blonde hair compared to a 

dark/black heavy pigmented complexion in wild-type state. The over-expression of MC1R 

causes a heavily melanized epidermis that might lead to deficiency in vitamin D production 

that requires UV-exposure for its biosynthesis (Slominski, Kim et al. 2013). Polymorphisms 

of MC1R were selected in world populations as people moved from the equator to 

geographical areas that UV is less rich to prevent 1α,25-Dihydroxyvitamin D3 (vitamin D) 

deficiency and rickets. For example, in Northern America, loss of function of MC1R is 

common. The most common MC1R polymorphism are known as red hair color (RHC) 

mutations Asp294His (D294H), Arg151Cys (R151C) and Arg160Trp (R160W) (Davies, 

Randerson-Moor et al. 2012, Pellegrini, Fargnoli et al. 2012). These mutations increase 

the incidence risk for sunburn and an increase prevalence of melanoma by four fold.  

THE MC1R PATHWAY 

The endogenous agonist ligand of MC1R is α-melanocyte stimulating hormone, α-MSH. 

The binding of α-MSH to MC1R leads to the activation adenylate cyclase (AC) (Rouzaud, 

Kadekaro et al. 2005).  Then, AC converts a molecule of ATP to cAMP working as a 

second messenger protein with many roles in cellular signaling. This leads to the activation 

of the cAMP respond element-binding protein (CREB) to translocate to the nucleus 

inducing microphthalmia inducer transcription factor, MITF. This is a critical regulator for 

melanocyte differentiation and melanin production (Fig. 1-7).  

THE TRANSCRIPTION FACTOR MITF 

MITF is a transcriptional factor that recognizes E-box and M-box sequences in the 

promoter regions of target genes (Hoek, Schlegel et al. 2008). MITF regulates the 

expression of Tyrosinase, and Tyrosinase related proteins that are the main regulators in 

the synthesis of eumelanin. The accumulation of cAMP induces pro-differentiation and 
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Modified with permission from D'Orazio, J. A., T. Nobuhisa, R. Cui, M. Arya, M. Spry, 
K. Wakamatsu, V. Igras, T. Kunisada, S. R. Granter, E. K. Nishimura, S. Ito and D. E. 
Fisher (2006).  Nature 443(7109): 340-344 and Cui, R., H. R. Widlund, E. Feige, J. Y. 
Lin, D. L. Wilensky, V. E. Igras, J. D'Orazio, C. Y. Fung, C. F. Schanbacher, S. R. 
Granter and D. E. Fisher (2007). Cell 128(5): 853-864. 
 

Figure 1-7.  The adaptive tanning response.  

Upon UV irradiation, the DNA damage response lead to the activation of the 
expression of POMC in keratinocytes. POMC is cleaved, producing three products, 

among them α-melanocyte stimulated hormone (α-MSH). Activated by its agonist α-

MSH, MC1R promotes cAMP second messenger generation which induces 

melanocyte differentiation and survival pathways involving PKA, CREB and MITF In 
this way, cAMP induces both melanin production and antioxidants that reduce cellular 

ROS. cAMP, cyclic adenosine monophosphate. PKA, protein kinase A. pCREB, 

phosphorylated cAMP response binding element. ROS, reactive oxygen species. 

MITF, microphthalmia (Mitf) transcription factor. 
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survival signaling in melanocytes in addition to high levels of MITF. Studies performed in 

B16 mouse melanoma cells confirmed a link between MITF expression and melanin 

production and stimulation of NADPH oxidase 4 (Nox4). Liu and colleagues showed that 

APE-1 induces MITF leading to cell survival (Liu, Fu et al. 2009). Low levels of cAMP led 

to lower expression of MITF and the synthesis of the oxidation-prone pheomelanin. 

Waardenburg syndrome (WS) is a genetic disorder arising from the neural crest and 

among its defects, there is deafness and pigmentation abnormalities. Deficiency in MITF 

expression has been identified in WS (Grill, Bergsteinsdottir et al. 2013). Kim and 

colleagues found that ROS induced ERK signaling increases MITF degradation (Kim, Park 

et al. 2014). 

THE LIGANDS OF MC1R 

α-MSH is produced in keratinocytes and is a metabolite of the pro-opiomelanocortin pro-

peptide (POMC) (Hadley and Haskell-Luevano 1999). DNA damage pathways, including 

p53, induce POMC expression after UV injury. α-MSH is a small peptide with only 13 

amino acids (HOOC-SYSMEHFRWGKPV-NH2) (Sahm, Olivier et al. 1994). However, 

among soluble ligands of MC1R, α-MSH does not have the highest binding affinity. There 

are other products that are cleaved from POMC. These ligands are β-MSH, γ-MSH, β- 

endorphin and adrenocorticotropic hormone (ACTH) and they not only regulate weaker 

levels of cAMP with MC1R but also bind to other melanocortins expressed in the skin. 

There are two peptides identified that limit or inactivate MC1R signaling in the skin: agouti 

signaling protein (ASIP) and β-defensin 3 (BD3). Both β-defensin and agouti inhibit α-MSH 

binding MC1R by blocking its active site (Swope, Jameson et al. 2012). ASIP has higher 

affinity for MC1R than α-MSH and can directly bind and down-regulate the production of 

cAMP (Voisey and van Daal 2002, Ito and Wakamatsu 2011). BD3 was identified as an 

antimicrobial peptide and it has higher affinity to MC1R than ASIP (Abdel-Malek and Supp 
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2008, Swope, Jameson et al. 2012, Benato, Dalla Valle et al. 2013). It is important to 

remember that although MC1R has a protective effect in the skin, there is tight regulation 

of its activation and downstream targets. Although MC1R RHC mutations are known to 

impair MC1R signaling, there are different ligands that have a role as antagonists leading 

to MC1R inactivation. There is little known about the role of these antagonists but they 

might be present as a regulatory aspect to limit the production of melanin only when 

required. Nonetheless, MC1R is a key receptor for the regulation of adaptive pigmentation 

in the epidermis and its activation and regulation in the context of whole skin is likely to be 

complex. 

MC1R DEFICIENCY 

MC1R activates the adaptive pigmentation pathway. The phenotype of individuals lacking 

MC1R show a fair-skin complexion leaving the skin to the exposure of hazardous UV 

doses that could be blocked by the accumulation of more of eumelanin. This leads to DNA 

damage that contributes to melanocyte mutagenesis. Several studies show a direct impact 

of MC1R deficiency in the level of UV-damage products in melanocytes (Jarrett, Horrell et 

al. 2014). MC1R defective melanocytes are not able to repair UV damage efficiently 

leading to higher risk of mutagenesis skin-prone population. There are limited studies 

about the role of MC1R in the regulation of UV-induced oxidative injury. Mitra and 

colleagues reported that melanocytes with mutated MC1R lead to melanoma formation 

without UV exposure by the oxidative damage caused by the expression of pheomelanin 

(Mitra, Luo et al. 2012). The MC1R protein is also a major regulator of melanoma risk in 

humans (Valverde, Healy et al. 1996, Rees 2000, Box, Duffy et al. 2001, Kennedy, ter 

Huurne et al. 2001, Sturm 2002, Galore-Haskel, Azizi et al. 2009, Hoiom, Tuominen et al. 

2009, Ibarrola-Villava, Fernandez et al. 2010, Scherer, Nalls et al. 2010, Cust, Goumas et 

al. 2012, Ghiorzo, Bonelli et al. 2012), therefore I have been interested in the mechanisms 
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by which MC1R signaling protects melanocytes against UV-induced oxidative stress and 

antioxidant defenses. 

K14-SCF TRANSGENIC MOUSE MODEL  

In humans, melanocytes are localized in the stratum basale above the basal lamina of the 

epidermis (Fig 1-1). The survival and migration of melanocytes is regulated by a receptor 

tyrosine kinase cKIT or KIT receptor (Murakami, Matsumoto et al. 1995, Herraiz, Journe 

et al. 2011, Azevedo, Horvath et al. 2013). This receptor controls melanocyte 

development, migration and survival and it is activated by a stem cell factor (SCF) also 

known as KIT ligand (Guo, Jie et al. 2014). The cKIT signaling pathway promotes 

phosphorylation of MITF leading to its short-lived activation and further degradation 

(Torres-Cabala, Wang et al. 2009). This regulates MITF expression after α-MSH signaling 

activates MC1R.  

The use of mice as an animal model to investigate pigment-dependent physiology in the 

skin is limited because of innate differences between human skin and mouse skin.  

Whereas human skin maintains melanocytes in the epidermis throughout life (imparting 

melanin pigments to the epidermis), mouse skin is only transiently populated by 

melanocytes in the epidermis in the neonatal period. For adult mice, their melanocytes are 

located in the hair follicle at the dermis. This feature results in a fur coat color rather than 

skin pigment. In addition, during postnatal development, melanocytes can be found in the 

ears, tail and paws. However, these melanocytes cannot be retained due deficiency in 

stem cell factor (SCF) expression leading to inactivation of cKIT receptor.   

One approach to be able to utilize mice to study pigment effects (such as cAMP rescue of 

melanization) is to transgenically express melanocyte growth factors (such as SCF) in the 

epidermis constitutively throughout life.  We had reported the use of a transgenic C57BL/6 

mouse model that resembles human skin. In this model, the keratin 14 (K14) SCF 

27 
 



transgene, which is constitutively expressed in keratinocytes, retains melanocytes in the 

epidermis. This model features localization of melanocytes in the epidermis and 

accumulation of black/dark pigmented melanin in the skin of wild-type Mc1rE/E Tyr+/+ mice. 

On the other hand, there is production of a red/light pigmented melanin in Mc1re/e Tyr+/+ 

mice due to deficiency in MC1R signaling. There is an albino mouse Mc1rE/E Tyrc2j/c2j mice 

that signals MC1R, but it is deficient in tyrosinase expression, and it is unable to produce 

melanin. Finally, the albino extension mouse is Mc1re/e Tyrc2j/c2j unable to produce melanin 

and it is deficient for MC1R signaling.  This mouse model reflects three possible 

phenotypes in human skin complexion. 

FORSKOLIN 

There are numerous options for the induction of sunless tanning response in the skin. 

Among them, a natural product called forskolin has generated interest from researchers 

and general public.  Forskolin, identified in 1974 by a Finnish botanist named Forskal, is 

a bioactive constituent of the root portion of the Coleus forskohlii (Plectrantus barbatus) 

plant (Lukhoba, Simmonds et al. 2006) and it is cultivated in South East Asia that included 

countries like India, Nepal, Sri Lanka, and Thailand. Scientists characterized it because 

the plant from which it was derived had long been used in traditional Ayurvedic medicine 

for a range of disorders and diseases.  Forskolin, also known as Coleonol, has a unique 

heterocyclic structure that classifies the molecule as part of the labdane diterpene family 

(Fig 1-8). 

The crude root forskolin extract has many components including alkaloids, phenols, 

tannins and histamines (Alasbahi and Melzig 2012). The forskolin extract has been 

reported to induce hypotension (De Vries, Amdahl et al. 1988, Lindgren, Crossley et al. 

2011), blood thinness (Hayashi and Sudo 2009), mast cell degranulation (Cheli, Giuliano 

et al. 2012) and stimulation of adenylyl cyclase (Pinto, Papa et al. 2008).  Forskolin has 
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Figure 1-8. The structure of forskolin. 

The compound, which molecular formula is C22H34O7 and is known as forskolin, can 
bind to 8 of the 9 isoforms of adenylate cyclase (AC). AC is activated by G-protein to 

catalyze the conversion ATP to cAMP. Pharmacologic activation of AC using forskolin 

decreases receptor agonists’ desensitization that down-regulate AC signaling 

cascade.. 
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been study for its many beneficial physiological effects on skin conditions such as 

psoriasis and eczema. Recent studies attribute positive effects to treat weight loss (Geller, 

During et al. 1993, Doseyici, Mehmetoglu et al. 2014) and to alleviate symptoms 

associated with painful menstrual periods (da Conceicao, de Oliveira et al. 2012).  

Together with antibiotics, forskolin has been used for the treatment of urinary tract 

infection (Doseyici, Mehmetoglu et al. 2014).  Forskolin has been studied as a vasodilator 

for cardiovascular diseases to prevent hypertension (Enomoto, Yoshihisa et al. 2011). 

However, oral administration of forskolin also induces side effects  such as headaches 

and accelerated heart rate (Galeotti, Ghelardini et al. 2001). These effects have been 

linked to an increase in bleeding episodes (Onoue and Katusic 1998).  

At the molecular level, forskolin is able to bind to adenylate cyclase (AC), an enzyme 

responsible for the production of the second messenger cAMP from ATP. The AC isoforms 

are restricted to specific tissue (brain, liver, lung, uterus, testis and muscle) and excitable 

cell types (endothelial cells) (Sunahara and Taussig 2002). There are nine isoforms of AC 

and the binding of G-protein subunits regulates its activation. Forskolin is able to mimic 

the G-protein and it binds at the catalytic site of AC to allow ATP access and 

transformation to cAMP (Cumbay and Watts 2004).  Forskolin can bind to all AC isoforms 

except AC9 (Cumbay and Watts 2004). Once activated AC changes its conformation to 

allow the binding of ATP. ATP is converted to cAMP which is a second messenger inducer 

for a numerous of intracellular signaling pathways. There are pharmacologic drugs 

available that can directly increase cAMP levels such as forskolin and rolipram, a 

phosphodiesterase (PDE) inhibitor. PDE is known to mediate the degradation of cAMP. 

These drugs can activate the pathway independent of MC1R status. However, a 

pharmacologic formulation of forskolin is able to penetrate the skin and is efficiently 

absorbed transdermally.  
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FORSKOLIN-MEDIATED MELANIN RESCUE 

As discussed previously, MC1R triggers the activation of adenylate cyclase for the 

production of cAMP, activation of MITF, and synthesis of protective eumelanin. However, 

deficiency in MC1R signaling induces low levels of cAMP and production of pheomelanin. 

However, MC1R RHC mutation and inhibitors do not affect the mechanism mediated by 

forskolin since forskolin is able to bypass the receptor dependent signaling (Abdel-Malek 

and Supp 2008).  We, together with other laboratories, have utilized forskolin as an 

adenylate cyclase activator. Using our mouse model, topical administration of forskolin 

induced eumelanin accumulation in the skin of K14-SCF Mc1re/e Tyr+/+ extension mice 

compared with non-transgenic treated and untreated mice. After chronic stimulation of 

cAMP daily for 21 days leading to accumulation of melanin, these mice showed no 

changes in body weight and liver size (Spry, Vanover et al. 2009).  However, there was 

an increase in epidermal thickening (Scott, Christian et al. 2012). Forskolin induced 

expression of the keratinocyte growth factor, leading to keratinocyte accumulation in the 

epidermis.  

Therefore, among its other mechanisms, forskolin-induced skin darkening is a target of 

cAMP production (D'Orazio, Nobuhisa et al. 2006).  Topically-applied forskolin seems to 

be systemically absorbed, leading to systemic cAMP stimulation in the mice as evidenced 

by darkening of skin in other sites. Previously, we reported that the most darkening of the 

skin was obtained after 2 weeks of daily treatment with forskolin and persist as long at the 

topical application was continued. In fair-skin individuals, unless there is constant 

application of forskolin, the darkening of the skin fades away and the skin returns to its 

normal shade. This means that the K14-SCF by itself does not rescue melanin production 

of the skin. The mechanism of skin darkening requires stimulation of the adaptive 

pigmentation pathway for the production of melanin and further deposition in 
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keratinocytes. If there is pharmacologic stimulation of melanin production, we can study 

the relation between the stimulation of MC1R and the expression of UV-mediated DNA 

damage products after darkening of the skin. In addition, this method is useful to study 

DNA repair mechanisms that can be addressed as targets for the therapeutic application 

and prevention of UV-mediated skin mutagenesis. 

MELANIN-INDEPENDENT EFFECTS 

There are other effects mediated by forskolin that are melanin-independent. The solute 

carrier family 24 member 5 (SLC24A5) is a regulator of the ratio of dark and light 

pigmented melanin in the skin. Cheli and colleagues were able to show the up-regulation 

of this transporter after an increase of cAMP in forskolin treated B16 mouse melanoma 

cells (Cheli, Luciani et al. 2009). This regulation has an important role in melanosomes 

alkalization and regulation melanin synthesis.  Spindler et al. studied the role of cAMP in 

the loss of keratinocytes cohesion and further blister formation in transformed 

keratinocytes and neonatal mice (Spindler, Endlich et al. 2011).  Forskolin together with 

rolipram, prevented the loss of desmoglein, a calcium-dependent adhesion molecule, 

preventing the loss of cell adhesion. Kokot and colleagues study the effect of the 

MC1R/cAMP pathway in the regulation of antioxidant enzymes expression (Kokot, Metze 

et al. 2009). The use of α-MSH induces Nrf2 and Nrf2-induced gene expression in human 

keratinocytes. Nrf2 is a transcription factor for key antioxidant enzymes such as 

glutathione and glutathione regulators. Forskolin shows the same effect as α-MSH 

inducing expression of Nrf2 by increasing cAMP production and CREB binding to the 

promoter region of Nrf2 (Kokot, Metze et al. 2009).  Furthermore, forskolin increases the 

removal of cyclobutane pyrimidine products and 6-4PP caused by UVB exposure (Jarrett, 

Horrell et al. 2014).  A proposed mechanism of action includes the modulation of DNA 

damage repair factors such as xerodermal pigmentosum complement group A (from the 
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NER pathway) as a downstream target of cAMP signaling. In addition, forskolin treatment 

of human keratinocytes decreased UVB-induced apoptosis (Passeron, Namiki et al. 

2009). 

RATIONALE 

UV exposure is one of the most important environmental health hazards, clearly causative 

for age-related skin changes such as wrinkling, pigmentary changes, thinning and 

carcinogenesis.  Because of complex societal factors, UV exposure may actually be 

increasing through increased occupational and recreational activities including indoor 

tanning. There is emerging evidence implicating MC1R and cAMP signaling in regulating 

antioxidant proteins.   Using keratinocytes transfected with MC1R, Henri et al. reported 

lower cellular levels of ROS after pharmacologic activation MC1R/cAMP pathway and 

higher levels of ROS when PKA was pharmacologically inhibited (Henri, Beaumel et al. 

2012). In other work using human melanocytes, Song and colleagues found that α-MSH-

induced MC1R signaling increased levels of catalase after UV exposure (Song, Mosby et 

al. 2009).  Finally, Kaderaro and coworkers reported that cAMP stimulation reduced levels 

of hydrogen peroxide, an important ROS, in human melanocytes after UV exposure 

(Kadekaro, Chen et al. 2012).  

Loss of function MC1R polymorphisms impedes accumulation of protective melanin in the 

skin. MC1R deficiency is linked to skin cancer incidence. As we learn more about innate 

signaling mechanisms that regulate natural antioxidant defense pathways in the skin such 

as the MC1R hormonal axis, new approaches are being designed to exploit these 

signaling pathways to delay or even prevent free-radical induced symptoms of aging. Use 

of natural extracts such as forskolin enhance protection against UV-induce molecular 

damage to the skin. cAMP-induced melanin deposition and antioxidant induction may 

prove to be an important therapeutic opportunity to reduce UV-mediated pathologies.    
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PROJECT OBJECTIVES 

In this study, I explore the role of the MC1R pathway in protecting against UV-induced 

sunburn and providing skin protection by enhancing expression of antioxidant enzymes in 

the skin. We had previously demonstrated that the topical application of a cAMP activator 

highly activates the MC1R pathway in Mc1re/e mice. 

This study addresses the following issues in two chapters: 

Chapter 2: MC1R signaling pathway promotes epidermal pigmentation and protect 

against sunburn.  

Chapter 3: MC1R signaling pathway increases MnSOD levels is the mitochondria and 

does not affect mitochondrial oxidative phosphorylation.  

In chapter two, I hypothesize that a short-term topical activation of MC1R/cAMP pathway 

decreases UV sensitivity in Mc1re/e Tyr+/+ mice. Our laboratory previously reported the 

development of a K14-SCF mouse model with a robust deposition of black melanin 

pigment due to the presence of epidermal melanocytes. Mc1r-defective fair-skinned mice 

resulted in an accumulation of eumelanin and a UV-protected phenotype against skin 

sunburn. In addition to this phenotypic effect, I studied the role of the MC1R pathway to 

protect the skin at the molecular level.   

In chapter three, I hypothesize that MC1R signaling protects against oxidative stress by 

the enhancement of antioxidant cellular defenses. These results provided an insight about 

a possible mechanism of MC1R signaling pathway to control biosynthesis and regulation 

of antioxidant enzymes by enhancing their gene expression. Moreover, I explore the 

protein levels of the MnSOD in human melanocytes. The results suggest that increases 

MnSOD may not involve transcriptional up-regulation but rather MnSOD transport and/or 

stability. Furthermore, I studied if there was any protective effect in mitochondria 

metabolism after activation of the MC1R/cAMP signaling pathway. 
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CHAPTER 2 

MC1R signaling pathway promotes epidermal pigmentation and protect against 

sunburn. 

This chapter is based on work published as Amaro-Ortiz, A., Vanover, J.C., Scott, T.L., 

D'Orazio, J.A. Pharmacologic Induction of Epidermal Melanin and Protection against 

Sunburn in a Humanized Mouse Model. J. Vis. Exp. (79), e50670, doi: 10.3791/50670 

(2013). 

 

INTRODUCTION  

The most deadly form of skin cancer is melanoma. In the United States, there is a dramatic 

increase in the incidence of melanoma among light-skinned individuals. Epidemiologic 

evidence showed a 20 % increase in the frequency of melanoma in fair-skinned individuals 

compared to dark-skinned individuals. UV radiation is a major environmental factor that 

contributes to the increased risk to develop skin cancer. Long exposure to solar radiation 

and the constant use of tanning beds increase the intensity of UV exposure to the skin. 

UV radiation induces direct and indirect molecular damage that can lead to genetic 

mutations. These mutations lead to proliferative skin cells that spread to other parts of the 

body and produce the generation of tumors.  In addition, early life episodes of skin sunburn 

have been linked to an increase in melanoma risk. Still, skin pigmentation has a mayor 

role to determine the risk of developing melanoma.  

The ratio of dark eumelanin to reddish pheomelanin varies among individuals. I focused 

on fair-skinned individuals with low levels of eumelanin because more UV photons can 

penetrate into the skin. There is a direct correlation between melanoma risk and the 

signaling ability to “tan” following UV exposure. The activation of the melanocortin 1 

receptor (MC1R) pathway increases the levels of protective eumelanin in the skin. The 

MC1R is a G-protein couple receptor located in the plasma membrane of melanocytes 
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and mediates activation of adenylate cyclase to increase production of cAMP. The 

secondary messenger cAMP allows activation of main regulators of melanin biosynthesis 

as previously discussed. UV mediates MC1R activation allowing melanocytes 

differentiation and melanin production. Melanin is a complex polymer produced in 

melanocytes is deposited in keratinocytes to protect the skin against exposure to higher 

and hazardous UV doses. The endogenous ligand of MC1R is the α-melanocytes 

stimulating hormone, α-MSH. The ligand is a tripeptide that can activate the MC1R and 

induce the tanning response thus reducing UV-induced DNA damage in human 

melanocytes. However, the down-regulation of the MC1R pathway increases the levels of 

non-protective pheomelanin in the skin. I was interested in the mechanism by which MC1R 

mediates melanocyte protection against UV-exposure. I used extension mice (Mc1re/e 

Tyr+/+) that model the fair-skinned humans with decreased MC1R signaling. This 

transgenic model constitutively expressed K14 stem cell factor (SCF) allowing epidermal 

melanocytes to be retained at the basal layer of the epidermis. However, non-transgenic 

mice maintain its melanocytes on the dermis in hair follicles.  

Our laboratory developed an animal model to address the mechanism of the MC1R 

pathway. For this study, the mice used were wild type mice (Mc1rE/E Tyr+/+) darker-skinned 

mice; extension (Mc1re/e Tyr+/+) fair-skinned mice due to decreased MC1R signaling. Our 

previous research confirmed a melanizing effect of chronic topical treatments of forskolin 

correlating with increased UV-resistance in extension (Mc1re/e Tyr+/+) K14-SCF animals. 

In this chapter, I demonstrate that short-term application of forskolin also rescues MC1R 

signaling pathway. Moreover, I measured the deposition of melanin pigment and tested 

protection against UV-induced sunburn by measuring the minimal erythematous dose, 

MED. 
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SPECIFIC AIM: 

To study the rescue of MC1R signaling pathway using forskolin  

a) To determine the role of forskolin after a short-term topical application. 

b) To determine the deposition of melanin after MC1R stimulation. 

c) To examine how MC1R activation protects the skin against sunburn.  

METHODS AND MATERIALS 

Protocols for murine experiments followed the guidelines for ethical conduct in the care 

and use of animals and were approved by the Institutional Animal Care and Use 

Committee at the University of Kentucky (Protocol # 00768M2004). 

MOUSE COLONY 

4 to 12 week old C57BL/6 extension non-transgenic and K14-SCF transgenic extension 

males and females mice were used. The characteristic phenotype was blonde fur, pink 

skin, dark footpads and nose tip. The mice showed pheomelanotic fur, pheomelanotic 

epidermal skin (due to presence of interfollicular epidermal melanocytes). 

REAGENTS AND MATERIALS 

The following reagents were purchased commercially: Coleus Forskohlii 20% extract 

(Buckton Scott USA Inc., Princeton NJ); Depilatory cream Nair (Church & Dwight, 

Princeton , NJ); Xylazine (Anased Injection, Shenandoah, IA); Ketamine (Putney, St. 

Joseph, MO.); Isothesia Isoflurane (Butler Schein, Dublin, OH); Propyl glycol (Amresco, 

Solon, OH) and Ethyl Ethanol (Fisher, Waltham, MA.). The following materials were 

purchased commercially: Chromameter CR-400 and data processor (Konica Minolta, 

Ramsey, NJ); Electric Shears (Oster, Atlanta, GA); NIST Radiometer/Photometer Model 

IL1400A, International Light, Newburyport, MA), and Germicidal Hg Lamb UV-B 

(Westinghouse, Pittsburgh, PA). 
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PREPARATION OF FORSKOLIN EXTRACT FOR TOPICAL ADMINISTRATION WAS FROM A CRUDE 

ROOT OF THE PLECTRANTHUS BARBATUS (COLEUS FORSKOHLII) PLANT  

The preparation of forskolin was made by solubilizing P. barbatus root extract 20% (ATZ 

Natural, NJ) The root extract is prepare at 40% weight/volume in a standard dermatologic 

base of 70% ethanol, 30% propylene glycol.  After stirring for an hour at room temperature, 

the slurry was centrifuged (1,500 x g, room temperature, for 15 minutes). The solution was 

filtered through a 0.22µm cellulose acetate membrane to remove any residual insoluble 

material from the extract.  The extract maintained biologic activity for months at room 

temperature. 

PREPARATION OF C57BL/6 K14-SCF MICE FOR TOPICAL TREATMENTS 

The mice were briefly anesthetized using intraperitoneal injection of a standard mixture of 

ketamine (Putney, St. Joseph, MO.) and xylazine (AnaSed, Shenandoah, IO.) (Typically 

0.04ml per 10g body weight of a mixture of 10mg/ml ketamine and 1.0mg/ml xylazine).  

The dorsal fur was removed using electric shears equipped with a 0.25mm surgical 

preparatory head followed by chemical depilation by Nair (Church & Dwight, Princeton, 

NJ.). After 24 hours, the mice were treated in the dorsal skin with 400uL of 40% crude 

forskolin extract; vehicle control animals received 70% ethanol, 30% propylene glycol 

alone twice daily for 5 days (10 applications). Then, 48 hours after the last topical 

treatment, the mice were anesthetized with ketamine and xylazine so that UV sensitivity 

by calculation of “Minimal Erythematous Dose” (MED) could be determined. A UV-

occlusive tape was placed on the back of the mice. The mice were placed in a UV source 

consisting of two Westinghouse F15T8UV-B lamps with a peak output of 313nm and a 

range of 280 to 370nm based on the UV transmission rate as measured by the UV 

Photometer. The UV exposure time was calculated for each desired dose based on the 

UV output of the source. The mice were monitored for 24 to 48 hours to look for discreet 
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areas of erythema (redness) or edema (swelling) corresponding to the anatomic sites 

exposed to the specific dose of UV irradiation. The skin findings were documented 

photographically. The skin color was measured by reflective colorimetry while the mouse 

was briefly anesthetized by inhaled isoflurane (Butlet Schein, Dublin, OH). A Minolta 

colorimeter was calibrated by placing the portable head on the standardized white surface 

provided with the colorimeter.  

STATISTICAL ANALYSIS 

The data was analyzed between cohorts of replicate samples (n = 3) by one-way ANOVA 

using the Bonferroni post-test (Graph Pad PRISM software).  p values <0.05 were 

considered statistically significant.   

RESULTS 

FORSKOLIN-INDUCED MELANIZATION OF FAIR-SKINNED MICE. 

I tested the rescue of the MC1R signaling pathway in the C57BL/6 extension non-

transgenic and K14-SCF transgenic extension pheomelanotic (Mc1re/e, Tyr+/+) mice (Fig. 

2-1A).  The ears of the mice show the retention of melanocytes in the epidermis. The mice 

were treated twice daily for 5 days with either vehicle (70% ethanol, 30% propylene glycol) 

or 40% crude Coleus Forskohlii root extract (Fig. 2-2 B). The amount of melanization of 

the skin was dose dependent. The concentration of forskolin was 80uM per dose per 

application. The effects of topical application on the dorsal skin were inspected visually 

and using a reflective colorimeter (Fig. 2-2B). I reported an accumulation of robust 

epidermal darkening after the last application of the root extract in the C57BL/6 K14-SCF 

transgenic extension mice but not in the C57BL/6 extension non-transgenic mice. These 

results indicate the importance of the location of epidermal melanocytes in order to allow 

pharmacologic stimulation of melanin to be deposited in the keratinocytes located in the 

epidermis. Although the root extract contains plant photo-chemicals that contribute to its 
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color, there is no skin darkening in non-transgenic animals. Therefore, the dyeing effect 

from the drug has no contribution to the skin darkening (Fig. 2-2A). The topical treatment 

of forskolin showed an effect as early as two days and continued to a maximal darkening 

after several applications (Fig 2-2B).  

TOPICAL FORSKOLIN DECREASES UV SENSITIVITY. 

Next, I determined the effect of the topical application of forskolin on UV sensitivity by 

testing MED in C57BL/6 K14-SCF transgenic extension mice. I compared this group with 

non-transgenic mice as a control for the non-forskolin component of the root extract. The 

reflective colorimetric white-black scale L* value was 31.9 ± 1.8 kJ/m2 compared to 3.8 ± 

1.8 kJ/m2. Actually, a dose of 30 0 kJ/m2 did not generate erythema in the dorsal skin. This 

was expected since the mice show no obvious side effects after the scheduled 10 

applications; thus, I concluded that twice-daily administration of forskolin induces a non-

toxic and safe melanization.  The MED was measured 2 days after the last topical 

application of forskolin, thus non-pigmentary effect of cAMP have no role in MED results 

(Fig 2-3A,B). Thus, whereas mean MED for K14-SCF extension mice treated for twice for 

5 days with vehicle was 5.0 ± 0.0 kJ/m2, average MED for cohorts treated with topical 

forskolin was > 30.0 ± 0.0 kJ/m2. In fact, a dose of 30.0 kJ/m2 was insufficient to generate 

erythema in this experiment. There was no significant difference when I compared non-

transgenic and K14-SCF transgenic extension treated with vehicle (70% ethanol, 30% 

propylene glycol). I reported an L* value of 3.3 ± 1.4 kJ/m2 compared to 5.0 ± 0.0 kJ/m2, 

respectively. Overall, forskolin induces epidermal melanization and provides a decrease 

in UV sensitivity in fair-skinned individuals. 
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Figure 2-1. Topical treatment of forskolin promotes skin darkening in fair-

skinned extension. 

 (Mc1re/e) mice photographs of C57BL/6 animals used in this study.  Animals are 

genetically matched except at the melanocortin 1 receptor (Mc1r). Note that 

pigmentation is eumelanotic (black) when Mc1r is functional but pheomelanotic 
(blondish) when Mc1r is defective, as is the case with the extension (Mc1re/e) 

mutant. Epidermal pigmentation depends on retention of interfollicular epidermal 

melanocytes in the skin by the K14-SCF transgene, and the skin darkening can 

easily be seen in the ears.  
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Figure 2-2. Twice daily application of Forskolin induces MC1R signaling.   

(A) Photographs of extension (Mc1re/e) K14-SCF or non- transgenic animals 

treated with 400uL of vehicle control (70% ethanol 30% propyl glycol) or 40% w/v 

(80 µM) forskolin applied twice daily to the shaved dorsal skin for 5 days, total of 

10 applications.  Skin color measurements by reflective colorimetry were 

performed for each group. Reflective colorimetry results are reported as mean (± 

SD) reflectometry units on the L* (white-black) color axis.   Note that topical 

administration of forskolin caused robust skin darkening in K14-SCF transgenic 

animals but not in non-transgenic mice.  (B) Time course experiment showing 

darkening of the forskolin-treated ear of K14-SCF extension mice for the indicated 
times (forskolin-treated ears are indicated by the blue triangles). Vehicle was 

applied to the right ear for comparison. The L* ± SD results are reported as 

reflective colorimeter white-black scale, * p ≤ 0.001. 
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Figure 2-3. Forskolin-induced melanization protects against UV-mediated 

inflammation as determined by minimal erythematous dose (MED) testing.  

(A, B)  Position of UV occlusive tape and UVB doses of animals treated twice daily 

for 5 days. The last topical treatment was applied 48h prior to irradiation.  Dorsal 

skin was exposed to various doses of UVB by using UV-occlusive tape with 
punched-out 1 cm2 circular apertures, and varying exposure times to yield the 

appropriate dose. After irradiation, circles of exposed skin were labeled with a pen 

in some experiments. MED’s, defined by erythema and/or edema of the entire 

circle of exposed skin to a particular dose, were determined 48 hours after 
exposure. The MED ± SD results are reported as kJ/m2 UVB, * p ≤ 0.001. 
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DISCUSSION 

It is vital to select a functional mouse model to study skin melanization. There are 

differences between human and mice skin such as thickness, epidermal melanocytes, and 

dermis structure. UV mediates expression of MC1R endogenous ligand α-MSH in 

keratinocytes. Nevertheless, in Mc1re/e mice, there is no UV-mediated melanization due 

to MC1R deficiency, and these mice have higher levels of pheomelanin or red/blonde 

pigment than the dark pigment eumelanin. Similarly, there is no UV- or forskolin- induced 

pigmentation in K14-SCF non-transgenic mice. In that case, pharmacologic stimulation 

such as forskolin-mediated cAMP signaling of the adaptive pigmentation pathway provides 

UV protection for fair-skin mice.   

UV sensitivity is a common characteristic in humans unable to tan after long 

exposure of solar radiation. The deficiency in the production of melanin allows higher dose 

of UVB to penetrate the skin and induce UV-damage. I hypothesized that the use of 

forskolin as a short-term treatment allows the accumulation of melanin in Mc1r-deficient 

mice. I used a mouse model of the fair-skinned individuals and I found that topically applied 

crude extract of forskolin induced skin darkening by increasing the synthesis of melanin 

production in the skin. This model mimics the complexion of human skin, retaining 

epidermal melanocytes compared to non-transgenic mice with dermal melanocytes 

unable to produce melanin. This was possible by the expression of the stem cell factor 

K14 at the epidermal basal layer in transgene mice to mimic what occurs in human skin.  

The location of interfollicular melanocytes is key to obtain an accumulation in melanin. Our 

laboratory animal model include the K14-SCF transgene on C57BL/6 extension (Mc1re/e 

Tyr+/+). Mutated MC1R down-regulates the production of cAMP signaling leading to a 

pheomelanotic phenotype. However, K14-SCF Mc1re/e Tyr+/+ mice showed an abundant 

accumulation of protective eumelanin when treated with forskolin. Therefore, the use of a 
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pharmacologic stimulation of MC1R is able to rescue and balance the production of 

eumelanin in a fair-skinned background. The mechanism of activation of the MC1R has 

been well established. MC1R is able to induce cAMP production leading to pro-survival 

and pro-differentiation signals to melanocytes. However, direct activation of the adenylate 

cyclase is able to bypass mutations of MC1R signaling.  I selected the crude root extract 

of forskolin as a natural option for a topical treatment against hazardous UV exposure 

because use of the purified forskolin was not cost-effective for topical treatments. Previous 

studies from our laboratory showed the use of 40% weight per volume solution of the root 

extract containing 80uM of forskolin. Here I showed that this dose induces darkening in 

the skin after the first two applications. I reported that twice-daily application is associated 

with a clear darkening of the skin providing significant UV protection. Compared to 

previous studies, our data reports that forskolin can be administrated more than once a 

day and be tolerated by the mice. There is no swelling of the skin after forskolin is applied. 

Therefore, the darkening of the skin is due to accumulation of eumelanin and not 

proliferation of the cells in the epidermis. When topical treatment were discontinued, the 

dorsal skin gradually returns to its pheomelanotic complexion.  

Based on the data, pharmacologic activation of cAMP showed a significant 

increase in UV-protection as suggested by measuring the minimal erythematous dose 

(MED). The MED is the lowest dose of UV that induces erythema of the skin.  The K14-

SCF transgenic extension mice that were treated with forskolin showed > 6 fold increase 

in MED compared to non-transgenic extension mice. The use of topical stimulation of 

cAMP rescues melanin synthesis and induces MC1R-dependent signaling providing 

protection against UV-induced skin injury. 

This study has many implications for the prevention of UV-induced skin damage. 

The skin is constantly exposed to environmental factors, of which solar radiation is a major 
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carcinogen. Topical pharmacologic activation of MC1R/cAMP provides a possible 

therapeutic target against individuals unable to tan and who are prone to skin mutagenesis 

(D'Orazio, Nobuhisa et al. 2006). Forskolin induces darkening of the skin by activating the 

synthesis of endogenous melanin. The skin will fade back to its baseline skin complexion 

once the treatment is removed. Therefore, a persistent application is required to maintain 

darkening of the skin. Forskolin can effectively induce skin darkening and increase UV 

sensitivity by increasing MED in mice, establishing a proof-of-concept to test the ability of 

forskolin to rescue deficiencies in the MC1R/cAMP signaling pathway. The study of role 

of forskolin at the molecular level will provide a mechanism of action to determine how to 

use this potent drug as a topical treatment. 
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CHAPTER 3 

MC1R signaling pathway increases MnSOD levels in the mitochondria and does not 

affect mitochondrial oxidative phosphorylation.  

INTRODUCTION 

This chapter is focused on the regulation of antioxidant defenses in melanocytes. In the 

skin, melanocytes are located in epidermis and the accumulation of UV-induce damage 

could lead to melanocyte transformation into melanoma. Antioxidant enzymes are the first 

line of defense against an increase in ROS. Interestingly, the cell produces endogenous 

levels of ROS that are able to regulate and to impair cellular signaling pathways. Moreover, 

mitochondrial production of endogenous levels of ROS in the cell is tightly regulated by 

antioxidant enzymes.  

SODs are the only antioxidant enzymes that are able to interact with a radical and 

converted it to two different species, H2O2 and O2.  MnSOD is located in the mitochondria 

and knockdown of this enzyme leads to cell death. It is an essential protein regulated by 

NF-κB. It is not clear what happens once MnSOD engages to superoxide radicals but it is 

known that it can be inhibited by OONO- (Kim, Rodriguez et al. 2001). There are limited 

studies considering the role of MnSOD in the skin (Yan, Li et al. 1999, St Clair, Zhao et al. 

2005, Luanpitpong, Chanvorachote et al. 2012, Holley, Xu et al. 2014), especially in 

melanocytes, the precursor of melanoma.  

Preliminary data from our laboratory showed a correlation between the level of MITF and 

the presence of mtDNA damage in the cell. Different human melanoma cell lines were 

tested for the expression of MITF (Figure 3-1A).  WM1366 and 451Lu were the cell lines 

with the highest protein levels for MITF and the lowest amount of mtDNA lesions. These 

lesions were measured by mtDNA amplification after UV exposure (Figure 3-1B). The 

small and circular mtDNA is more prone to mutation than nuclear DNA (Larsson and 
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Clayton 1995),(Nagley and Wei 1998). A faster amplification of different mtDNA fragments 

represents a higher frequency of DNA lesions. We found that the use of an oxidative agent 

such as H2O2 caused increases in mtDNA mutation in cell lines that expressed low levels 

of MITF (Fig. 3-1B). In addition, there was a decrease in the amount of mutation frequency 

present in human cell lines after UV exposure with rescue of MC1R/cAMP signaling (Fig. 

3-1C, D). The cell lines were treated with chloramphenicol (CAP), an antibiotic whose 

mechanism of action allows study of mtDNA mutagenesis. CAP binds to mitochondrial 

ribosomes inhibiting mitochondrial protein synthesis and cellular proliferation. Treating cell 

lines with sub-lethal doses of UVB allows cells to incorporate mutations that will impair 

ribosome structure and interfere with CAP binding because of UV-induced DNA mutations 

to rDNA sequence. If mutations are generated after UV exposure, CAP cannot bind to 

ribosomes, and cells can grow as a result in its presence. After incubating cells with 

forskolin as a cAMP activator, the cells were irradiated. The cells that generated mutation 

on its DNA after UVB exposure were able to proliferate. Forskolin pretreatment decreased 

mutation frequency from 7 x10-4 to 3 x10-4 in A375 cell line (MC1R R151C) and from 6 

x10-4 to 2 x10-4 in SBCL2 (wild-type MC1R) cells, suggesting that cAMP signaling protects 

against UV-mediated mitochondrial mutagenesis (Fig. 3-1C, D). We conclude that MC1R 

signaling has a protective effect against UV-induced mitochondrial mutagenesis. 
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Figure 3-1. The level of mtDNA damage in melanoma cell lines. 
 
(A) MITF expression in melanoma cells at various stages of progression. Cells were 
serum starved for 24h and whole cell lysate was probed for MITF levels.  (B) H2O2-
induced mtDNA damage in a panel of melanoma cells. Cells were serum starved for 
24h and then exposed to oxidative stress (100 μM H2O2) for 30 minutes immediately 
following damage, DNA was isolated and XL-PCR performed. A 10kb primer set 
specific to the mitochondrial genome was used to determine levels of mtDNA 
damage.  (C) Chloramphenicol (CAP) resistance assay for wild-type and mutated 
MC1R. Cells were treated twice to a sub-lethal dose of UV before incubation with 
CAP growth media for two weeks until cell colonies developed.  (D) Representative 
pictures of colonies. VGP (Vertical growth phase), RGP (Radial growth phase) & MET 
(Metastatic phase) 
 
Experiment performed in collaboration with Dr. Stuart Jarrett, PhD. 
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In this chapter, I studied the role of the rescue of MC1R pathway to enhance the 

expression of several genes that have a role in the oxidative stress regulation. Several 

studies confirmed that MITF plays a role in skin other than by inducing melanin production 

(Kim, Kim et al. 2005, Carreira, Goodall et al. 2006, Liu, Fu et al. 2009, Yi, Zhao et al. 

2011, Berwick, MacArthur et al. 2014). Nonetheless, there is limited evidence of specific 

induction of the gene expression of antioxidant enzymes after activation of MITF in 

melanocytes.  

In addition, I studied activation of MC1R signaling and its role in the translocation of the 

antioxidant enzyme MnSOD.  I hypothesized that MC1R/cAMP increases the gene 

expression of MnSOD. I tested the role of MC1R in the induction of MnSOD protein levels 

and activity. Lastly, I explored the role of the MC1R in mitochondria metabolism as a 

potential functional effect of MC1R pathway. The MC1R/cAMP might be a potential target 

for the induction of antioxidant defenses after exposure to solar UV.  

SPECIFIC AIM: 

To study the role of MC1R in antioxidant defenses and mitochondrial oxidative 

phosphorylation. 

a) To explore the expression of oxidative stress related genes after pharmacologic 

induction of the MC1R pathway. 

b)  To study a mechanism of levels/activity of MnSOD after activation of the 

MC1R/cAMP signaling pathway. 

c)  To examine the role of MC1R/cAMP in mitochondria metabolism. 

METHODS AND MATERIALS 

CELL LINES AND PLASMIDS 

A375, SKMel2 and HEK293 cell lines were purchased from ATCC. pcDNA3.1/MnSOD 

(human) 3`-FLAG-MnSOD was provided by Dr. Jian-Jian Li from the University of 
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California Davis. WT MC1R and mutated MC1R R160W were constructed with the Quick 

Change Site-Directed Mutagenesis kit (Stratagene, La Jolla, CA.). Mouse primary 

melanocytes were isolated from C57BL/6 extension K14-SCF transgenic extension. 

REAGENTS 

The following antibodies were purchased commercially: SOD2  (1H6; western blot) 

(Pierce-Thermo Scientific, Waltham, MA.);  GSR  and GPX antibodies (Santa Cruz 

Biotechnology, Santa Cruz, CA.); GAPDH (Life Technologies, Grand Island, NY); VDAC, 

HSP70, FLAG (DKDDDDK),PKA P/S antibodies (Cell Signaling, Boston, MA.); HRP-

conjugated secondary antibodies (Abcam, Cambridge, MA.)  SOD determination kit 

(Sigma-Aldrich, St. Louis, MO.) and the Seahorse Analysis reagents (Seahorse 

Bioscience Massachusetts, USA.) 

ISOLATION OF PRIMARY MELANOCYTES 

The protocol used was published from our laboratory from the article of Scott and 

colleagues (Scott, Wakamatsu et al. 2009). The primary murine cells were obtained from 

Mc1re/e Tyr+/+ C57BL/6J animals unless otherwise stated. Melanocytes were selected for 

and grown in a Ham’s F12 media and established normal murine keratinocyte conditioned 

media mixture. 

MRNA ISOLATION FROM TISSUE SAMPLES 

Skin biopsies were taken at indicated time-points. Skin tissues were ground in liquid 

nitrogen with a mortal and pestle. The skin was homogenized with Trizol® reagent 

following manufacturer protocol. The mRNA was processed using the RNAeasy kit 

(Qiagen, Valencia, CA.) following manufacturer’s instruction. mRNA was quantified, 

normalized and converted to cDNA using the iScript cDNA kit (Qiagen, Valencia, CA.).  
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qPCR 

The cells were plated in 35mm dishes and with 10µM forskolin or 0.1% ETOH. Untreated 

cells served as control samples. The cells were dissociated by treatment with 0.25% 

trypsin/EDTA at 37°C for 5 min. The cells were harvested, centrifuged and RNA was 

isolated using the RNAeasy kit (Qiagen, Valencia, CA.). RNA was converted to cDNA 

using the iScript cDNA kit (Qiagen, Valencia, CA.). The cDNA from mouse tissue was 

used to perform quantitative PCR assay by the LifeCycle Real-time PCR (Roche, 

Indianapolis, IN) with the β-actin as a reference gene included for each reaction. The 

levels of expression of genes in stimulated cells were compared with the untreated control 

groups. The cDNA from human melanocytes was used to perform quantitative PCR assay 

by the CF-96 Biorad qPCR with the 18S as a reference gene included for each reaction. 

The levels of expression of genes in stimulated cells were compared with the untreated 

control groups.  

XL-PCR 

Genomic DNA was extracted using a commercially available Qiagen genomic-tip kit 

(Qiagen, Inc., CA). The quantitative polymerase chain reaction (qPCR) assay measures 

the average oxidative lesion frequency on mtDNA.  DNA damage was quantified by 

comparing the relative efficiency of the amplification of a 13.4kb mtDNA gene fragment 

and normalized to 250bp fragment (this small fragment has a statistically negligible chance 

of sustaining oxidative stress-induced base damage). PCR conditions used in this study 

were based on previously reported sequences for mtDNA primers (Ayala-Torres, Chen et 

al. 2000, Jarrett and Boulton 2005).  qPCR was carried out on a DNA Engine thermal 

cycler with all reactions being a total volume of 100μl containing 15ng of total genomic 

DNA, 1unit of XL rTth polymerase, 3.3 XL PCR buffer II (containing potassium acetate, 

glycerol and DMSO) and final concentrations of 200μM dNTP`s, 1.2mM Mg(OAc)2 and 
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0.1μM primers. The gene fragments were amplified using the following thermo-cycling 

profile: The PCR was initiated with the addition of the 1 unit of XL rTth polymerase when 

samples had reached a temperature of 75°C. This was followed by an initial penetration 

for 1 min at 94°C, cycles of denaturation at 94°C for 30s and primer extension at 60°C for 

13 min. After the PCR cycles had been completed, a final extension at 72°C for 10 min 

was performed. The nuclear and mitochondrial gene products underwent 28 cycles and 

26 cycles of thermo-cycling, respectively. After the completion of the qPCR, the gene 

products were resolved on a 1% agarose gel and digitally photographed on a UV 

transilluminator (UVi Tec, UK). The intensity of the PCR product bands was quantified with 

Scion Image analysis software (Scion Corporation, Version Beta 4.0.2). 

CHLORAMPHENICOL RESISTANCE ASSAY 

Chloramphenicol (CAP)-resistance was measured as a measurement of mtDNA 

mutagenesis. A375 cells were seeded onto 6-well dishes at 500 cells/well. After the 

24 hours of incubation, the growth medium was replaced with medium containing 10uM 

Forskolin and incubate for 24 hrs. The cells were irradiated at a sub-lethal dose of UVB 

(5J) and incubate for 24 hours. If the experiment responded to a schedule of treatments, 

step 2 is repeated before each irradiation. At the end of all treatments, the cells were 

incubated with growth medium containing 1mM CAP. The cultures were maintained until 

colonies visible to the naked eye were formed; the colonies were then fixed with methanol 

and stained with 0.5% crystal violet in 50% methanol (roughly takes 2 weeks). The 

mutation frequency is calculated by dividing the existing colonies by the amount of cells 

plated.  

WESTERN BLOT, IMMUNO-PRECIPITATION AND ACTIVITY ASSAY 

Cell lines were lysed in RIPA buffer (25mM Tris-HCl pH 7.6, 150mM NaCl, 1% NP-40, 1% 

sodium deoxycholate, 0.1% SDS and 1X Halt Protease and Phosphatase Inhibitor 
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Cocktail, EDTA-Free (Thermo Scientific, Waltham, MA.)). Total protein was quantified 

using Pierce BCA protein assay (Thermo Scientific, Waltham, MA.). The amount of protein 

per sample was normalized and loaded onto SDS-PAGE gels. Immunoblotting was 

performed using antibody manufacturer protocols. Immuno-precipitations were performed 

with equal amount of total protein incubated overnight at 4°C with 5μg of antibody and 

protein G agarose, washed three times with RIPA buffer, and separated by SDS-PAGE 

prior to immunoblotting. For indicated experiments the SDS-PAGE gel was stained with 

Colloidal blue. Several bands were selected for their identification at the Proteomic facility 

of the University of Kentucky. All immunoblotting was performed with enhanced 

chemiluminescence (ECL) and quantified with the STORM system. Bands were quantified 

using Image J (NIH, Bethesda, MA.). Equal mitochondrial and whole cell protein were 

used for the SOD determination assays, and the assay was performed as previously 

described (MacMillan-Crow, Crow et al. 1996) and following manufacture’s protocol 

(Cayman Chemical Co. Ann Harbor, MI.). Potassium cyanide (KCN) 1mM solution was 

used as an inhibitor of Cu/ZnSOD and ECSOD at indicated experiments. 

MITOCHONDRIA ISOLATION 

The cells were plated in 150mm dishes and treated for cAMP stimulation. Treatments 

included 10µM forskolin or 0.1% vehicle control and untreated cells as the control 

samples. The cells were dissociated by treatment with 0.25% trypsin/EDTA at 37°C for 5 

min. The cells were harvested, centrifuged and mitochondria were isolated using a buffer 

containing 10mM NaCl, 1.5mM MgCl2, 10mN Tris-HCl, pH 7.5. Cells were homogenized 

on ice and centrifuged. The sucrose gradient was prepared with a 2M sucrose solution in 

10mM Tris-HCl and 1mM EDTA (TE buffer) following indicated dilutions. Pelleted material 

was layered on a 1:1 mixture of 1.7M sucrose and 1.0M sucrose and centrifuged at 24,000 

rpm for 40 min. The fraction containing mitochondria was washed in TE buffer and 
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centrifuged for 10 min at 13,000 rpm.  The pellet (mitochondria) was re-suspended in 

250nM sucrose. The solution was diluted in RIPA buffer. 

TRANSFECTION FLAG-TAGGED MNSOD PLASMID 

Designated cell lines were plated in 35mm dishes and transfected with  3`-FLAG-MnSOD, 

pcDNA3.1, MC1RE/E and MC1RR160W using Effectene Transfection Reagent (Qiagen, 

Valencia, CA.) according to manufacturer protocol. 

PROTEIN KINASE ASSAY 

PKA kinase assays were initiated by incubating 10nM recombinant catalytic subunit of 

PKA enzyme (Invitrogen, Grand Island, NY.) and HA-tagged MnSOD (Fitzgerald, Acton, 

MA.)  at 30°C for 10 min, in 40mM Tris-Cl (pH 7.5), 10mM MgCl2, 1mM DTT, 100μg/ml 

BSA, and 10μM ATP. The reaction was stopped by the addition of 10μl of 100mM EDTA. 

The extent of PKA phosphorylation was measured by immune-blot with anti-

phosphoserine (Abcam Cambridge, MA.). HA-tagged MnSOD was immunoprecipitated 

with anti-HA overnight at 4°C and protein G agarose, washed five times with RIPA buffer, 

and separated by SDS-PAGE prior to immunoblotting. All immunoblotting was performed 

with enhanced chemiluminescence (ECL) and quantified with the STORM system. 

SEAHORSE ANALYSIS 

Seahorse analysis experiments were performed after cAMP stimulation for 1, 3, 6 and 24 

hours with 10uM forskolin or 0.1% ETOH before exposure to UVB consisting of two 

Westinghouse F15T8UV-B lamps at 500, 1000, 1500 and 5000 J/cm2. Oxygen-

consumption rates (OCR) was analyzed at the University of Kentucky Free Radical 

Biology and Cancer Shared Facility. OCR was controlled at all times during the experiment 

to exclude any pathway independent effect. Fccp, an uncoupling agent, was used to 

accelerate the electron transport chain (ETC), and doses were optimized together with 

amount of cells per experiment. Then, the Seahorse system measured the OCR (ρmol) 
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and what impact cAMP stimulation has on oxidative phosphorylation. The OCR was 

measured in triplicate during maximal respiration controlled by fccp and in the presence 

of rotenone as an ETC inhibitor. Values were normalized to the protein concentration per 

sample, and OCR levels were compared between untreated vs cAMP-stimulated 

conditions. 

STATISTICAL ANALYSIS 

The data was analyzed between cohorts of replicate samples (n = 3) by one way ANOVA 

using the Bonferroni post-test (Graph Pad PRISM software).  p values <0.05 were 

considered statistically significant.   

RESULTS 

MC1R INCREASES EXPRESSION OF ANTIOXIDANT ENZYMES AT THE TRANSCRIPTION LEVEL. 

I explored the role of the MC1R as a regulator of the gene expression of several 

antioxidant enzymes. Although MC1R pathway has been well described as a potent 

regulator of melanin production and skin pigmentation, there are limited studies looking at 

its role in the expression of antioxidant enzymes in the skin. Mc1re/e Tyr+/+ extension mice 

were used (the same mice that showed rescue of melanin synthesis after forskolin 

treatment). I performed a kinetic experiment measuring mRNA expression of MnSOD, 

CAT, GPX and Nfe2l1 or NRF2 (Figure 3-2). There was a 2.5-fold increase for the 

expression of SOD2 after 6 hours of topical forskolin treatment. Gene expression of MITF 

was used as an internal control for the experiment. There was no significant difference for 

other antioxidant enzymes compared to the 0 hour time-point. An important caveat to 

consider was that mRNA was isolated from whole skin samples (dermis and epidermis) 

from which melanocytes constitute roughly 10 percent of the cells present.  Since MC1R 

is located in the plasma membrane of melanocytes, I isolated primary melanocytes from 

Mc1re/e Tyr+/+ mice. I tested the expression of MITF in these primary cells and there was 
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an increase in MITF gene expression 3, 6 and 24 hours after forskolin treatment (Figure 

3-3A). α-MSH was included in this experiment as a negative control in these MC1R-

defective cells, and there was no induction of MITF after α-MSH treatment. Gene 

expression of SOD2 nor NFE2l2 (NRF2) increased after FSK treatment, suggesting that 

perhaps SOD2 and NRF2 are not target of the transcription factor MITF in mouse 

melanocytes. Then, human melanoma cell lines with mutated MC1R R151C were tested 

for the expression of MITF after forskolin treatment in several time points (Figure 3-3B). 

There was an increase of MITF expression in a time dependent matter with the higher 

expression at 6 hours. I selected the 6 hour time point to analyze a gene array that 

included antioxidant enzymes, several transcription factors and other protein regulators 

by qPCR. An oxidative stress panel for 60 genes was tested in response to MC1R 

activation. Out of the genes tested, 22 showed a positive response (at least two-fold 

increase). Of these, FOXO1, BCL2, JUN, MAPK1, 3 &9, STAT1, HSPD1 & DDIT3 were 

induced. These genes are known to have a role in the regulation of apoptosis. The TLR4 

is a Toll-like receptor was increased together with the inflammatory cytokine IL1B. The 

activation of the adaptive immune system is considered a protective effect in the skin since 

it promotes healing in the skin after UV-induced sunburn (Greene, Hoover et al. 1978). 

Moreover, there was an increase in the expression of the antioxidant enzymes SOD1, 

GPX1, & 3, Nrf2 and NF-κB. Both Nrf2 and NF-κB were upregulated to a 6 and 4-fold 

increase, respectively. RELA is a subunit of NF-κB and its expression was increase as 

well. Interestingly, some downstream targets of Nrf2 and NF-κB did not show a significant 

effect after MC1R activation by forskolin in human melanocytes. For example SOD1, 2 & 

3 were down-regulated and they are known to be activated by NF-κB. Nrf2 regulates the 

expression of GSTP1 and GCLC. Both are involved in the glutathione pathway and their 

gene expression after the 6-hour time point was down regulated. Additional kinetics 

experiments are require to address the effect on MC1R on these genes. There was no 
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increase in the expression of several antioxidant enzymes (CAT, TP53, MDM2 among 

other genes relative to the expression of GAPDH) (Table 3-1), but there were significant 

increases in the expression of PRDX3 and MAPK9 (Table 3-1). Although some genes 

were down regulated, MC1R activation had a role in the up-regulation of several regulators 

of antioxidant enzymes and oxidative stress related genes at the transcriptional level.  

MC1R INCREASES MNSOD PROTEIN LEVELS IN MITOCHONDRIA AT EARLY TIME POINTS.  

I wanted to study the role of MC1R in the protein levels of MnSOD in melanocytes. There 

was no significant increase in the protein levels of MnSOD (Figure 3-4A), from 1 to 24 

hours after cAMP stimulation in whole cell lysate. The protein levels of GSR and GPX 

(Figure 3-4B) did not increase after a treatment of 6 hours. However, there was an 

increase in the protein levels of MnSOD in mitochondria lysate at early time points (Figure 

3-4C, D).  Furthermore, there was an increase in MnSOD protein levels after cAMP 

stimulation plus 50J UVB or 50uM of H2O2 in mitochondria isolated from MC1R R151C 

melanocytes (Figure 3-5) after 1 hour of forskolin treatment. I transfected human 

embryonic kidney cells (HEK293) with wild-type and mutated MC1R to test for the protein 

levels of MnSOD. There was a significant increase in the levels of MnSOD in MC1R 

R160W with forskolin (Figure 3-6). However, HEK 293 transfected with wild-type MC1R 

showed no induction of the protein levels of MnSOD. These results at early time points 

suggesting that the up-regulation of MnSOD protein levels may not involve transcriptional 

up-regulation but rather MnSOD transport and/or stability. 

MC1R SIGNALING INCREASES MNSOD INTERACTION WITH CHAPERONE PROTEIN HSP70. 

To investigate the possibility that cAMP-mediated increases in MnSOD were regulated by 

binding partners, I made used of FLAG tagged-MnSOD constructs obtained from Dr. Jian-

Jian Li from the Comprehensive Cancer Center at UC Davis. I tested MC1R R151C cells 

after 10uM forskolin and 50uM H2O2 treatment for 1 hour. Cellular lysates were 
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immunoprecipitated for FLAG and analyzed by western blot. The SDS-PAGE gel was 

stained with colloidal blue and treatments were compared. The bands that increased or 

decreased by forskolin treatment were selected and removed for the gel to be sent for 

analysis. A band close to the 70 kDa size was sent for identification with the proteomic 

facility (Figure 3-7A). They identified it to be heat shock protein 70 (HSP70) increased in 

associated with FLAG-tagged MnSOD after forskolin treatment. I tested the cell line with 

forskolin followed by 30 minutes of hydrogen peroxide and found an increase in the 

interaction of HSP70 with FLAG after treatment with forskolin (Figure 3-7B, C). HSP70 

was also increase in the western blot for whole protein without IP. However, when the 

cells were treated with H2O2 the whole cell increase of HSP70 did not change. But, the 

interaction remained in the IP FLAG-tagged MnSOD after H2O2 treatment. HSP70 is a 

chaperone protein that is found in the cytoplasm. As a chaperone, it has a role of 

transporting proteins around the cell and HSP70 is linked to translocation of glutathione 

to the mitochondria (Guo, Wharton et al. 2007).  

MNSOD INTERACTION WITH HSP70 IS PKA DEPENDENT. 

I wanted to test if PKA had a role in the increase of HSP70 interacting with FLAG tagged-

MnSOD. I tested the inhibitor H89 that blocks the PKA catalytic subunit (Figure 3-8A). I 

treated FLAG tagged-MnSOD A375 (MC1R R151C) cell line for one hour with H89. Then, 

the cells were treated with 0.1% ETOH and 10uM forskolin for 1 hour. I saw a decrease in 

the interaction between HSP70 and FLAG. I tested doses of H2O2 and chose 50uM for 30 

minutes (Figure 3-8B). I observed no increase in HSP70 after I.P. with FLAG after adding 

H89. The protein sequence of MnSOD identified two possible PKA phosphorylation sites 

potentially explaining cAMP-enhanced interactions with HSP70. These sites could be 

used as target in future studies for site-directed mutagenesis to continue further studies 

about HSP70 interaction with MnSOD 
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FORSKOLIN RESCUE OF MC1R SIGNALING INCREASES MNSOD ACTIVITY. 

I wanted to investigate whether the protein levels of MnSOD and its interaction with HSP70 

might result in an increase in MnSOD protein activity. I tested weather cAMP affects the 

activity of MnSOD using the Superoxide Dismutase Assay Kit (Cayman Chemical Co., 

Ann Harbor, MI). Total protein (whole cell) was isolated from MC1R R151C cell lines. 

Efficacy of superoxide removal using xanthine oxidase as a standard for ROS production 

(Figure 3-9) was quantified. There was an increase in the levels of superoxide dismutase 

activity after 1 and 3 hours of forskolin treatment in whole cell lysate (Figure 3-9A). These 

results include the activity of Cu/ZnSOD, MnSOD and ECSOD. Potassium cyanide (KCN) 

was added to the protein solution to inhibit the activity of Cu/ZnSOD and ECSOD. The 

inhibition of Cu/ZnSOD and ECSOD enable the detection of MnSOD activity exclusively. 

Figure 3-9A shows no significant difference in MnSOD activity between each time point in 

whole cell protein lysate. The concentration of xanthine oxidase was decreased within 

minutes of the reaction and there was no difference between forskolin and vehicle. 

However, whole cell lysate treated with KCN showed a significant decrease in the 

presence of forskolin. Interestingly, there was an increase in MnSOD activity (U/mg) at the 

one hour time point (Figure 3-9B). Then, mitochondria protein lysate was tested together 

with potassium cyanide to measure MnSOD activity. Similarly, there was an increase at 

the one hour time point after forskolin treatment. Therefore, I concluded that the activation 

of MC1R/cAMP signaling increased MnSOD activity at early time points. 

MC1R SIGNALING DOES NOT AFFECT MITOCHONDRIA METABOLISM. 

MnSOD is an antioxidant enzyme located in the mitochondria. I wanted to investigate if 

there was any effect in mitochondria metabolism after forskolin treatment. Seahorse 

analysis was optimized to test the oxygen consumption rate (OCR) after stimulation of 

cAMP in MC1R R151C cells (Figure 3-10). I tested the effects of one hour treatment in 

60 
 



order to compare the results with the protein levels and immune-precipitation assay. The 

results are shown as OCR percentage (A) and OCR concentration at ρMol/min. There was 

no increase in the OCR after cAMP stimulation at the basal metabolism, ATP production 

or maximal respiration. I included a dose of UVB irradiation of 50J to test effect UV as a 

positive control and investigated a possible protective effect after forskolin treatment. 

There was no significant difference between forskolin plus UVB and UVB alone within the 

same phase of mitochondria metabolism. However, there was a significant difference in 

the levels of maximal respiration comparing forskolin plus UVB with UVB alone. 
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Figure 3-2. MITF and SOD2 gene expression were rescued after forskolin 
treatment in whole skin tissue. 
 
Mc1r e/e Tyr +/+ were treated with 40%w/v Forskolin and vehicle control (70% ETOH, 
30% PG) for 1 to 6 hours. Skin biopsies were taken and mRNA was isolated and 
analyzed by qPCR using primers specific for mouse mRNA. The gene amplification 
was normalized to 18S and the relative amplification levels at all-time points after 
forskolin and vehicle treatment were normalized to 0 hours control.   
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Figure 3-3. MITF gene expression was rescued after forskolin treatment. 
 
(A) Mc1r e/e Tyr +/+ primary melanocytes were treated with 10uM Forskolin and 0.1% 
ETOH for 3 to 24 hours. mRNA was isolated using RNAeasy kit (qiagen). The 
samples were analyzed by qPCR using primer specific for mouse mRNA. (B) Human 
melanocytes MC1R R151C were treated with 10uM Forskolin and 0.1% ETOH for 
0.5 to 6 hours. mRNA was isolated and analyzed with qPCR using primer specific for 
human mRNA. The gene amplification was normalized to 18S (A) or GAPDH (B) and 
the relative amplification levels at all time-points after forskolin and vehicle treatment 
were normalized to 0 hours control.   
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Table 3-1. Antioxidant enzymes gene array expression after forskolin 

treatment.  

Human melanocytes (MC1R R151C) were treated with 10uM Forskolin and 0.1% 

ETOH for 6 hours. mRNA was isolated and analyzed with Primer PCR Assay for 

oxidative stress pathway (Biorad, Hercules CA.) using primer specific for human 
mRNA. The gene amplification was normalized to GAPDH and the relative 

amplification levels after forskolin treatment were normalized to vehicle control (0.1% 

ETOH). 
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Figure 3-4. MnSOD protein expression did not change after forskolin treatment 

in whole cell lysates but did increase in mitochondria.  

Human melanocytes MC1R R151C were treated with 10uM Forskolin and 0.1% ETOH 

for 30 minutes to 24 hours. Whole cell (A, B) and mitochondria (C, D) protein was 
isolated and quantified to be examined by western blot. (B) The cells were treated for 

6 hours with or without 50uM H2O2. (C)  The cells were treated for 30 min. with 10uM 

forskolin and 50J of UVB. (D) The cells were treated for different time-points with 10uM 

forskolin and 0.1% ETOH.  The relative expression of MnSOD (relative to loading 
control GAPDH (cytoplasm) or VDAC (mitochondria)) was graphed after forskolin 

treatments were normalized to initial time-point.   

Panel C was performed by Dr. Stuart Jarrett, PhD. 
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Figure 3-5. MnSOD protein expression increased after forskolin treatment in 

mitochondria. 

Human melanocytes MC1R R151C were treated with 10uM Forskolin, 0.1% ETOH 

for 1 hour, 50 J UVB and 50uM H2O2. Mitochondria protein was isolated using 

sucrose gradient and quantified to be examined by western blot. The relative 

MnSOD expression (relative to loading control VDAC) was graphed after forskolin 
treatment were normalized to vehicle control.   
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Figure 3-6. The role of mutated and wild-type MC1R signaling role in the 

expression of MnSOD. 

HEK 293 were transfected with wild-type MC1R and R160W. The transfected cells 
were treated for 1 hour with 10uM forskolin. Whole cell lysates were isolated, 

quantified by western blot against indicated-proteins.  
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Figure 3-7. HSP70 binds to MnSOD after MC1R activation.  

 (A) Human melanoma MC1R R151C cell line were treated for 1 hour with 10uM 
forskolin or 0.1%ETOH and protein was isolated and IP of FLAG tagged-MnSOD was 

performed.  Colloidal blue stain was performed and the indicated band was sent for 

proteomic identification. (B) Human melanoma MC1R R151C cell line transfected with 

FLAG tagged-MnSOD. Then, (C) the cells were treated with 0.1%ETOH and 10uM 
forskolin from 1 hour.  50uM H2O2 was added to the indicated samples for 30 min. 

Protein was isolated and IP of FLAG tagged-MnSOD was perform followed by a 

western blot for HSP70. (C) Whole cell protein (without IP) was included and a western 

blot was performed for the loading control FLAG. 
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Figure 3-8. FLAG-tagged MnSOD binding to HSP70 is PKA dependent. 
 
(A) Human melanoma MC1R R151C cell line transfected with FLAG tagged-MnSOD 
treated with 10uM H89 for 1 hour. Then the cells were treated with 0.1% ETOH, 10uM 
Forskolin for an additional 1 hour.  50uM H2O2 was added to the indicated samples for 
30 min. Protein was isolated and IP of FLAG tagged-MnSOD was perform followed by 
a western blot for HSP70. Input protein (without IP) was included and a western blot 
was performed for loading control FLAG or MnSOD.  
(B) The PKA kinase assay was performed using recombinant protein HA-MnSOD and 
PKA. Both were mixed for 10 minutes and HA-MnSOD was IP and separated in a 
SDS-PAGE. Immunoblotting was performed for p-serine.  
 
Panel B was performed by Dr. Stuart Jarrett, PhD. 
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Figure 3-9. MnSOD protein activity does not change after forskolin treatment. 

Human MC1RR151C melanocytes were treated with 10uM Forskolin and 0.1% ETOH 
for 1 to 3 hours. (A) Whole cell protein, (B) whole cell protein plus 1mM potassium 

cyanide (KCN) (C) and mitochondria protein plus KCN were isolated and quantified to 

be examined by SOD activity assay (Cayman Chemical Co., Ann Harbor, MI.). The 

activity of SOD in U/mg was graphed relative to  0 hour control sample. GAPDH was 
the loading control for whole cell lysate and VDAC for mitochondria lysate. * p < 0.01 
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Figure 3-10. MC1R signaling did not affect mitochondria metabolism. 
 
(A) The percentage and (B) pmol/min concentration of the oxygen consumption rate 
(OCR) was measure using the Seahorse Analysis. Human melanocytes MC1R R151C 
were treated with 10uM Forskolin, 0.1% ETOH for 1 hour, and 50J UVB. After initial 
treatments, the cells were treated with Oligomyocin A, it is an inhibitor of ATP 
synthase. FCCP- uncoupled respiration, measure ETC integrity, functionality and 
capacity. AA/Rotenone- inhibits mitochondria NADPH dehydrogenase/complex 1 to 
test for the pathway of mitochondria metabolism using the Seahorse analysis. The 
OCR was quantified per each treatment. The OCR ± SD results are reported as 
pmol/min, * p ≤ 0.05 ** p ≤ 0.01. 
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 DISCUSSION 

In this chapter, I hypothesized that MC1R signaling pathway regulates the 

expression of antioxidant enzymes. The gene expression in whole skin samples might be 

different than purified melanocytes since the skin harbors many different types of cells. 

Forskolin is able to rescue MC1R signaling in-vivo, therefore, I took skin biopsies of the 

Mc1re/e Tyr+/+ mice treated at different time points with forskolin. There was an increase of 

2.5 fold of SOD2 gene expression in the skin samples. However, SOD2 did not show an 

increase after isolating primary melanocytes from Mc1re/e Tyr+/+ mice. The presence of 

other cell lines in the skin might have a role in the up-regulation of SOD2. It is known that 

NF-κB is involved in the immune system and mediates the transcription of SOD2. It is 

possible that when melanocytes are isolated from the skin, they lose the interactions with 

specific cell types that promote gene expression of SOD in the skin.   

Here, I report a protective role of MC1R in the expression of transcription factors, 

post-translational regulators and proteins that are part of the oxidative stress pathway. 

The 6 hour time point had its higher expression of the transcription factor MITF, a 

downstream target of MC1R pathway. Interestingly, genes involved in the base excision 

repair pathway such as OGG1 and APEX1 showed no increase at the gene expression. 

However, there was a significant increase in the expression of NF-κB, which regulated the 

expression of SODs, and an increase in Nrf2 that regulates the expression of glutathione 

and glutathione regulating proteins such as GPX1 and GPX3. A 6 hour time point provides 

limited information about the mechanism of action by which MC1R increases the protein 

levels of these enzymes. However, in support of our hypothesis, it is clear that several 

antioxidant enzymes may be up-regulated at the gene level after forskolin induced MC1R 

signaling rescue. 

SOD2 was not increased after cAMP production in human melanoma cell line 

compared to results in mouse melanocytes. Therefore, I hypothesized that there might be 
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up-regulation MnSOD at protein levels in MC1R-deficient human melanocytes after 

forskolin treatment. Remarkably, MC1R pathway regulated the protein levels of MnSOD 

in mitochondria, suggesting a role at the post-translation level since an early time point 

(30 minutes) seems inadequate for a transcriptional effect. However, there was a 

decrease in the level of GSR and GPX protein levels after the addition of H2O2. This is not 

surprising since GSR and GPX are the first line of antioxidant defense after oxidative 

injury. A decrease in their protein levels leads to the activation of other antioxidant 

enzymes and their regulators. MnSOD is only expressed in the mitochondria, perhaps 

explaining why I was not able to observe cAMP-induced differences in whole cell lysate 

from human melanocytes. Rather, protein levels of MnSOD were increased only when 

mitochondria lysate was isolated.  

The transfection of wild-type MC1R in HEK293 cells showed a slight decrease in 

the protein levels of MnSOD after MC1R activation with forskolin. Since HEK293 cell line 

is not skin specific, it is possible that MnSOD protein levels are regulated differently than 

in native melanocytes. One option to clarify this issue would be to inhibit the expression 

of MC1R with siRNA in human melanocytes and test for the protein levels of MnSOD 

before and after forskolin treatment. Other possibilities to explain high levels of MnSOD in 

unstimulated MC1R wild-type melanocytes include ligand-independent MC1R signaling or 

altered number of MC1R proteins expressed in the plasma membrane. HSP70 is known 

to have a role in the translocation of glutathione to the mitochondria (Guo, Wharton et al. 

2007). Surprisingly, this protein interacts with MnSOD after the activation of MC1R 

signaling plus H2O2.  MC1R deficient human melanocytes that were treated with forskolin 

that showed a 3.7 fold increase in MnSOD-associated HSP70 protein levels. However, 

there was no difference once H2O2 was added to the cells. Interestingly, immune-

precipitation experiments using FLAG-tagged MnSOD showed an interaction between 

MnSOD and HSP70 after forskolin treatment and forskolin plus H2O2. This means that the 
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MC1R signaling enhancing the interaction of MnSOD with HSP70 might have a role in the 

translocation of MnSOD to the mitochondria. This interaction was lost after adding a PKA 

inhibitor. This suggests that the mechanism of this interaction was PKA dependent. Based 

in the results on the protein kinase assay, there may be phosphorylation of MnSOD by 

PKA at any serine in MnSOD sequence. However, PKA might also have a role in the 

regulation of HSP70 as a transporter of MnSOD. Further experiments with recombinant 

protein might help to decipher a mechanism. Future experiments would focus on the 

identification of specific phosphorylation site(s), mutating them and determining effects on 

interactions between MnSOD and HSP70. The study of a possible phosphorylation of 

MnSOD increasing its interaction with the chaperone protein HSP70 is a potentially 

interesting discovery. However, it is important to consider that the regulation of the 

phosphorylation network in the cell requires both kinases and phosphatases and therefore 

may be more complex than one single post-translational modification. Although we 

focused on PKA since it is a target of cAMP, there are phosphatases that might be target 

of cAMP such as protein phosphatase 2A (PPA) which is inhibited by cAMP (Dodge-Kafka, 

Bauman et al. 2010) and opens an interesting mechanism of phosphatase regulation by 

cAMP that might be relevant in melanocytes.  

I hypothesized that the activity of MnSOD was up-regulated after forskolin 

treatment in MC1R deficient human cell lines. There was an increase in the removal of 

superoxide radical generated by xanthine oxidase after forskolin induced MC1R signaling 

in MC1R deficient human melanocytes. These data are consistent with the increase in the 

expression of MnSOD in mitochondria after 1 hour of forskolin treatment. Based on these 

results, I showed for the first time that MC1R signaling might have a potential role in the 

up-regulation of MnSOD activity at early time points. 

Moreover, there is a significant increase in maximal respiration comparing UVB 

treated cells with UVB plus forskolin-induced MC1R. UVB alone produces a significant 
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decrease in maximal respiration and forskolin seems to rescue that decrease. The 

analysis of mitochondria phosphorylation is challenging in epidermal melanocytes. This 

cell type contains lower levels of mitochondria compared with a muscle cell. Therefore, 

the values of this assay were lower than expected at normal rate of mitochondrial 

phosphorylation. Nonetheless, based in these results, there is a possible rescue in 

maximal respiration after forskolin treatment with or without UVB.  

In this chapter, I demonstrated the role of MC1R/cAMP provides protection against 

DNA mutagenesis. In addition, MC1R enhances MnSOD levels/activity in mitochondria 

and does not affect the mitochondria metabolism as a potential functional effect of the 

pathway. MC1R signaling is a potential target for the prevention of UV-induced oxidative 

damage in the skin.  
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CHAPTER 4 

SUMMARY 

Pharmacologic activation of the MC1R signaling pathway protects the skin against 

UV-induced damage and promotes the activity of the antioxidant enzyme MnSOD. 

Individuals with deficiencies in the MC1R signaling pathway can benefit from 

pharmacologically-induce melanin production and rescue of MC1R signaling. Dark 

melanin is produced in the skin as a protective barrier. The effect is not only seen in UV-

sensitive Caucasians but also on low-risk individuals of dark skin complexion. The 

pharmacologic stimulation of MC1R could be used as a therapeutic target to darken the 

skin and protect it against UV damage. The use of a cAMP stimulator in addition to 

sunscreen might contribute to a decrease in the incidence of melanoma. 

I demonstrated that the activation of MC1R induces several epidermal defenses 

that protect the skin against oxidative stress by upregulating antioxidant defenses. Topical 

application of forskolin, can directly rescue downstream targets of the MC1R. Interestingly, 

I was able to see that by a second application of forskolin, the skin showed an 

accumulation of protective melanin, and melanin stayed in the skin as long as topical 

forskolin treatment were continued. Taking advantage of our mouse model, I studied the 

activation of the MC1R as a protective target against damaging UV doses. MC1R signaling 

enhanced antioxidant enzymes that provide protection against oxidative stress. Nrf2 is a 

key transcription factor in the regulation of antioxidant enzymes. MC1R increased the 

expression of Nrf2 together with several regulators of glutathione activity. I found an 

increase in the level of antioxidant enzymes expression after six (6) hours of cAMP 

stimulation in human melanocytes. In addition, the rescue of MC1R by forskolin resulted 

in an increase of MnSOD translocation to the mitochondria and higher MnSOD activity.  
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I studied possible mechanisms of action for cAMP induction of MnSOD. HSP70 is 

a chaperone protein that was found to bind to MnSOD. I observed interactions between 

MnSOD and HSP70 early after treatment with forskolin. Their interaction was lost when 

PKA inhibitor H89 was included. Thus, PKA might have a role by phosphorylating MnSOD 

to be recognized and translocated to the mitochondria. Clearly, cAMP-enhanced MnSOD 

is PKA-dependent. Figure 4-1 summaries the scope of chapter 2 and 3. 

 

 

  

 

Figure 4-1 Schematic representation of the research project. 
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FUTURE DIRECTIONS 

Studies link antioxidant defenses to many beneficial effects. Many synthetic and 

natural products have been reported to enhance levels of antioxidant enzymes, to prevent 

aging symptoms and to target UV-mediated damage. In addition, there are non-enzymatic 

antioxidants present in the skin.  Some products that have the potential to induce 

antioxidant defenses in the skin include α-tocopherol, selenium, phloretin, ferulic acid, 

flavangenol, lipoic acid, and uric acid. I focused in the use of forskolin, a natural product 

that had been proved to be harmless as a topical treatment and now there is additional 

evidence that confirms its role in the rescue of MC1R and the induction of the protein 

levels of the antioxidant enzyme MnSOD.  

Additional experiments are needed to determine the mechanisms by which of 

MC1R increases MnSOD levels in mitochondria. The proximity ligation assay (PLA) allows 

the study of two protein within 11nm proximity. Using this technique, one can to determine 

the location of the interaction between MnSOD and HSP70. I reported the inhibition of this 

interaction by adding H89.  In addition, if the site of phosphorylation is identified, a site-

directed mutagenesis assay can be performed for MnSOD abolishing of the interaction 

similar to the use of a PKA inhibitor.  

Stimulating cAMP levels in the skin is attractive for a variety of reasons: Increasing 

cAMP levels in epidermal melanocytes stimulates pigment synthesis and cutaneous 

deposition of melanin.  A proof-of-concept study using forskolin has already been shown 

in an animal model of the MC1R-deficient human (D'Orazio, Nobuhisa et al. 2006).  The 

pharmacologic cAMP induction is not mutagenic (as opposed to UV). The use of spray 

tanning might be a safe alternative to the use of tanning beds. Sunless tanning would 

lessen the need for purposeful UV-seeking behavior among individuals desiring a darker 

skin complexion and would thus reduce the frequency of melanocyte mutations.   
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Increasing melanocyte cAMP levels may be a highly effective melanoma 

prevention strategy. Therefore, there is great interest in developing novel therapeutics to 

increase melanocyte cAMP levels in the skin (D'Orazio, Nobuhisa et al. 2006).  There are 

three major approaches for increasing cAMP in melanocytes in the skin.  The first 

mechanism of action is (1) to exploit melanocortin effects on the MC1R using α-MSH or 

α-MSH analogues (Haskell-Luevano, Shenderovich et al. 1995, Abdel-Malek, Ruwe et al. 

2009, Abdel-Malek 2010, Abdel-Malek, Swope et al. 2014).  This approach, particularly 

with topically-applied agents, offers the specificity of melanocyte-directed cAMP 

stimulation because melanocytes are thought to be the only cells in the skin that express 

MC1R.  The limitation of MC1R-directed therapies, however, is that they would not be 

expected to be effective in the scenario of loss-of-function MC1R mutations and MC1R-

dysfunctional individuals are the most UV-sensitive and prone to melanoma.  Thus, 

melanocortin-based approaches allows more specificity.  Other approaches rely on (2) 

pharmacologic induction of adenylyl cyclase activity (e.g. by forskolin), (3) inhibition of 

phosphodiesterase activity (e.g. by rolipram) to manipulate melanocyte cAMP levels 

defective of MC1R status (D'Orazio, Nobuhisa et al. 2006, Passeron, Namiki et al. 2009, 

Spry, Vanover et al. 2009, Khaled, Levy et al. 2010, Scott, Christian et al. 2012, Amaro-

Ortiz, Vanover et al. 2013, Amaro-Ortiz, Yan et al. 2014).  These agents, when applied 

topically, would affect cells of various types rather than being targeted only to 

melanocytes.  Despite their lack of melanocyte specificity, however, these drugs should 

work even in individuals with homozygous MC1R loss-of-function and provide such 

persons with UV protection and melanoma prevention.  The safe pathway will ensure the 

safety of melanocyte cAMP stimulation and to design ways of targeting agents to 

melanocytes in the skin to limit systemic exposure and off-target effects.  Topical 

preparations, for example, offer direct application to the skin, however they may be 

challenged by ineffective transdermal penetration of the drug or systemic uptake into the 
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circulation from the skin.  Lastly, oral or injectable routing may bypass the need for a 

transdermal preparation however, systemic effects would be greater.  Thus, much work 

remains to be done to understand the usefulness and potential consequences of 

manipulating cAMP levels in the skin. 
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CONCLUSION 

Despite a clear understanding of the causative role UV exposure plays in the development 

of the disease and widespread public health campaigns to limit time spent in the sun or 

artificial tanning beds, melanoma is a growing and significant public health threat.  Loss-

of-function polymorphisms of MC1R signaling, which result in reduced melanocyte cAMP 

levels, strongly correlate with fair complexion, a tendency to burn rather than tan and an 

increased lifetime melanoma risk. The MC1R/cAMP signaling axis not only leads to the 

production of UV-protective melanin, but also enhances melanocytic ability to repair UV-

damaged DNA.  Pharmacologic induction of MC1R pathway provides protection against 

sunburn. When applied to the skin, forskolin potently increases cutaneous cAMP levels 

and induces several UV-protective changes in melanocytes.   By promoting melanocyte 

genomic stability, topical forskolin may prove to be a useful UV- and melanoma-preventive 

strategy.  

My work also showed that pharmacologic activation of cAMP/MC1R signaling enhances 

expression of antioxidant defenses. I studied the mechanistic links between the 

MC1R/cAMP signaling pathway.  I explored the relationships between this pro-survival 

and pro-differentiation melanocytic signaling pathway and the critical cellular antioxidant 

enzymes in the skin. I identified, for the first time a possible binding partner of MnSOD 

after oxidative injury, the chaperone protein HSP70. The mechanism of this interaction 

might be regulated by PKA, a downstream target of MC1R/cAMP signaling pathway. The 

use of natural products has significant potential to lessen UV-induced skin damage. This 

project provides a basic scientific rationale for the development of novel UV-preventive 

therapeutic agents based on pharmacologic activation of the MC1R/cAMP signaling axis.  
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APPENDIX A: 

 

GOLDENROD EXTRACT DECREASES THE ANTI-INFLAMMATORY CAPACITY OF 
FAIR-SKINNED MICE AFTER UV-INDUCED ERYTHEMA IN THE SKIN. 

INTRODUCTION 

The neural nicotinic acetylcholine receptor alpha 7 (nAChRα7) is a four transmembrane 

neurotransmitter-gated ion channel (Arredondo, Nguyen et al. 2003). The expression of 

α7 subunit in the skin promotes keratinocyte adhesion (Arredondo, Nguyen et al. 2002) 

and attenuation of the pro-inflammatory responses after UV-exposure (Osborne-Hereford, 

Rogers et al. 2008). The role of this receptor in diseases related to the central nervous 

system (CNS) has been widely studied specifically in the regulation of the immune 

response. The CNS can modulate the immune system through the cholinergic anti-

inflammatory pathway (Kurzen, Berger et al. 2004). This pathway suppresses the 

synthesis of cytokines utilizing the neurotransmitter acetylcholine (ACh) as an activator of 

nAChRα7.  ACh is widely distributed and is released in organs of the reticulo-endothelial 

system such as the gastrointestinal tract, lungs, and kidney among others.  

Epidermal keratinocytes produced ACh. The cholinergic pathway is activated by ACh and 

regulates blood circulation, keratinocytes differentiation (Arredondo, Nguyen et al. 2002), 

sweat gland formation, and immune reactions. ACh can bind to the nAChRα7 on 

macrophages and suppresses the release of cytokines and TNF-α. The nAChRα7 can be 

found in peripheral tissues. The expression nAChRα7 is increased in skin wounds (Fan, 

Yu et al. 2011). Other studies have focused on how nAChRα7 enhances infiltration of 

neutrophils in the skin (Gahring, Osborne et al. 2010).  

UV radiation is able to induce an inflammatory response in the skin.  High doses of UV, 

can lead to a painful sunburn. When the skin is injured, there is a release of cytokines and 

chemokine factors to increase permeability and blood flow to the skin. This leads to 

82 
 



swelling and redness of the area affected. If the inflammatory response is excessive, this 

response can cause harm to cells and surrounding tissues.  

Solidago is known as goldenrod and is the state flower of Kentucky. Solidago extract, a 

natural product, contains many substances including flavonoids. Flavonoids are known for 

their permeability in vascular capillaries increasing the flow of small molecules or even 

whole cells to the site of inflammation (Pastore, Potapovich et al. 2009). Oral 

administration of flavonoids has been used to reduce allergic inflammatory disease 

(Tanaka 2014). In addition, clinical studies have showed positive results in skin elasticity 

(Delalle-Lozica 2010).  

Solidago extract has been studied as a potential ligand of the nAChRα7 (Lutz, Kulshrestha 

et al. 2014).  Solidago’s structure contains an alkaloid methyllycaconitine (MLA) complex 

that has high affinity for the receptor. It can selectively bind to nAChRα7, leading to its 

activation modulating the inflammatory response at the site of injury (Lutz, Kulshrestha et 

al. 2014). The nAChRα7 is found in non-neuronal tissues such as the skin. It has a role in 

keratinocyte adhesion, cell migration, differentiation and apoptosis (Kurzen, Berger et al. 

2004).  

Here I studied the role of Solidago extract in skin after UV exposure. Solidago extract is a 

natural product that can be administered topically. I tested the capacity of solidago extract 

to reduce UV-induced inflammatory responses in the skin using K14-SCF Mc1r-deficient 

mice. For this study, the mice used were fair-skinned due to decreased MC1R signaling. 

Albino extension mice (Mc1re/e Tyrc2j/c2j) lacking both MC1R signaling and melanin 

biosynthesis were also used. I tested the capacity of short-term application of crude 

solidago extract to protect against UV-induced sunburn by measuring the minimal 

erythematous dose (MED).  Moreover, I investigated gene expression in the skin, focusing 

on cytokines involved in the inflammatory response. 
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SPECIFIC AIM: 
 

To determine the effect of Solidago against UV-induce inflammation of the skin in fair-

skinned mouse model  

1a) To determine the role of solidago after a short-term topical application. 

1b)  To determine the MED after solidago treatment.  

1c)  To examine the expression of different cytokines and its receptors in the skin.  

METHODS AND MATERIALS 

Protocols for murine experiments followed the guidelines for ethical conduct in the care 

and use of animals and were approved by the Institutional Animal Care and Use 

Committee at the University of Kentucky (Protocol # 00768M2004). 

MOUSE COLONY 

4 to 12 week old C57BL/6 extension non-transgenic and K14-SCF transgenic extension 

males and females mice were used. The characteristic phenotype was blonde fur, pink 

skin, dark footpads and nose tip. The mice showed pheomelanotic fur, pheomelanotic 

epidermal skin (due to presence of interfollicular epidermal melanocytes). 

REAGENTS AND MATERIALS 

The following reagents were purchased commercially: Coleus Forskohlii 20% extract 

(Buckton Scott USA Inc, Princeton NJ); Depilatory cream Nair (Church & Dwight, 

Princeton , NJ); Xylazine (Anased Injection, Shanandoah, IA); Ketamine (Putney, St. 

Joseph, MO.); Isothesia Isoflurane (Butler Schein, Dublin, OH); Propyl glycol (Amresco, 

Solon, OH) and Ethyl Ethanol (Fisher, Waltham, MA.). The following materials were 

purchased commercially: Chromameter CR-400 and data processor (Konica Minolta, 

Ramsey, NJ); Electric Shears (Oster, Atlanta, GA); NIST Radiometer/Photometer Model 
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IL1400A, International Light, Newburyport, MA), and Germicidal Hg Lamb UV-B 

(Westinghouse, Pittsburgh, PA). 

PREPARATION OF SOLIDAGO FOR TOPICAL ADMINISTRATION.  

Dr. John Littleton from the College of Pharmacy at the UKY provided the extract for 

Solidago. The preparation of Solidago was made by solubilizing the extract 10% 

weight/volume in a standard dermatologic base of 70% ethanol, 30% propylene glycol.   

SOLIDAGO (GOLDENROD) TOPICAL TREATMENT 

The skin biopsies were obtained from MC1Re/e Tyr+/+ C57BL/6 animals unless otherwise 

stated. The mice were briefly anesthetized using an intraperitoneal injection of a standard 

mixture of ketamine (Putney, St. Joseph, MO.) and xylazine (Butler Schein, Dublin, OH.) 

(Typically 0.04 ml per 10g body weight of a mixture of 10 mg/ml ketamine and 1.0 mg/ml 

xylazine).  The dorsal fur was removed using electric shears equipped with a 0.25mm 

surgical preparatory head (Fisher Scientific) followed by chemical depilation by Nair 

(Church and Dwight, Princeton, NJ.). After 24 hours, the mice were treated in the dorsal 

skin with 400uL of 10 % solidago extract; vehicle control animals received 70% ethanol, 

and 30% propylene glycol alone.  Twice daily for 3 days (6 applications) or one day 

applications were performed for the study.  Then, 48 hours after the last topical treatment, 

the mice were anesthetized with ketamine and xylazine so that UV sensitivity by 

calculation of “Minimal Erythematous Dose” (MED) could be determined. A UV-occlusive 

tape was placed on the back of the mice. The mice were placed in a UV source consisting 

of two Westinghouse F15T8UV-B lamps with a peak output of 313nm and a range of 280 

to 370 nm. The UV dose was based on the UV transmission rate and it was measured by 

a UV Photometer.  The UV exposure time was calculated for each desired dose based on 

the UV output of the source.  The mice were monitored for 24 to 48 hours for discreet 

areas of erythema (redness) or edema (swelling) corresponding to the anatomic sites 
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exposed to the specific dose of UV irradiation.   The skin findings were documented 

photographically.  

MRNA ISOLATION FROM TISSUE SAMPLES 

The skin biopsies were taken at desired time-points. Frozen skin tissues were triturated 

using liquid nitrogen with a mortal and pedestal. The skin was homogenized with Trizol® 

reagent following manufacturer protocol. The mRNA was clean-up using the RNeasy kit 

(Qiagen, Valencia, CA.) following the manufacturer protocol. The pure mRNA was 

quantified, normalized and converted to cDNA using the iScript cDNA kit (Qiagen, 

Valencia, CA.).  

qPCR 

The cells were plated in 35mm dishes and treated for cAMP stimulation. Treatments 

included 10µM forskolin or 0.1% vehicle control and untreated cells as the control 

samples. The cells were dissociated by treatment with 0.25% trypsin/EDTA at 37°C for 5 

min. The cells were harvested, centrifuged and RNA was isolated using the RNAeasy kit 

(Qiagen, Valencia, CA.). RNA was converted to cDNA using the iScript cDNA kit (Qiagen, 

Valencia, CA.). The cDNA was used to perform quantitative PCR assay by the CF-96 

Biorad qPCR with the Actin β as a reference gene included for each reaction. The levels 

of expression of genes in stimulated cells were compared with the untreated and control 

groups.  

STATISTICAL ANALYSIS 

The data was analyzed between cohorts of replicates samples (n = 3) by one-way ANOVA 

using the Bonferroni post-test (Graph Pad PRISM software).  p values <0.01 were 

considered statistically significant.   
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RESULTS 

SOLIDAGO DECREASES MED IN MC1RE/E TYR+/+ MICE AFTER UV-EXPOSURE. 

I studied the effects of topical treatment of solidago (goldenrod) extract on preventing UV-

induced skin inflammation using the K14-SCF Mc1re/e Tyr+/+ mouse model (Fig 5-1). I 

tested the role of Solidago in the skin by measuring minimal erythematous dose, MED. 

Topical administration of Solidago extract had no effect on darkening of the skin (Figure 

5-2C, D). After applying solidago twice daily for 3 days (10% Solidago per dose), the 

average MED for K14-SCF extension (Mc1r e/e Tyr +/+) mice was significantly higher with 

10.0 ± 0.0 kJ/m2 compared to 4.0 ± 0.0 kJ/m2 for the vehicle control treated group (Fig. 5-

2 C). The average MED in K14-SCF albino extension (Mc1r e/e Tyr c2j/c2j) mice treated with 

solidago and vehicle were 3.3 ± 1.2 kJ/m2 and 0.8 ± 0.4 kJ/m2, respectively (Fig. 5-2 D). 

There was no significant difference in the erythema of the skin for albino extension mice 

treated with solidago. Here I concluded that Solidago decreased UV-induced inflammation 

in fair-skinned mice. 

ONE TOPICAL TREATMENT OF SOLIDAGO IN MC1RE/E TYR+/+ MICE AFTER UV-EXPOSURE DID 

NOT DECREASE MED. 

I performed another experiment with only one application of 10% solidago followed by UV-

exposure in K14-SCF extension (Mc1r e/e Tyr +/+) mice (Figure 5-3). Two groups of mice 

were pretreated with solidago for 3 or 6 hours before UV exposure. The average MED for 

the 3 hours group was 2.0 ± 0.0 kJ/m2 for both solidago and vehicle control. However, for 

the mice irradiated 6 hours after solidago treatment, the MED was 4.0 ± 0.0 kJ/m2 

compared to 2.0 ± 0.0 kJ/m2 for vehicle control (Figure 5-3B). Although the MED was 

decreased, these results were not significant. There was no significant difference in both 

groups. I concluded that one application of 10% solidago was not enough to promote an 

anti-inflammatory response. 
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SOLIDAGO DECREASE THE INFLAMMATORY RESPONSE AT LOWER DOSES OF UVB. 

I performed a gene array for the expression of several cytokines and its receptors that are 

involved in the inflammatory response. Solidago was applied twice daily for 3 days (10% 

Solidago per dose), to measure MED for K14-SCF albino extension. Doses of 2kJ/m2 and 

6 kJ/m2 were used for gene analysis. These doses of UV elicit a low and high inflammatory 

response in the mouse skin. The MED of K14-SCF albino extension (Mc1r e/e Tyr c2j/c2j) 

was measured 48 hours after UV-exposure. The 48 hour time-point was selected to 

analyze 60 genes that include inflammatory cytokines and its receptor. Out of the genes 

tested, there were 24 chemokines, 7 chemokine receptors, 7 interleukins, 9 interleukins 

receptors and others 13 cytokines and its receptors. Of these,  there was a decrease in 

the expression of the majority of pro-inflammatory genes after Solidago treatment 

compared to vehicle control and a 2 kJ/m2 dose. There was a decrease in the expression 

of several cytokines (Ccl1, Cx3cl1, IL15 family among other genes relative to the 

expression of Actb) (Table 5-1), but there were significant increases in the expression of 

IL1r1, and Tnfsf13. I noted an increase in the gene expression of several genes after a 6 

kJ/m2 exposure. There was an even higher increase in the expression of IL1r1 and Tnfsf13 

were increased by 2 and 6 fold respectively, relative to vehicle. Ccl11 and Cxcl15 had a 2 

and 7 fold increase after Solidago treatment, respectively (Table 5-1). Thus, I concluded 

that topically-applied Solidago decreased the inflammatory response at low doses of UV-

exposure. 

SOLIDAGO DECREASES Tnf-α SIGNALING IN MC1RE/E TYR+/+ MICE AFTER UV-EXPOSURE. 

Previous studies showed the expression of three specific genes as key targets for the 

inflammatory response (Osborne-Hereford, Rogers et al. 2008). Therefore, I tested the 

expression of Tnf-α, IL1β and IL6 (Figure 5-4) in K14-SCF albino extension. The skin 

biopsies were taken after irradiating the skin with 2 or 6 kJ/m2 of UV. For a low dose of 2 
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kJ/m2, there was a decrease in the gene expression of Tnf-α and IL1β after treatment of 

10% solidago compared to vehicle control. But, there was an increase of 4 fold for the 

gene expression of IL6 after solidago.  

Interestingly, for the 6kJ/m2, there was an increase of 4 fold for IL1β comparing vehicle 

with solidago treatment. The gene expression of IL6 increased 9 fold after solidago 

treatment. However, Tnf-α gene expression was decreased 2 fold after solidago 

treatment. The inhibition of the inflammatory response mediated by solidago may be 

dependent of the expression of Tnf-α. 
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Figure 5-1. Topical treatment of Solidago in fair-skinned extension and 

albino extension mice. 

 (Mc1re/e) mice photographs of C57BL/6 animals were used in this study.  Animals 

were genetically matched except at the melanocortin 1 receptor (Mc1r) and 

Tyrosinase (Tyr) loci.  Note that pigmentation is pheomelanotic (blond) when Tyr 
is functional but amelanotic (albino) when Tyr is defective, as is the case with the 

albino extension (Mc1re/e Tyrc2j/c2j) mutant. (B)  Epidermal pigmentation depends 

on retention of interfollicular epidermal melanocytes in the skin by the K14-SCF 

transgene, and the skin darkening can easily be seen in the ears. 
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Figure 5-2. Solidago protected against UV-mediated inflammation as 

determined by minimal erythematous dose (MED) testing.  

(A, C) Position of UV occlusive tape and UVB doses of animals treated twice daily 

for 3 days with 10 % solidago and vehicle control (70% ethanol 30% propyl glycol).  

Dorsal skin was exposed to various doses of UVB by using UV-occlusive tape 
with punched-out 1 cm2 circular apertures, and varying exposure times to yield 

the appropriate dose. (B, D) Mc1re/e Tyr+/+ and Mc1re/e Tyrc2j/c2j were irradiated after 

the completion of the last treatment (6 applications). After irradiation, circles of 

exposed skin were labeled with a pen in some experiments. MED’s, defined by 
erythema and/or edema in the entire circle of exposed skin to a particular dose, 

were determined 48 hours after exposure. The MED ± SD results are reported as 

kJ/m2 UVB, p ≤ 0.001. 
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Figure 5-3. Solidago protected against UV-mediated inflammation as 

determined by minimal erythematous dose (MED) testing.  

(A) Position of UV occlusive tape and UVB doses of animals once one day with 

10 % solidago and vehicle control (70% ethanol 30% propyl glycol).  Dorsal skin 

was exposed to various doses of UVB by using UV-occlusive tape with punched-

out 1 cm2 circular apertures, and varying exposure times to yield the appropriate 
dose. (B) Mc1re/e Tyr+/+ mice were treated with solidago 3 and 6 hours prior to UV 

exposure. After irradiation, circles of exposed skin were labeled with a pen in 

some experiments. MED’s, defined by erythema and/or edema in the entire circle 

of exposed skin to a particular dose, were determined 48 hours after     
exposure. The MED ± SD results are reported as kJ/m2 UVB, * p ≤ 0.001. 

Experiment performed in collaboration with Kaia Hampton. 
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Table 5-1. Cytokines gene array, the expression of different genes after 

solidago treatment.  

Mc1re/e Tyr2j/c2j albino extension were treated with 10%w/v Solidago and vehicle 

control (70% ETOH, 30% PG) twice daily for 3 days. Skin biopsies were taken after 

48 hours of exposure to 2 or 6 kilojoules of UVB. mRNA was isolated to be analyzed 

by qPCR using RT2 Profiler PCR Array for inflammatory cytokines and receptors 

(Qiagen, Valencia, CA.) with primers specific for mouse mRNA. The gene 

amplification was normalized to Actin β and the relative amplification levels at both 

UVB doses were compared to vehicle control.  

 

Experiment performed in collaboration with Kaia Hampton. 
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Figure 5-4. Solidago inhibited Tnf-α expression after UV-induced 

inflammation.  

Mc1re/e Tyrc2j/c2j albino extension were treated with 10%w/v Solidago and vehicle 

control (70% ETOH, 30% PG) twice daily for 3 days. Skin biopsies were taken 

after 48 hours of exposure to 2 or 6 kJ/m2 of UVB. mRNA was isolated to be 

analyzed by qPCR using RT2 Profiler PCR Array for inflammatory cytokines and 

receptors (Qiagen, Valencia, CA.) with primers specific for mouse mRNA. The 

gene amplification was normalized to Actin β (Actb) and the relative amplification 

levels at both UVB doses were compared to vehicle control.  

 

Experiment performed in collaboration with Kaia Hampton. 
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DISCUSSION 

The anti-inflammatory response of solidago is mediated by its binding to nAChRα7 

This receptor has been found to be expressed in the skin (Zia, Ndoye et al. 2000, 

Arredondo, Nguyen et al. 2002, Bencherif, Lippiello et al. 2011, Fan, Yu et al. 2011). I 

hypothesized that the solidago extract would protect against UV-inflammation in K14-SCF 

Mc1re/e Tyr+/+ and Mc1re/e Tyrc2j/c2j mice. This is the first study using a topical formulation 

of solidago. I confirmed my hypothesis in C57BL/6 extension (Mc1re/e Tyr+/+) mice. I was 

not able to observe darkening of the skin after 6 applications of the solidago extract on the 

back of the mice in contrast to forskolin, which induced darkening of the skin after two 

topical applications. This was not a surprise since the effects of solidago are known to 

affect inflammatory response rather than pigmentation. However, there was a protective 

effect against erythema with a 4.0 kJ/m2 compared to 10.0 kJ/m2 in Mc1re/e Tyr+/+ fair-

skinned mice. I tested the drug in Mc1re/e Tyrc2j/c2j albino extension mice but the increase 

in MED was not significant. Perhaps, the presence of pheomelanin may have a protective 

effect against UV-induced inflammation in the skin. To address these differences, further 

experiments are required with more mice or a higher percentage of solidago extract in the 

skin. The UV exposure of the Mc1re/e Tyrc2j/c2j albino extension was lower (0.5 to 6.0 kJ/m2) 

from Mc1re/e Tyr+/+ extension (1.0 to 10 kJ/m2) because amelanotic albino show more UV 

sensitivity. I was not able to test higher doses of UV, for the reason that without the 

darkening of the skin, higher doses of UV would harm the mice and cause excessive 

sunburn.   

The use of solidago in both extension and albino extension mice, promoted 

decreases in the inflammatory response. The solidago extract has shown no physiological 

effect after treatment in mice (Bucciarelli, Minetti et al. 2010). Application of solidago for 

only one day show no significant effect protecting against UV-inflammation of the skin. 
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Other studies using chronic treatment (more than 3 days) of topical solidago are needed 

to study its effect inhibiting the inflammatory response.  

Based on the results above, the mechanism of solidago-induced protection is 

melanin-independent. Skin samples taken from Mc1re/e Tyrc2j/c2j albino extension mice 

were tested for the expression of several genes involved in the inflammatory response.  

The gene expression of the majority of cytokines and receptors was decreased at low UV 

but not at 6 kJ/m2 suggesting a protective threshold.  However, the expression of IL1r1 

and Tnfsf13 was increased in both doses. These cytokines have been used as a target to 

test inhibition of the inflammatory response (Li, Pappas et al. 2013, Garcia-Perez, Allaeys 

et al. 2014, Tsai, Tung et al. 2015). The use of flavonoids such as solidago might yield 

protective effects after UV exposure perhaps more effective at lower doses of UV. 

The inflammatory response consists of many cytokines receptors. An example of 

pro-inflammatory cytokines include IL23, IL17, IL6, IL8, IL10, and Tnf-α among others.  IL6 

is expressed in severe skin sunburn (Norval 2001, Norval 2011). IL6 promotes the release 

of Tnf-α, IL12, IL1 and other cytokines promoting inflammation. IL6 showed a high 

expression when tested in the skin treated with 6 kJ/m2 of UV radiation on albino extension 

mice confirming its role in skin sunburn. Tnf-α is a pro-inflammatory cytokine and solidago 

decreased it at both low and high doses of UV. On the other hand, there are anti-

inflammatory cytokines like IL13, IL11, and IL4. IL4 and IL13 known to promote tissue 

repair together with the production of specific antibodies (Voehringer 2013), therefore 

some beneficial effects of inflammation may be lost by Solidago treatment.  

I also noted decreases in the expression of Tnf-α and IL1β after solidago treatment 

at lower doses of UVB. The decrease remained after increasing the dose of UVB to 6 

kJ/m2 for Tnf-α. However, IL1β and IL6 showed an increase in the expression after an 

exposure of 6 kJ/m2. This dose of UVB showed an increase in skin redness of the mice. 
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The protective effect of solidago at higher doses of UVB might be linked to the regulation 

of Tnf-α. Remarkably, Tnf-α is known to regulate dendritic and macrophages density in 

the immune response (Marble, Gordon et al. 2007) and IL6 can inhibit endotoxin-induced 

Tnf-α signaling (Starkie, Ostrowski et al. 2003). Additional studies are required to 

determine if solidago can directly regulate IL6 as an anti-inflammatory cytokine.  

The use of solidago for the prevention of inflammation after UVB exposure would 

potentially be of benefit to individuals with UV sensitivity. It is important to consider that 

the solidago extract contains many other components that might have a role in the skin 

response. Therefore, further studies are needed to understand the absorption of this drug 

in the skin and to clarify which components are inflammation regulators. Better absorption 

might allow more significant results at higher doses of UV. It would be ideal to observe an 

anti-inflammatory effect using less than 6 application of solidago (in a matter of hours).  

I hypothesized that solidago acted as an agonist to the nAChrα7 to decrease 

cytokine production. Although nAChRα7 has been implicated in wound healing (Fan, Yu 

et al. 2011) and skin infection (Gahring, Osborne et al. 2010), its pharmacologic activation 

in the absence ACh or parasympathetic innervation is a novel mechanism. The nAChRα7 

being expressed in non-neuronal locations regulates early local inflammatory responses 

in the skin. This suggests that the effect of this receptor might be beneficial even without 

UV-exposure. In support of our hypothesis, it is clear that several pro-inflammatory 

cytokines were down-regulated at the gene level after topical application of solidago 

activates nAChRα7 response and inhibits the inflammatory response. 

 

 

Copyright © Alexandra Amaro-Ortiz 2015 
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PERMISSION LETTER TO RE-USE FIGURES 
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APPENDIX C: 

LIST OF ABBREVIATIONS  

 
6-4 PP     6-4 photoproduct 
8-oxoG    8-oxoguanine 
A      adenine 
ACTB    Actin, beta 
ADIPOQ   adiponectin, C1Q and collagen domain containing 
ADP      Adenosine diphosphate 
AGTR1   angiotensin II receptor, type 1 
AIMP1 Aimp1 Aminoacyl tRNA synthetase complex-interacting 

multifunctional protein 1 
AKT1    v-akt murine thymoma viral oncogene homolog 1 
APEX1    nuclease (multifunctional DNA repair enzyme) 1 
APOA1   apolipoprotein A-I 
APP    amyloid beta (A4) precursor protein 
ARE      antioxidant respose element 
ATF2    activating transcription factor 2 
ATP      adenosine triphosphate 
ATP     Adenosine triphosphate 
B2M    B2m Beta-2 microglobulin 
BCL2    B-cell CLL/lymphoma 2 
BMP2    Bmp2 Bone morphogenetic protein 2 
C    cytosine 
cAMP      3’-5’-cyclic adenosine monophosphate 
CASP3   caspase 3, apoptosis-related cysteine peptidase 
CAT    catalase 
CCL1    Chemokine (C-C motif) ligand 1 
CCL11    Chemokine (C-C motif) ligand 11 
CCL12    Chemokine (C-C motif) ligand 12 
CCL17    Chemokine (C-C motif) ligand 17 
CCL19    Chemokine (C-C motif) ligand 19 
CCL2    Chemokine (C-C motif) ligand 2 
CCL20    Chemokine (C-C motif) ligand 20 
CCL22    Chemokine (C-C motif) ligand 22 
CCL24    Chemokine (C-C motif) ligand 24 
CCL3    Chemokine (C-C motif) ligand 3 
CCL4    Chemokine (C-C motif) ligand 4 
CCL5    Chemokine (C-C motif) ligand 5 
CCL6    Chemokine (C-C motif) ligand 6 
CCL7    Chemokine (C-C motif) ligand 7 
CCL8    Chemokine (C-C motif) ligand 8 
CCL9    Chemokine (C-C motif) ligand 9 
CCR1    Chemokine (C-C motif) receptor 1 
CCR10   Chemokine (C-C motif) receptor 10 
CCR2    Chemokine (C-C motif) receptor 2 
CCR3    Chemokine (C-C motif) receptor 3 
CCR4    Chemokine (C-C motif) receptor 4 
CCR5    Chemokine (C-C motif) receptor 5 
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CCR6    Chemokine (C-C motif) receptor 6 
CCR8    Chemokine (C-C motif) receptor 8 
CD36    molecule (thrombospondin receptor) 
CD40LG   CD40 ligand 
CLU    clusterin 
CPD      cyclobutane pyrimidine dimer 
CREB     cAMP response element binding 
CSF1    Colony stimulating factor 1 (macrophage) 
CSF2    Colony stimulating factor 2 (granulocyte-macrophage) 
CSF3    Colony stimulating factor 3 (granulocyte) 
Cu/ZnSOD     copper/zinc superoxide dismutase 
CX3CL1   Chemokine (C-X3-C motif) ligand 1 
CXC12    Chemokine (C-X-C motif) ligand 12 
CXCL1    Chemokine (C-X-C motif) ligand 1 
CXCL10   Chemokine (C-X-C motif) ligand 10 
CXCL11   Chemokine (C-X-C motif) ligand 11 
CXCL13   Chemokine (C-X-C motif) ligand 13 
CXCL15   Chemokine (C-X-C motif) ligand 15 
CXCL5    Chemokine (C-X-C motif) ligand 5 
CXCL9    Chemokine (C-X-C motif) ligand 9 
CXCR2   Chemokine (C-X-C motif) receptor 2 
CXCR3   Chemokine (C-X-C motif) receptor 3 
CXCR5   Chemokine (C-X-C motif) receptor 5 
CYBA    cytochrome b-245, alpha polypeptide 
CYCS    cytochrome c, somatic 
CYP2E1   cytochrome P450, family 2, subfamily E, polypeptide 1 
DCT      dopachrome tautomerase 
DDIT3    DNA-damage-inducible transcript 3 
DHCR24   24-dehydrocholesterol reductase 
DHICA     5,6-dihydroxyindole-carboxylic acid 
ECSOD     extracellular superoxide dismutase 
EGFR    epidermal growth factor receptor 
F3    coagulation factor III (thromboplastin, tissue factor) 
FASL    Fas ligand (TNF superfamily, member 6) 
FBS    Fetal Bovine Serum 
FOXO1   forkhead box O1 
G6PD    glucose-6-phosphate dehydrogenase 
GAPDH   Glyceraldehyde-3-phosphate dehydrogenase 
GAPDH   glyceraldehyde-3-phosphate dehydrogenase 
GCLC    glutamate-cysteine ligase, catalytic subunit 
GCLM    glutamate-cysteine ligase, modifier subunit 
GLRX    glutaredoxin (thioltransferase) 
GLRX2   glutaredoxin 2 
GPCR     g-protein coupled receptor 
GPX1    glutathione peroxidase 1 
GPX3    glutathione peroxidase 3 (plasma) 
GPX4    glutathione peroxidase 4 (phospholipid hydroperoxidase) 
GSH      glutathione 
GSR    glutathione reductase 
GSTP1   glutathione S-transferase pi 1 
GUSB    Glucuronidase, beta 
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H2O2     Hydrogen Peroxide 
HIF1A hypoxia inducible factor 1, alpha subunit (basic helix-loop-

helix transcription factor) 
HMOX1   heme oxygenase (decycling) 1 
HP    haptoglobin 
HPRT1   hypoxanthine phosphoribosyltransferase 1 
HSP90A1   Heat shock protein 90 alpha (cytosolic), class B member 1 
HSPD1   heat shock 60kDa protein 1 (chaperonin) 
IFNG    Interferon gamma 
IL10RA   Interleukin 10 receptor, alpha 
IL10RB   Interleukin 10 receptor, beta 
IL11    Interleukin 11 
IL13    Interleukin 13 
IL15    Interleukin 15 
IL16    Interleukin 16 
IL17A    Interleukin 17A 
IL17B    Interleukin 17B 
IL17F    Interleukin 17F 
IL1A    Interleukin 1 alpha 
IL1B    Interleukin 1 beta 
IL1B    Interleukin 1, beta 
IL1R1    Interleukin 1 receptor, type I 
IL1RN    Interleukin 1 receptor antagonist 
IL21    Interleukin 21 
IL27    Interleukin 27 
IL2RB    Interleukin 2 receptor, beta chain 
IL2RG    Interleukin 2 receptor, gamma chain 
IL3    Interleukin 3 
IL33    Interleukin 33 
IL4    Interleukin 4 
IL5    Interleukin 5 
IL5RA    Interleukin 5 receptor, alpha 
IL6    Interleukin 6 (interferon, beta 2) 
IL6RA    Interleukin 6 receptor, alpha 
IL6ST    Interleukin 6 signal transducer 
IL7    Interleukin 7 
INS    insulin 
IP     Intraperitoneal 
JAK2    Janus kinase 2 
JUN    proto-oncogene 
kDA     Kilodalton 
LCN2    lipocalin 2 
LDHA    lactate dehydrogenase A 
LTA    Lymphotoxin A 
LTB    Lymphotoxin B 
MAP3K5   mitogen-activated protein kinase kinase kinase 5 
MAPK1   mitogen-activated protein kinase 1 
MAPK8   mitogen-activated protein kinase 8 
MAPK9   mitogen-activated protein kinase 9 
MC1R     melanocortin 1 receptor 
α-MSH     alpha melanocyte stimulating hormone 
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MDM2    p53 binding protein homolog (mouse) 
MED      minimal erythemal dose 
MGDC    Mouse Genomic DNA Contamination 
MIF    Macrophage migration inhibitory factor 
MIF macrophage migration inhibitory factor (glycosylation-

inhibiting factor) 
Mitf      micropthalmia transcription factor 
MnSOD     manganese superoxide dismutase 
MPO    myeloperoxidase 
MSRA    methionine sulfoxide reductase A 
mtDNA     mitochondrial DNA 
NAMPT   Nicotinamide phosphoribosyltransferase 
NFE2L2   nuclear factor (erythroid-derived 2)-like 2 
NFKB1 nuclear factor of kappa light polypeptide gene enhancer in 

B-cells 1 
NMSC     non-melanoma skin cancer 
NOS1    nitric oxide synthase 1 (neuronal) 
NOX1    NADPH oxidase 1 
NQO1    NAD(P)H dehydrogenase, quinone 1 
Nrf2     Nuclear factor-like 2 
OGG1    8-oxoguanine DNA glycosylase 
OLR1    oxidized low density lipoprotein (lectin-like) receptor 1 
OSM    Oncostatin M 
PARK7   Parkinson disease (autosomal recessive, early onset) 7 
PBS     Phosphate Buffer Saline 
PF4    Platelet factor 4 
PKA      protein kinase A 
POMC     proopiomelanocortin 
PON2    paraoxonase 2 
PRDX1   peroxiredoxin 1 
PRDX2   peroxiredoxin 2 
PRDX3   peroxiredoxin 3 
PRDX4   peroxiredoxin 4 
PRDX5   peroxiredoxin 5 
PRDX6   peroxiredoxin 6 
PRKAA2   protein kinase, AMP-activated, alpha 2 catalytic subunit 
PRKCA   protein kinase C, alpha 
PRKCB   protein kinase C, beta 
PRKCD   protein kinase C, delta 
PRKCZ   protein kinase C, zeta 
PRODH   proline dehydrogenase (oxidase) 1 
PTGS2 prostaglandin-endoperoxide synthase 2 (prostaglandin 

G/H synthase and cyclooxygenase) 
RELA v-rel reticuloendotheliosis viral oncogene homolog A 

(avian) 
RHC      red hair color phenotype 
RNS      reactive nitrogen species 
ROS      reactive oxygen species 
ROS1    c-ros oncogene 1, receptor tyrosine kinase 
SCF     stem cell factor 
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SERPINE1 serpin peptidase inhibitor, clade E (nexin, plasminogen 
activator inhibitor type 1), member 1 

SHC1    SHC (Src homology 2 domain containing) transforming 
protein 1 
SIRT1    sirtuin 1 
SNCA    synuclein, alpha (non A4 component of amyloid precursor) 
SOD      superoxide dismutase 
SOD1    superoxide dismutase 1, soluble 
SOD2    superoxide dismutase 2, mitochondrial 
SOD3    superoxide dismutase 3, extracellular 
SPP1    Spp1 Secreted phosphoprotein 1 
SRC v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene 

homolog (avian) 
STAT1    signal transducer and activator of transcription 1, 91kDa 
TBS-T     tris buffered saline – tween 20 
TLR4    toll-like receptor 4 
TNF    Tumor necrosis factor 
TNFRSF11B Tumor necrosis factor receptor superfamily, member 11b 

(osteoprotegerin) 
TNFSF10   Tumor necrosis factor (ligand) superfamily, member 10 
TNFSF11   Tumor necrosis factor (ligand) superfamily, member 11 
TNFSF13   Tumor necrosis factor (ligand) superfamily, member 13 
TNFSF13B   Tumor necrosis factor (ligand) superfamily, member 13b 
TNFSF4   Tumor necrosis factor (ligand) superfamily, member 4 
TP53    tumor protein p53 
TXNIP    thioredoxin interacting protein 
TXNRD1    thioredoxin reductase 1 
Tyr      tyrosinase 
Trp1    tyrosine related protein 1 
Trp2    tyrosine related protein 2 
UCP1      uncoupling protein 1 
UCP2    uncoupling protein 2 (mitochondrial, proton carrier) 
UV      ultraviolet 
UVA     ultraviolet A 
UVB     ultraviolet B 
UVC     ultraviolet C 
VDAC     voltage-dependent anion channel 
VEGFA   Vascular endothelial growth factor A 
XO      xanthine oxidase 
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