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Introduction

The severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) has resulted in a global pandemic.1,2

SARS-CoV-2, which is responsible for coronavirus disease
2019 (COVID-19), can cause pneumonia and acute respi-
ratory distress syndrome (ARDS) as well as several
extrapulmonary manifestations. These include cardio-
vascular, hematologic, and thrombotic sequelae due to
direct and indirect effects of the viral illness.3–5 Indeed,
the limited data available on thrombotic complications
in patients with COVID-19 suggest that rates of
venous thromboembolic events may be as high as 25 to

30%, particularly in critically ill, mechanically ventilated
patients.6–8 Thrombotic complications also include
stroke, acute limb ischemia, and acute coronary
syndromes.9–11

Limited data are available to determine the antithrom-
botic therapy to improve outcomes in patients with COVID-
19 who do not have confirmed evidence of thrombosis. The
optimal dose and agent for thromboprophylaxis remain
unknown. Conservative management has merit based on
historical data pertaining to critically ill medical patients12

as well as for COVID-19-specific escalation of treatment.13

For interim decision-making, consensus-based guidance has
been provided by some groups,14–18 including the Global
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Abstract Coronavirus disease 2019 (COVID-19), currently a worldwide pandemic, is a viral illness
caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The
suspected contribution of thrombotic events to morbidity and mortality in COVID-19
patients has prompted a search for novel potential options for preventing COVID-19-
associated thrombotic disease. In this article by the Global COVID-19 Thrombosis
Collaborative Group, we describe novel dosing approaches for commonly used
antithrombotic agents (especially heparin-based regimens) and the potential use of
less widely used antithrombotic drugs in the absence of confirmed thrombosis.
Although these therapies may have direct antithrombotic effects, other mechanisms
of action, including anti-inflammatory or antiviral effects, have been postulated. Based
on survey results from this group of authors, we suggest research priorities for specific
agents and subgroups of patients with COVID-19. Further, we review other agents,
including immunomodulators, that may have antithrombotic properties. It is our hope
that the present document will encourage and stimulate future prospective studies
and randomized trials to study the safety, efficacy, and optimal use of these agents for
prevention or management of thrombosis in COVID-19.
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COVID-19 Thrombosis Collaborative Group5 (►Table 1).
However, unlike other extensively studied illnesses such as
sepsis,19 a comprehensive assessment of potential options
for prevention of thrombosis in various subgroups of
patients with COVID-19 has not to date been proposed.

In this article, prepared by the Global COVID-19 Throm-
bosis Collaborative Group, we summarize potential thera-
peutic options for prevention of thrombosis in COVID-19
patients in the absence of confirmed thrombotic events. Our
focus is on novel approaches to dosing commonly used
antithrombotic agents (heparin-based regimens and direct
oral anticoagulants [DOACs]), considerations for empiric
use of less widely used antithrombotic drugs such as
danaparoid, and the potential applications of antiplatelet
agents. In addition to the direct antithrombotic effects,
other mechanisms of action—including anti-inflammatory
or antiviral effects—have been postulated.20,21 Finally, we
discuss other therapies, such as immunomodulators, that
may have antithrombotic properties. The goal is not to
provide immediately actionable management recommen-
dations (as high-quality data to reliably inform such guid-
ance in patients with COVID-19 are lacking), but rather to
summarize potential treatment options and their advan-
tages and limitations for ongoing and future investigations.
We outline research priorities for these agents across the
relevant clinical subgroups.

Methodological Considerations

To provide a thorough assessment for the rationale and
potential advantages and limitations of various antithrom-
botic agents, subcommittees from the collaborative drafted

the sections focused on specific agents, and these sections
were then reviewed and revised by the entire group. The
colead authors searched MEDLINE (with PubMed interface)
to ensure that no other high-quality clinical study was
missed (date of last search: May 5, 2020).

For research priority setting, a survey was sent to the
group of coauthors who were asked to rate the overall
priority for investigating each of the discussed agents and
to identify the care setting wherein the investigation was
most reasonable (outpatients with COVID-19, inpatients on
the wards, critically ill patients in the intensive care unit
[ICU], or patients posthospital discharge).

Investigational Strategies Targeting
Thromboinflammation in COVID-19

In the subsequent sections, we describe various investiga-
tional strategies for anticoagulants, antiplatelet agents, he-
mostatic modulating agents, and immunomodulators that
may have potential for further investigation for patientswith
COVID-19 (►Table 2; ►Fig. 1). In addition, a summary of the
survey results for research priorities with these agents is
provided in ►Table 3 and ►Figs. 2 and 3.

Anticoagulants

Unfractionated Heparin and Low-Molecular-Weight
Heparins
Unfractionated heparin and low-molecular-weight heparins
(LMWHs) are the most frequently administered parenteral
anticoagulants.22 In addition to their antithrombotic activity,
they have postulated anti-inflammatory and antiviral

Table 1 Suggested considerations for prevention and management of thrombosis among hospitalized patients with COVID-19a

Risk stratification for VTE should be performed for all inpatients with COVID-19. In the absence of contraindications, the
vast majority of inpatients, including all patients with severe COVID-19 who are critically ill should receive prophylactic
anticoagulation

The optimal intensity of anticoagulation in patients with COVID-19 remains unknown. Although prophylactic dosing is most
widely used, higher intensity of anticoagulation (including intermediate-dose and full-therapeutic anticoagulation) is being
used by many clinicians/institutions. Additional studies are required to identify the optimal regimen in various patient
groups with COVID-19

For hospitalized patients with COVID-19 who require therapeutic anticoagulation (for prior indications including AF, VTE,
mechanical valves, or new incident events such as new VTE or type I myocardial infarction), presence or absence of DIC,
and hepatic and renal function should be considered when determining the appropriate choice of anticoagulant
agent and dosea

Hemostatic derangements, including elevated D-dimer levels, are common among inpatients with COVID-19. The
majority of a consensus panel did not find sufficient evidence for routine screening for VTE (e.g., bilateral lower extremity
ultrasound, or computed tomography pulmonary angiography) for hospitalized patients with COVID-19. However, a high
clinical index of suspicion for VTE should be maintained and appropriate diagnostic tests should be pursued in case
of signs or symptoms for DVT (including unexplained lower extremity pain or swelling) or PE (including unexplained
chest pain, unexplained right ventricular dysfunction, or hypoxemia disproportionate to the pulmonary infiltrates)

Risk stratification for VTE should be done for hospitalized patients at the time of discharge. Extended pharmacological
prophylaxis (up to 45 d) should be considered for patients at high risk of VTE who do not have a high risk of bleeding

Drug–drug interactions should be considered between investigational COVID-19 therapies and antithrombotic agents

Abbreviations: AF, atrial fibrillation; COVID-19, coronavirus disease 2019; DIC, disseminated intravascular coagulation; DVT, deep venous
thrombosis; PE, pulmonary embolism; VTE, venous thromboembolism.
aMore detailed recommendations are provided in a separate manuscript.5
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Table 2 Empiric or investigational use of agents with antithrombotic properties in COVID-19

Postulated mechanism(s) or
data from other ARDS series

Clinical evidence in patients
with COVID-19

Comment

Anticoagulants

Intermediate-dose heparin
(UFH or LMWH)

■ Heparin-based products
have anti-inflammatory and
antiviral properties
■ Meta-analysis of 9 trials in-
cluding 465 patients sug-
gested that adjunctive
LMWH was associated with
significantly lower rates of
mortality at 28-d in patients
with ARDS (RR 0.63, 95% CI
0.41–0.96).182 Subgroup
analysis demonstrated
greater effect on oxygen-
ation in patients who re-
ceived �5,000 U/d of LMWH
■ In vitro data suggests hep-
arin may prevent virus-in-
duced cell death of human
progenitor cells exposed to
Zika virus183

■ In vitro data suggests hep-
arin exposure may reduce
infectivity of SARS-CoV184

■ Among a group of 449
patients admitted for COVID-
19 in Wuhan, 99 (22%) re-
ceived intermediate-dose
UFH or LMWH185

■ No significant differences in
28-d mortality was noted in
patients who received hepa-
rin-based products versus
those that did not receive
heparin (30.3% vs. 29.7%,
p¼ 0.91), but anticoagula-
tion in patients with
Ddimer> 3 µg/mL was asso-
ciated with lower 28-d mor-
tality (32.8% vs. 52.4%,
p¼ 0.017)

■ There is limited evidence,
suggesting that heparin may
interact with the spike S1
protein receptor domain of
SARS-CoV-221,186

Therapeutic heparin (UFH
or LMWH)

■ As above with intermediate-
dose heparin
■ Empiric heparin reduced
rates of thrombotic events
without increased bleeding
complications in H1N1
pneumonia26

■ In a retrospective analysis,
use of therapeutic anticoa-
gulation was associated with
lower mortality (adjusted HR
of 0.86 per day, 95% confi-
dence interval 0.82–0.89,
p< 0.001) without increased
bleeding. The indication for
anticoagulation, or the type
of treatment were not de-
scribed. Sufficient informa-
tion was not provided about
the comorbidity profile of the
patients (e.g., contraindica-
tions to anticoagulation)187

■ As above

Danaparoid ■Danaparoid has been shown
to reduce cytokine levels and
attenuate thrombosis in ani-
mal models44,45

■ It can be administered sys-
temically or nebulized
■ Nebulized danaparoid can
attenuate coagulation activi-
ty in the lungs and systemi-
cally as well as reduce levels
of pulmonary inflammation.
Animal models of lung injury
suggest improved survival
with its administration46

■ No current evidence for
danaparoid in COVID-19

■ Heparan sulfate moiety in
danaparoid may have antivi-
ral actions and may restore
heparan deficit on vascular
endothelium
■ Given minimal effect on
platelets40 and ability to be
used in patients with severe
renal failure,188 danaparoid
may have the potential for
use for thromboprophylaxis
in patients with COVID-19

DOACs ■ DOACs have demonstrated
mixed results with regards to
inpatient and postdischarge
prophylaxis for VTE54,57

■ In patients at high risk for
VTE and low risk for bleeding
(including those with severe
infection), betrixaban and

■ No current evidence for
DOACs in COVID-19
■ There is an ongoing clinical
trial assessing DOACs with
DAPT, statins, and PPIs in
patients with COVID-19 and
suspected acute coronary
syndrome (NCT04333407)

■ Considerations when ad-
ministering DOACs in
patients with COVID-19 in-
clude longer half-life, avail-
ability of reversal agents,
renal clearance, and drug–
drug interactions with

(Continued)
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Table 2 (Continued)

Postulated mechanism(s) or
data from other ARDS series

Clinical evidence in patients
with COVID-19

Comment

rivaroxaban showed a net
clinical benefit for inpatient
thromboprophylaxis and for
extended thromboprophy-
laxis posthospital
discharge54,56,58

investigational therapies for
COVID-195

Fibrinolytic agents

Fibrinolytic therapy (in-
cluding tPA)

■ There is some evidence to
suggest microthrombi in the
setting of ARDS and critically
ill patients189

■ Urokinase and tissue-type
plasminogen activator have
been shown to be protective
in murine models and to re-
duce the risk of ARDS in por-
cine models76

■ Systemic fibrinolytic thera-
py has been used off-label in
ill patients with ARDS sec-
ondary to COVID-19 with
transient improvement in
oxygenation and ventilatory
requirement.70,71 No long-
term benefits have been
established

■ Further evaluation of the
role of fibrinolytics should be
explored
■ Further prospectively col-
lected data in this space is
needed
■ Established risks include
major bleeding events (in-
cluding intracranial hemor-
rhage); however, further
understanding of the risk for
diffuse alveolar hemorrhage
is needed

Antiplatelets

Aspirin ■ Aspirin is associated with
diminished incidence of
ARDS and improved survival
in the setting of acute lung
injury in animal models and
observational human stud-
ies94–99

■ While prospective analyses
have suggested reduced
mortality when used in the
prehospital and ICU set-
ting97,98, these findings were
not validated in a random-
ized trial which evaluated its
use for preventing ARDS100

■ No current evidence for as-
pirin in COVID-19
■ There is an ongoing clinical
trial assessing DOACs with
DAPT, statins, and PPIs in
patients with COVID-19 and
suspected acute coronary
syndrome (NCT04333407)

P2Y12 receptor
antagonists

■ Ticagrelor administration
within 48 h of pneumonia
diagnosis was associated
with reduced circulating
platelet-leukocyte aggre-
gates, interleukin-6 levels,
and improved oxygen
requirements and lung func-
tion in the randomized XAN-
THIPPE trial105

■ No current evidence for
P2Y12 receptor inhibition in
COVID-19
■ There is an ongoing clinical
trial assessing DOACs with
DAPT, statins, and PPIs in
patients with COVID-19 and
suspected acute coronary
syndrome (NCT04333407)

■ Ticagrelor-associated dys-
pnea should be considered

Dipyridamole ■ The antithrombotic effect
of dipyridamole is thought to
be via phosphodiesterase in-
hibition
■ Animal models suggest po-
tential antiviral activity in the
setting of influenza113

■ A small trial randomized 22
patients to dipyridamole
(150mg orally three times a
day) vs. routine control in
which the treatment group
had higher hospitalization
discharge rates compared
with the control group
(58.4% vs. 20.0%), increased
platelet counts, stabilization
of D-dimer levels, with trends
to suggest faster recovery190
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Table 2 (Continued)

Postulated mechanism(s) or
data from other ARDS series

Clinical evidence in patients
with COVID-19

Comment

Anti-inflammatory

Statins ■ Anti-inflammatory effect:
Regulation of MYD88 levels
that mitigate NF-kB activa-
tion167

■ Anticoagulant and Anti-
platelet effects: Downregu-
lation of TF, upregulation of
thrombomodulin, and inhi-
bition of TXA2

171

■ No current evidence for
statin use in COVID-19
■ Several ongoing studies
evaluating the use of statins
in COVID-19 (NCT04348695,
NCT04333407, and
NCT04343001)

Immunomodulators ■Murinemodels suggest that
complement inhibition may
reduce severity of SARS-CoV
and MERS-CoV20

■ Complement inhibition and
JAK inhibitors have been
suggested as potential ther-
apies for COVID-1920

■ JAK inhibitors have been
shown to have in vitro activ-
ity against SARS-CoV-2177

Activated protein C ■ Antithrombotic effect of
activated protein C in early
stage of sepsis-induced DIC
■ Activated protein C may
reduce the damage caused
by ischemia/reperfusion in-
jury, gastrointestinal inflam-
mation, sepsis, and Ebola
virus infection130

■ Anti-inflammatory and
cytoprotective effects
through PAR1-mediated bi-
ased signaling191

■ Recombinant-activated
protein C may attenuate
systemic coagulopathy and
pulmonary coagulopathy,133

but randomized controlled
data of activated protein C
for infectious or inflammato-
ry ARDS did not improve
alveolocapillary permeability
nor clinical outcomes134

■ In critically ill COVID-19
patients, 4/11 individuals
had a protein C level mod-
estly lower than the average
reference values119

■ Further study needed to
determine if low levels of
protein C are common and
whether activated protein C
or 3K3A-APC have any benefit
in patients with COVID-19

Corticosteroids ■ Glucocorticoids modulate
inflammatory response and
coagulation factors (VWF, fi-
brinogen, plasminogen acti-
vator inhibitor-1)151

■ Evidence in prior triggers
for ARDS, including SARS-
CoV and MERS-CoV, is
inconclusive.145–147

■ Retrospective analysis in
COVID-19 patients with
ARDS suggested reduced risk
of death with methylpred-
nisolone treatment (HR 0.38,
95% CI 0.20–0.72, p< 0.001)
144

■ Data from a paper currently
on a preprint server did not
show any association be-
tween glucocorticoid use and
28-d mortality in critically ill
patients192

Hydroxychloroquine ■ Prior studies suggesting
mild antiplatelet effects and
possible reversal of throm-
bogenic properties of anti-
phospholipid antibod-
ies154,158

■ No specific studies available
in ARDS

■ No current evidence for the
association between use of
hydroxychloroquine and
thrombosis in COVID-19

■ Data from a small case se-
ries suggests antiphospholi-
pid antibodiesmay play a role
in development of thrombo-
sis in patients with COVID-
19193 Further data are need-
ed to assess whether

(Continued)
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properties. Their anti-inflammatory properties may occur
through selectin blockade, inhibition of bradykinin and
thrombin generation, and binding of inflammatory cyto-
kines.23,24 Heparins may also possess antiviral properties.
For example, heparin may attenuate viral interaction with
the angiotensin-converting enzyme 2 (ACE2) receptor by
binding SARS-CoV-2 spike protein.25

The use of empiric heparin anticoagulation in patientswith
H1N1 ARDS was associated with reduced risk of thrombotic
events without an increase in bleeding complications.26 With
this consideration and the concern for breakthrough rates of
thrombotic events despite prophylactic anticoagulation,7 sev-
eral randomized trials evaluating varying intensities of hepa-
rin-based anticoagulation, ranging from prophylactic, or
weight-adjusted prophylactic dose treatment to intermediate
to full-dose therapy are underway (NCT04345848,
NCT04344756, NCT04373707, NCT04359277, NCT04367831,
NCT04362085, NCT04377997). Additionally, several institu-
tions have implemented protocols to initiate therapeutic anti-

coagulation empirically, utilizing risk stratification based on
an individual’s thrombotic and bleeding risk.27,28 Future pro-
spective studies are needed to evaluate the use of these
strategies on thrombotic and bleeding complications.

One potential challenge in the use of unfractionated
heparin is the utility of the activated partial thromboplastin
time (aPTT) for monitoring heparin. In patients with COVID-
19, besides the intensity of heparin-based regimens, sub-
stantial heterogeneity in the aPTT responsemay be driven by
high levels of factor VIII and fibrinogen, or the presence of a
lupus anticoagulant.29,30 Consequently, anti-factor Xa levels
may need to be measured to ensure that a therapeutic
heparin level is achieved.31

Trials of inhaled heparin for treatment of COVID-19 are
being planned to disrupt SARS-CoV-2 and its ACE2 recep-
tor interaction. Docking of the virus to host cells is
mediated by the interaction between the spike (S) protein
and heparan sulfate chains of proteoglycans. This facili-
tates further binding of SARS-CoV-2 to its cell-surface

Table 2 (Continued)

Postulated mechanism(s) or
data from other ARDS series

Clinical evidence in patients
with COVID-19

Comment

hydroxychloroquine may
have a benefit in COVID-19

Other

Antithrombin ■ Reduced levels in SARS
patients who developed
osteonecrosis194

■ Inflammation and coagul-
opathy modulation in lung
injury animal models122–124

■ Increased bleeding in criti-
cally ill trial data126

■ When compared with 40
healthy controls, patients
with COVID-19 had signifi-
cantly lower antithrombin
levels121

■ Mechanisms for lower anti-
thrombin in such patients is
unclear, and this may poten-
tially be mediated by con-
sumption versus reduced
synthesis by the liver

Thrombomodulin ■ Anticoagulant and anti-in-
flammatory effects mediated
through activated protein C-
dependent and independent
protein C mechanisms
■ A systematic review sug-
gested that recombinant
thrombomodulin in patients
with sepsis-induced coagul-
opathy was associated with
reduced rates of mortality129

■ No current evidence for
thrombomodulin in COVID-
19

■ Given that thrombocyto-
penia is not very common in
COVID-19, it remains unclear
if recombinant thrombomo-
dulin would have benefit in
this patient population

Contact activation system ■ Nonhuman primate models
of bacterial sepsis suggest
that inhibition of the contact
activation system can reduce
levels of inflammatory cyto-
kines, microvascular throm-
bosis, and potentially
contribute to improved
survival136–139

■ No current evidence for
modulation of contact acti-
vation system in COVID-19

Abbreviations: ARDS, acute respiratory distress syndrome; CI, confidence interval; CVA, cerebrovascular accident; DAPT, dual antiplatelet therapy;
DIC, disseminated intravascular coagulation; DOAC, direct oral anticoagulant; HR, hazard ratio; ICU, intensive care unit; JAK, Janus kinase; LMWH,
low-molecular-weight heparin; MERS-CoV, Middle Eastern respiratory syndrome coronavirus; NF-kB, nuclear factor kappa B; PAR1, protease-
activated receptor 1; PE, pulmonary embolism; RR, relative risk; SARS-CoV, severe acute respiratory syndrome coronavirus; STEMI, ST-segment
elevation myocardial infarction; TF, tissue factor; tPA, tissue-type plasminogen activator; TXA2, thromboxane A2; UFH, unfractionated heparin; VTE,
venous thromboembolism; vWF: von Willebrand factor.
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receptor, ACE2, via the surface unit (S1) of its S pro-
tein.32–34 It is known that heparin can displace surface
proteoglycans, and prevent SARS-CoV-2 entry into human
cells.21,35 Drug–drug interactions between COVD-19 in-
vestigational therapies and antithrombotic agents should
be also considered. ►Fig. 3 provides a graphical summary
of potential interactions.

Danaparoid
Danaparoid (a mixture of sulfated glycosaminoglycans in-
cluding heparan sulfate, dermatan sulfate, and chondroitin

sulfate) attenuates thrombin generation by catalyzing the
inhibition of factor Xa by antithrombin and by inhibition of
thrombin by antithrombin and heparin cofactor II.36 Cur-
rently, danaparoid is predominantly used in patients with
heparin-induced thrombocytopenia in several countries oth-
er than the United States.

ARDS is associated with dysregulated inflammation and
coagulation.5,20,37 Patients with ARDS have an increased risk
of venous thromboembolism (VTE) as well as thrombocyto-
penia,38 renal failure, and bleeding.39 Because of its safety
profile in patients with heparin-induced thrombocytopenia,

Fig. 1 Postulated mechanism of novel treatment options for management of thrombosis in COVID-19. (A) Viral alveolar injury and
inflammation, including fibrin deposition. (B) Viral entry into the endothelial cells and the possible protective effect of hydroxychloroquine. (C)
Potential mechanism of effect of various agents with antithrombotic properties for mitigating thrombotic complications in COVID-19. COVID-
19, coronavirus disease 2019; tPA, tissue-type plasminogen activator.
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its minor effects on platelet function40 (particularly in sep-
sis), and potential for management of disseminated intra-
vascular coagulation (DIC),36,41 danaparoid appears to be an
attractive option for research in critically ill patients with
COVID-19. Importantly, however, no reversal agent is avail-
able in the setting of bleeding complications.

Thrombi have been noted in the pulmonary arteries and
vessels of other organs including the liver and kidneys in
patients having died of COVID-19. The presence of these in
situ thrombi raises the possibility that widespread endothe-
lial activation in COVID-19 triggers thrombosis.42,43 In ani-
malmodels of sepsis, danaparoid reduces cytokine levels and
attenuates thrombosis.44,45 Intra-alveolar deposits of fibrin
and activated leukocytes also contribute to the respiratory
failure in patients with COVID-19 pneumonia. Danaparoid
can be nebulized and has been shown to attenuate pulmo-
nary coagulopathy, systemic coagulation, pulmonary inflam-
mation, and improve survival in a lung injury model.46

Nebulized danaparoid administration may concentrate its
effect on the lungs and decrease the risk of systemic adverse
reactions. Although danaparoid is being empirically used in
some centers, no published report or registered clinical trials
exist for its use in COVID-19.

Other Parenteral Anticoagulants
Parenteral anticoagulants such as bivalirudin, argatroban,
and fondaparinux have been studied in management of
patients with acute coronary syndromes, VTE, and hepa-
rin-induced thrombocytopenia.47,48 However, these
agents are more expensive than unfractionated heparin
or LMWH, and there are limited data about their use in
COVID-19.

Vitamin-K Antagonists
Vitamin-K antagonists (VKAs), including warfarin, function
by inhibiting vitamin K epoxide reductase, which results in

Table 3 Research priorities for use of antithrombotic agents in patients with COVID-19 without diagnosed thrombosisa

Agent Research priority,
mean (SEM)b

Patient subgroups of highest relevancec

Intermediate dose heparin (unfractionated or
LMWH)

7.82 (0.39) Hospitalized ICU patients (62.5%)
Hospitalized ward patients (47.5%)

Therapeutic dose heparin (unfractionated or
LMWH)

7.53 (0.40) Hospitalized ICU patients (82.5%)

Danaparoid 4.50 (0.40) Hospitalized ward patients (51.3%)
Hospitalized ICU patients (35.9%)

Other parenteral anticoagulants (bivalirudin,
argatroban, fondaparinux)

4.89 (0.38) Hospitalized ICU patients (56.4%)
Hospitalized ward patients (38.5%)

Vitamin-K antagonists 3.08 (0.37) Postdischarge patients (50.0%)
Non-hospitalized patients (28.9%)

Direct oral anticoagulants (dabigatran, rivaroxa-
ban, apixaban, edoxaban, betrixaban)

7.95 (0.29) Postdischarge patients (80.0%)
Nonhospitalized patients (20.0%)

Sulodexide 4.50 (0.46) Hospitalized ward patients (35.3%)
Postdischarge patients (23.5%)

Fibrinolytic therapy 6.20 (0.40) Hospitalized ICU patients (86.8%)

Aspirin 5.87 (0.39) Nonhospitalized patients (46.2%)
Postdischarge patients (25.6%)

P2Y12 receptor antagonists 5.15 (0.40) Nonhospitalized patients (34.2%)
Hospitalized ward patients (34.2%)

Dipyridamole 4.00 (0.38) Hospitalized ward patients (44.4%)
Nonhospitalized patients (36.1%)

Dual-antiplatelet therapy 4.77 (0.44) Hospitalized ward patients (35.3%)
Postdischarge patients (24.3%)

Antithrombin 4.05 (0.42) Hospitalized ICU patients (56.8%)
Hospitalized ward patients (32.4%)

Thrombomodulin 4.43 (0.47) Hospitalized ICU patients (60.6%)
Hospitalized ward patients (30.3%)

Activated protein C 3.97 (0.41) Hospitalized ICU patients (79.4%)
Hospitalized ward patients (17.6%)

Abbreviations: COVID-19, coronavirus disease 2019; ICU, intensive care unit; LMWH, low-molecular-weight heparin; SEM, standard error of the mean.
aBased on a survey of the Global COVID-19 Thrombosis Collaborative Group. For practical purposes, it was not possible to include all investigational
agents.

bFrom 1 to 10, 10 being the highest priority.
cUp to two categories each with> 15% vote, not mutually exclusive.
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the prevention of the recycling of vitamin K epoxide back to
its active form.49 The active form of vitamin K is essential
for synthesis of clotting factors in the coagulation cascade
(e.g., II, VII, IX, and X) and anticoagulant factors (proteins C
and S),49 and so VKAs result in reduction of these factors.
These drugs are used for treatment of established throm-
botic events (e.g., deep venous thrombosis or pulmonary
embolism) or for prophylaxis in patients with specific
indications (e.g., atrial fibrillation and prosthetic mechani-
cal heart valves). However, in the course of COVID-19 there
are several challenges with use of VKAs, including drug–
drug interactions, and need for international normalized
ratio monitoring, as described previously.5 There are cur-
rently no active studies evaluating the use of VKAs in
COVID-19.

Direct Oral Anticoagulants
Beyond their anticoagulant effects, DOACs, especially factor
Xa inhibitors, may exert anti-inflammatory effects in COVID-
19.50 As has been demonstrated with rivaroxaban, DOACs
can prevent arterial and venous thrombosis in patients with
history of acute coronary syndrome,51 stable atherosclerotic
vascular disease,52 or peripheral artery disease undergoing
revascularization.53 Rivaroxaban and betrixaban reduce the
risk of VTE in medically ill patients.54–56 As such, there is
interest in administering DOACs to patients with severe
COVID-19. These benefits should be weighed against the
increased risk of bleeding events.

DOACs offer the potential for in-hospital and posthospital
VTE prophylaxis. Results of studies with DOACs for extended
prophylaxis in medically ill patients without COVID-19 have

Fig. 2 Bar graph representing the research priorities as voted by the coauthors.
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been mixed.54,57 However, recent investigations in patients
who are at high risk for VTE and low risk for bleeding
(including those with severe infection) have demonstrated
a net clinical benefit, especially for extended thrombopro-
phylaxis posthospital discharge with betrixaban or rivarox-
aban.54,58 There is currently one registered clinical trial (C-
19-ACS) assessing low-dose rivaroxaban along with dual-
antiplatelet therapy, statins, and a proton-pump inhibitor in
patients with COVID-19 and a suspected acute coronary
syndrome (NCT04333407).

A fewcenters have integratedDOACs intoVTE prophylaxis
algorithms for both in-hospital and postdischarge care.28

However, concerns remain about DOAC use in patients
with COVID-19-associated complications, including its renal
clearance and acute renal insufficiency, need for invasive
procedures (e.g., dialysis access), extracorporeal membrane
oxygenation, and difficultly in administering reversal
agents.59,60 Finally, drug–drug interactions need to be con-
sideredwhenusingDOACswith some investigational COVID-
19 therapies (see ►Fig. 4).5 A recent small study showed
increased absorption with high drug levels of DOACs in
patients with COVID-19 who received antiviral agents.61

DOACs may offer an attractive option to prevent thrombo-
embolic events in the prehospitalization period for high-risk
patient groupswith COVID-19, such as thosewith underlying
cardiovascular disease or high VTE risk factors. There is at
least one planned study with rivaroxaban underway in out-
patients with COVID-19 (Prevent HD).

In patients with high suspicious for VTE, diagnosis
should be sought when possible. For empiric treatment
of select patients in whom presumed VTE events cannot be
confirmed during the hospitalization period, for logistical
reasons, use of DOACs upon hospital discharge offers
additional convenience.62 Challenges with this approach
include the uncertainty in the diagnosis of VTE, and that
delayed VTE imaging may not have sufficiently high nega-
tive predictive value to exclude an earlier event. Some
COVID-19 patients will not be candidates for DOACs, such
as those with severe renal dysfunction, mechanical heart
valves, and antiphospholipid syndrome, or those taking
antiviral or immunomodulatory medications that may be

associated with drug–drug interactions, and poor medica-
tion adherence.

Sulodexide
Sulodexide is an orally administered purified glycosamino-
glycan consisting of heparan sulfate (80%) and dermatan
sulfate.63 It exerts antithrombotic properties through reduc-
tion of fibrinogen64,65 and plasminogen activator inhibitor-1
(PAI-1)64,66 and is thought to have anti-inflammatory prop-
erties.65,67,68 In a recent systematic review of randomized
trials across a variety of cardiovascular indications, use of
sulodexide compared with control was associated with
reduced risk of VTE, myocardial infarction, cardiovascular
mortality, and all-cause mortality.69 Despite the potential
interest, limited data exist about the safety and efficacy of
sulodexide in patients with COVID-19 and there are current-
ly no registered trials for sulodexide in these patients.

Fibrinolytic (Thrombolytic) Agents

Systemic Fibrinolytic Therapy
Systemic fibrinolytic (thrombolytic) therapy is approved
for management of ST-segment elevation myocardial in-
farction, ischemic stroke, and high-risk pulmonary embo-
lism. Off-label use has been reported for the treatment of a
small number of severely ill patients with ARDS secondary
to COVID-19.70–72 While empiric use of fibrinolytic agents
is not based on solid clinical evidence and confers signifi-
cant bleeding risk, there is precedent for its use in ARDS. As
with other causes of ARDS, fibrin-rich hyaline membranes
have been reported in lung biopsy specimens from patients
with COVID-19.73 Additionally, D-dimer, prothrombin
time, and fibrinogen levels may all be increased in
COVID-19 patients with significant lung involvement,74

suggesting derangement of coagulation. The presence of
microthrombi in the pulmonary microcirculation has been
implicated as a possible mechanism for clinical
deterioration.75

Fibrinolytic agents such as urokinase and tissue-type
plasminogen activator have reduced the risk of ARDS in
porcine models.76 Similarly, lung-protective findings have

Fig. 3 Considerations for research investigations of pharmacotherapy for prevention of thrombosis or disease progression in patients with
SARS-CoV-2 infection.
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been noted in murine models.77 A meta-analysis of preclini-
cal studies corroborated these findings in various animal
models.78 Anecdotal reports have noted improvement in
oxygenation and ventilation parameters.79 A recent small
study (n¼ 60) study found improvement in surrogate
parameters of ventilation and a reduction in ICU mortality
in patients with severe non-COVID-19-related ARDS treated
with inhaled streptokinase.80

Thebleeding risks of fibrinolysismust be balanced against
these preclinical data and small human series. Systemic
fibrinolysis has been associated with a 1 to 3% rate of
intracranial hemorrhage and notable risk of other forms of
major bleeding across a wide span of acute diseases.81–83

Additionally, there is concern for diffuse alveolar hemor-
rhage after fibrinolysis, though reports of this complication
have yet to be reported. Prior studies have suggested fibri-
nolytic agents such as alteplase can be associated with
prolonged hypofibrinogenemia.84

Based on the present evidence utilization of fibrinolysis
for COVID-19-associated ARDS, even when severe, cannot
uniformly be recommended given its unknown risk–benefit
ratio. However, investigational use of fibrinolytic agents in
carefully selected patients may be considered. A phase 2a
randomized trial is underway to test the hypothesis whether
systemic tissue-type plasminogen activator results in an
improvement of respiratory function/oxygenation and re-
duction in mortality (NCT04357730). Further, inhaled fibri-
nolytic agents are an interesting option, potentially limiting
systemic complications.85 Assessment of their safety and
efficacy requires further investigation (NCT04356833).

Antiplatelet Agents

Aspirin
Dysregulated immune response and abnormal coagulation
are common occurrences in the pathophysiology of viral
sepsis, ARDS, and organ failure in COVID-19.86 Platelets play
a key role in the pathogenesis of sepsis and thrombosis, and
are a potential target for prevention of the complications.87

In addition to thrombosis and hemostasis, platelets have
immunomodulatory activity, including both inflammatory
and anti-inflammatory responses, as well as an effect on
antimicrobial host defense.88,89 There is evidence that the
initial intrinsic defense against infections is mediated by
platelet–neutrophil cross-communication that tightly regu-
lates immune and complement responses.88 These interac-
tions can facilitate a varietyof proinflammatory effects such as
cytokine release, endothelial cell activation,platelet–leukocyte
interaction, formation of neutrophil extracellular traps, and
fibrin/microthrombus formation that while potentially harm-
ful90,91 can also inhibitmacrophage-dependent inflammation
and thus may on balance be protective.87,92,93

Acetylsalicylic acid (aspirin) has been extensively studied
in ARDS. Aspirin has been associated with ARDS prevention
and higher survival rates from acute lung injury in animal
models and observational human studies.94–99 Aspirin has
been associatedwith reducedmortality in the setting of both
prehospital use and use in ICU.97,98 These findings, however,
were not validated in a phase 2b randomized clinical trial.100

Some investigators have hypothesized that higher mainte-
nance doses of aspirin (325–650mg/d) may be required to

Fig. 4 Graphical summary of drug–drug interactions between coronavirus disease 2019 (COVD-19) investigational therapies and antith-
rombotic agents.
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achieve the desired anti-inflammatory effect in patientswith
an exuberant immune response.101,102

P2Y12 Receptor Antagonists
The role of P2Y12 receptor inhibitors has also been described
in ARDS and sepsis. Adenosine diphosphate-mediated acti-
vation of the P2Y12 receptor may occur in many inflamma-
tory and immune cell types including platelets, leukocytes,
and dendritic cells. Among 224 consecutive patients admit-
ted for community-acquired pneumonia, those receiving
antiplatelet agents (aspirin and/or thienopyridines) for at
least 6 months had lower use of the ICU and shorter stay in
the hospital compared with age-matched controls.103 In a
post hoc analysis from the PLATO trial, patients with acute
coronary syndromes treated with the potent P2Y12 inhibitor
ticagrelor and aspirin had fewer adverse pulmonary events
and sepsis and lower mortality with those events compared
with patients treated with the less potent P2Y12 inhibitor
clopidogrel and aspirin.104

The XANTHIPPE trial (Examining the Effect of Ticagrelor
on Platelet Activation, Platelet-Leukocyte Aggregates, and
Acute Lung Injury in Pneumonia) was the first double-blind,
placebo-controlled, randomized study to evaluate the effect
of ticagrelor on inflammation, platelet activation, and lung
function in patients with community- or hospital-acquired
pneumonia.105 Among 60 randomized patients, ticagrelor
administration within 48 hours of pneumonia diagnosis was
associated with an anti-inflammatory effect evidenced by
reduced platelet–leukocyte aggregates in the circulation,
lowered interleukin (IL)-6 levels, and improved lung function
with a decrease in supplemental oxygen requirements.
However, given the potential bleeding risks, in the absence
of phase III trials demonstrating favorable clinical outcomes,
these research findings have not translated into routine
clinical practice.

With respect to COVID-19 and antiplatelet agents, there
aremany unknowns as regards their use and utility. First, it is
not clear which phase of the disease might best respond.
Second, the optimal agent and dose to maximize efficacy
while minimizing bleeding risks are unknown. Due to its
pleiotropic effects, ticagrelor may have more potent anti-
inflammatory and even bactericidal characteristics than
other agents.106,107 Randomized trials evaluating role of
aspirin and clopidogrel in COVID-19 patients at increased
cardiovascular risk are underway (NCT04333407). Third,
antiplatelet therapies may have adverse drug–drug interac-
tions with some investigational COVID-19 therapies such as
lopinavir/ritonavir and remdesivir.5,108,109 Fourth, thrombo-
cytopenia (immune-mediated or consumption-related) is
associated with increased risk for worse clinical outcomes
with COVID-19.110,111 Finally, the extent to which bleeding
risks are increased, particularly in patients with DIC, is
unknown.

Dipyridamole
Dipyridamole is a phosphodiesterase inhibitor that inhibits
platelet aggregation by increasing intracellular concentra-
tions of cyclic adenosine monophosphate.112 In addition to

its well-known antithrombotic properties, dipyridamole
may have antiviral effects with proposed activity against
influenza in animal models.113 In mouse models of viral
pneumonia, dipyridamole administration promoted inter-
feron response and prolonged survival in infected mice.
Dipyridamole has antiviral effects in vitro, specifically con-
firming the affinity of dipyridamole for a SARS-CoV-2 main
protease (Mpro).114 To date, one study has examined dipyr-
idamole in the treatment of COVID-19; 31 patients with
COVID-19 were randomized to dipyridamole (150mg three
times a day for 7 days) versus control. In this small study,
those treated with dipyridamole showed trends toward
higher cure and hospital discharge rates. Increased platelet
counts and decreased D-dimer levels were also noted with
dipyridamole treatment, attributed to infection resolu-
tion.115 Further high-quality data are needed to evaluate
the anti-SARS-CoV-2 therapeutic potential of dipyridamole.

Vorapaxar
Vorapaxar is an antiplatelet agent that exerts its antiplatelet
activity through antagonism of the protease-activated re-
ceptor 1 (PAR-1) and inhibition of thrombin-induced platelet
aggregation.116 In patients with history of myocardial infarc-
tion, or peripheral arterial disease, vorapaxar has been
shown to reduce thrombotic cardiovascular events.117 The
main concern associated with vorapaxar is its increased risk
of bleeding events and reports of intracranial hemorrhage in
patientswith a previous history of stroke. PAR-1 is thought to
have an important role in thrombin-induced platelet aggre-
gation, and the link between coagulation, inflammation, and
the fibrotic response. As such, investigating vorapaxar in
patients with COVID-19 has received some attention.50

However, its terminal half-life of 8 days renders it difficult
to use in patients with severe COVID-19. To date, there are no
registered randomized trials for use of vorapaxar in patients
with COVID-19.

Hemostatic Modulating Agents

Antithrombin
The single-chain glycosaminoglycan antithrombin, which is
produced in the liver, is modestly decreased in patients
hospitalized with COVID-19.118,119 Thus, reduced anti-
thrombin may be a potential therapeutic target for patients
with COVID-19. Furthermore, the β-isoform of antithrombin
binds preferentially to vascular heparin sulfate proteogly-
cans and initiates prostacyclin production and inhibition of
nuclear factor kappa B (NF-κB), resulting in anti-inflamma-
tory effects, which might be further pronounced by the
binding of β-antithrombin to receptors on monocytes.120

Limited supporting data exist from patients with severe
acute respiratory syndrome (SARS). Compared with healthy
individuals such patients had lower levels of the natural
inhibitors of coagulation and higher levels of PAI-1.

Blood coagulation parameters were investigated in 94
patients with COVID-19 pneumonia, of whom 49 had “ordi-
nary,” 35 had severe, and 10 had critical forms of COVID-
19.121 When compared with 40 healthy controls, patients in
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all three categories of COVID-19 had significantly lower
levels of antithrombin, and the three subsets of patients
had similar levels (86.0, 85.6, and 82.4%). Nebulized anti-
thrombin has resulted in decreased coagulopathy and in-
flammation in animal models of lung injury.122–124 Despite
these promising findings, there is to date no clinical evidence
to support antithrombin provision to critically ill patients or
in those with DIC and COVID-19. In a randomized controlled
trial of 2,314 patients with severe sepsis, there was no effect
of antithrombin therapy on 28-day mortality.125 Moreover,
in a meta-analysis of 3,019 patients included in 11 trials,
antithrombin administration in critically ill patients was
associated with more bleeding events (relative risk [RR]:
1.58; 95% confidence interval [CI] 1.35–1.84).126

Thrombomodulin
Thrombomodulin is an endothelial cell glycoprotein with
potent anticoagulant and anti-inflammatory effects mediat-
ed through activated protein C (APC)-dependent and APC-
independent protein C mechanisms. In inflammatory states,
thrombomodulin production is downregulated and surface
thrombomodulin is cleaved so that there is reduced activa-
tion of protein C.127 The role of recombinant thrombomo-
dulin as a potential modifier of clinical outcomes in patients
with sepsis has been evaluated in clinical trials.

The SCARLET study (Sepsis Coagulopathy Asahi Recom-
binant LE Thrombomodulin) was a randomized placebo-
controlled double-blind study of recombinant human solu-
ble thrombomodulin in 800 patients with objective evi-
dence of bacterial infection, sepsis-induced systemic
inflammatory response syndrome, and concurrent cardio-
vascular and/or respiratory dysfunction.128 There was no
significant between-group differences in the 28-day prima-
ry mortality outcome or other secondary endpoints. A post
hoc subgroup analysis in patients with coagulopathy
reported a trend for reduced mortality compared with
placebo (risk difference –5.40%; 95% CI �1.68% to 12.48%).
A subsequent systematic review and meta-analysis sug-
gested lower mortality among patients with (but not in
those without) sepsis-induced coagulopathy treated with
thrombomodulin (RR: 0.80; 95% CI, 0.65–0.98).129 Current-
ly, there is insufficient evidence to recommend the routine
use of thrombomodulin in patients with severe COVID-19.
However, investigational use is warranted in selected sub-
groups with evidence of coagulopathy.

Activated Protein C
APC can play a key role in reducing the damage caused by
wide variety of triggers, including ischemia/reperfusion
injury, gastrointestinal inflammation, sepsis, and Ebola virus
infection.130 In 2002, recombinant human protein C was
approved by the U.S. Food and Drug Administration (FDA)
for the clinical treatment of severe sepsis andARDS. Protein C
concentrates reduced the risk of mortality in early studies of
sepsis and septic shock. However, subsequent clinical trials
have reported neutral results.19 Specifically, a randomized
trial of 1,697 patients did not demonstrate a reduction in
mortality at 28 or 90 days after APC was administered in the

setting of septic shock,131 and subsequent concerns emerged
regarding the risk of serious bleeding and death in individu-
als with bleeding precautions.132 A possible explanation is
that APCmayonly benefit septic patients complicated byDIC,
which was a minority of patients in these trials.

In a study of 27 patients with ARDS (16 treated with
recombinant APC and 11 with placebo), the infusion of
recombinant APC increased APC levels in the pulmonary
compartment and attenuated systemic coagulopathy and
pulmonary coagulopathy, providing faster resolution of pul-
monary dysfunction without bleeding complications.133

However, in a subsequent randomized controlled trial of
71 patients, infusion of recombinant APC for infectious or
inflammatory ARDS did not improve alveolocapillary per-
meability nor the clinical course of ARDS patients.134

It is intuitive that protein C concentrates may be more
beneficial in patients with significant protein C reduction.
However, in a small study of 11 critically ill COVID-19
patients, protein C levels were overall increased, with only
4 patients having a protein C level lower than normal.119 The
protein C mutant, 3K3A-APC, being developed for acute
stroke treatment, was engineered to have low anticoagulant
activity (so low bleeding risk) while retaining APCs’ anti-
inflammatory and cytoprotective cell signaling properties
that may be important in pneumonia. The potential utility of
recombinant APC or 3K3A-APC in patients with COVID-19,
including those with DIC, is worthy of prospective
investigation.135

Contact Activation System
Dysregulation of inflammation and coagulation are hall-
marks of COVID-19. The contact activation system, which
includes factor XII, factor XI, high-molecular-weight kinino-
gen, and prekallikrein, links inflammation and coagulation
by triggering the generation of thrombin and bradykinin.
Thrombin promotes clot formation and platelet activation,
whereas bradykinin induces the release of proinflammatory
cytokines.

In nonhuman primate models of bacterial sepsis, inhibi-
tion of factor XIIa or blockade of reciprocal factor XI and
factor XII activation reduced the levels of inflammatory
cytokines, attenuated microvascular thrombosis, and im-
proved survival.136–139 Likewise, in murine models of bacte-
rial sepsis, inflammation and coagulation were attenuated,
and survival was enhanced in factor XI-deficient mice com-
pared with their wild-type counterparts.140,141 Several
inhibitors of factor XII and factor XI are currently under
investigation. Studies evaluating the efficacy and safety of
these agents in COVID-19 are warranted.142

Anti-Inflammatory Agents

Corticosteroids
There is conflicting evidence for the use of corticosteroids in
COVID-19-related ARDS.143 Postulated benefits, including
reduction in inflammation and lung injury, must be weighed
against the potential risks of delayed viral clearance and
increased susceptibility to secondary infections.144–147
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Mechanisms as to whether corticosteroids may modulate
thrombotic risk in this patient population are not well-estab-
lished. As the microvascular and macrovascular thrombotic
complications observed in COVID-19 may in part be attribut-
able to the inflammatory environment precipitated by the
infection, corticosteroids may reduce thrombotic risk through
anti-inflammatory activity. Studies of inflammatory states,
particularly rheumatologic conditions, have shown a propor-
tional relationship between inflammatory activity, coagula-
bility, and the risk of VTE. Results regarding frequency of
thrombosis with disease-modifying therapies, including cor-
ticosteroids, are mixed.148,149 Possible beneficial150 mecha-
nisms include reductions in levels of procoagulant factors,
including fibrinogen and von Willebrand factor.151 However,
experimental studies have also linked steroid use to increased
levelsofvariousclotting factors, andseveral large-scalestudies
have shown exogenous glucocorticoids to be a risk factor for
thrombosis.150–152 Prior studies of corticosteroids in patients
with non-COVID-19-related ARDS have shown mixed results
with potential benefit limited to only certain subgroups of
patients.153 Further experience and research, including results
from a series of ongoing randomized trials, are needed to
better understand the balance of pro- and anticoagulant
properties of glucocorticoids in the setting of COVID-19.

Hydroxychloroquine
Hydroxychloroquine is a 4-aminoquinoline that has an
immunomodulatory effect and antithrombotic activity that
have been demonstrated in animal models and in patients
with systemic lupus erythematosus, rheumatoid arthritis,
and antiphospholipid syndrome.154–157

In a mouse model, hydroxychloroquine reversed the
thrombogenic properties of antiphospholipid antibodies.158

Hydroxychloroquine may also have mild antiplatelet effects
in patients with antiphospholipid antibodies, and may re-
duce blood viscosity.154 An observational prospective study
of patients with antiphospholipid antibody syndrome
treated with hydroxychloroquine 200mg daily demonstrat-
ed significant reduction in soluble tissue factor levels at
3months comparedwith baseline.159Other potential antith-
rombotic mechanisms have led to its limited evaluation as a
thromboprophylaxis modality in postoperative patients
more than three decades ago.160,161 However, the exact
mechanisms by which it exerts it antithrombotic effect
remain largely unknown. Given the known adverse effects
with hydroxychloroquine, including QTc prolongation and
risk of arrhythmias,162 its routine use as an antithrombotic
therapy in patients with COVID-19 cannot be recommend
until further prospective data emerge.

Statins
HMG-CoA reductase inhibitors (statins) are widely used as
cholesterol-lowering medications in patients with or at in-
creased risk of atherosclerotic cardiovascular disease.163 The
pleiotropic effects of statins include improving endothelial
function, decreasing inflammatory markers, and inhibiting
thrombogenicity.164 Because patients with COVID-19 may
exhibit increased activation of the inflammatory cascade and

are prone to venous and arterial thrombosis, leveraging statins
as a component of treatment has been proposed.5,165,166

While no clinical studies have evaluated statin therapy in
themanagement of COVID-19, there is biological plausibility
and precedent for such investigation. Through inhibition of
the MYD88 stress-response pathway, statins suppress NF-
kB-induced proinflammatory cytokines.167 This may under-
lie their proposed utility in other viral pneumonias, includ-
ing those caused by related coronaviruses.168–170 Besides
mitigating inflammation, antiplatelet and anticoagulant
properties can occur via downregulation of tissue factor,
upregulation of thrombomodulin, and inhibition of throm-
boxane A2.171 Prior reports have shown that use of statins is
associated with reduced rates of VTE, and statins have
stabilizing effects on atherosclerotic plaques.172,173 At least
three clinical trials (NCT04348695, NCT04333407, and
NCT04343001) are recruiting COVID-19 patients in random-
ized statin investigations.

Targeted Immunomodulatory Therapies
SARS-CoV-2 infection is associated with an inflammatory
response marked by increased cytokine levels (e.g., IL-2, IL6,
IL-10, tumor necrosis factor-α).174 To treat the inflammatory
response generated by severe COVID-19, some have pro-
posed to repurpose immunomodulatory medications ap-
proved for other diseases.

One potential target is the complement cascade. A major
component of innate immunity, the complement cascade has
three independent pathways for activation (classical, lectin,
and alternative), each culminating with formation of the lytic
membrane attack complex. Eculizumab is an anti-C5 mono-
clonal antibody that blocks terminal complement activity. One
of its clinical applications is complement-mediated thrombot-
ic microangiopathy, namely atypical hemolytic uremic syn-
drome, which is thought to occur in some patients with
COVID-19.20,175 In one study of five COVID-19 nonsurvivors,
there was evidence of systemic activation of the alternative
and lectin-based complement pathways and deposition of the
membrane attack complex in both lung and skin.175

Based on these data and evidence of efficacy of comple-
ment inhibition in murine models of SARS-CoV and MERS-
CoV, the use of eculizumab in COVID-19 has been pro-
posed.20,175 Potential barriers include a 1,000 to 2,000 times
increased risk of meningococcal disease (requiring prior
vaccination or antibiotic prophylaxis) and cost ($20,000–
$25,000 per dose).

The Janus kinase (JAK)–signal transducer and activator of
transcription pathway is another potential therapeutic target.
JAK inhibitors target cytokine signaling pathways and have
thus been proposed as a candidate to treat COVID-19. Barici-
tinib, a JAK1/JAK2 inhibitor approved for the treatment of
rheumatoid arthritis, mitigates the systemic inflammatory
response and has in vitro activity against SARS-CoV-2 through
its numb-associated kinase inhibition that has a high affinity
for AAK1, a regulator of clathrin-mediated endocytosis.176

Notably, this therapydoescarryaFDAwarning foran increased
incidence of VTE (6/997 patients with baricitinib vs. 0/1,070
controls),177 and recent National Institutes of Health (NIH)
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COVID-19 Treatment Guidelines recommends against the use
of baricitinib outside of a clinical trial, such as the NIH-
sponsoredACTT-2 trial comparing remdesivir� baricitinib.178

Ruxolitinib is a JAK2 inhibitor approved for patients with
myelofibrosis and polycythemia vera. Similar to baricitinib
(NCT04340232, NCT04320277, and NCT04346147), ruxoliti-
nib is presently under investigation as a treatment for COVID-
19 (NCT04334044, NCT04348071, NCT04337359,
NCT04331665, NCT04348695, and NCT04338958).

Tocilizumab, an IL-6 receptor antagonist approved for the
treatment of rheumatoid arthritis and cytokine release
syndrome associated with chimeric antigen receptor-T cell
therapy, is included in the Chinese National Health commis-
sion guidelines for treating COVID-19. While findings are yet
to be published, a randomized trial of 129 hospitalized
patients with moderate-to-severe COVID-19 pneumonia
suggested that tocilizumab administration may significantly
reduce rates of death or life support interventions.179 It is
thought that tocilizumab may mitigate the proatherothrom-
botic profile associated with rheumatoid arthritis. However,
no specific data related to use of tocilizumab and VTE events
in patients with COVID-19 have been published.

Future Directions and Conclusion

Despite the efforts of the international medical and scientific
communities and recent declines in hospitalizations, COVID-
19 continues to pose an unprecedented challenge. The
prognosis for hospitalized patients with COVID-19, especial-
ly in the setting of critical illness, continues to be poor.180,181

While contributing factors to poor outcomes in patients with
COVID-19 are likelymultifactorial, thrombotic complications
play a major role in the prognosis of these patients.5 The
development of safe and effective thromboprophylaxis and
treatment strategies for thrombotic disease is contingent on
an improved understanding of the mechanistic and patho-
physiologic basis for such complications in COVID-19
patients. In this document, we have outlined several agents
and mechanisms of action for potential for use as antith-
rombotic agents in the setting of COVID-19. Survey results
from group of authors may be helpful for research priority
settings for various agents and patient subgroups with
COVID-19 (►Table 3). High-quality research investigations
into the optimal drug, dose, and duration of therapies to
prevent and treat thrombotic complications of COVID-19
offer the potential to improve outcomes of infected patients.
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