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Inflammasomes play a crucial role in innate immunity by serving as signaling

platforms which deal with a plethora of pathogenic products and cellular products

associated with stress and damage. By far, the best studied and most characterized

inflammasome is NLRP3 inflammasome, which consists of NLRP3 (nucleotide-binding

domain leucine-rich repeat (NLR) and pyrin domain containing receptor 3), ASC

(apoptosis-associated speck-like protein containing a caspase recruitment domain),

and procaspase-1. Activation of NLRP3 inflammasome is mediated by highly diverse

stimuli. Upon activation, NLRP3 protein recruits the adapter ASC protein, which recruits

the procaspase-1 resulting in its cleavage and activation, inducing the maturation,

and secretion of inflammatory cytokines and pyroptosis. However, aberrant activation

of the NLRP3 inflammasome is implicated in various diseases including diabetes,

atherosclerosis, metabolic syndrome, cardiovascular, and neurodegenerative diseases;

raising a tremendous clinical interest in exploring the potential inhibitors of NLRP3

inflammasome. Recent investigations have disclosed various inhibitors of the NLRP3

inflammasome pathway which were validated through in vitro studies and in vivo

experiments in animal models of NLRP3-associated disorders. Some of these inhibitors

directly target the NLRP3 protein whereas some are aimed at other components and

products of the inflammasome. Direct targeting of NLRP3 protein can be a better

choice because it can prevent off target immunosuppressive effects, thus restrain tissue

destruction. This paper will review the various pharmacological inhibitors of the NLRP3

inflammasome and will also discuss their mechanism of action.
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INTRODUCTION

In mammals, the immune system relies on innate immunity and adaptive immunity to protect
the host from any external or internal danger (1). The innate immune response utilizes pattern-
recognition receptors (PRRs) to sense endogenous or exogenous pathogens (2). A newly identified
PRR, which was reported in detail for the first time in 2002, is the inflammasome. It is a
high molecular weight protein complex which elicits the activation of inflammatory caspases
and processing of pro-interleukin-1β (pro-IL-1β). Inflammasomes are of vital importance in
innate immunity because they serve as signaling platforms which are capable of dealing with a
plethora of pathogenic products and cellular products associated with stress and damage (3, 4).

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.02538
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.02538&domain=pdf&date_stamp=2019-10-25
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jint@ustc.edu.cn
mailto:taojinhui@ustc.edu.cn
https://doi.org/10.3389/fimmu.2019.02538
https://www.frontiersin.org/articles/10.3389/fimmu.2019.02538/full
http://loop.frontiersin.org/people/803401/overview
http://loop.frontiersin.org/people/728576/overview
http://loop.frontiersin.org/people/727613/overview


Zahid et al. Inhibitors of the NLRP3 Inflammasome

At present, there are five inflammasomes which are clearly
identified, including nucleotide-binding domain leucine-rich
repeat (NLR) and pyrin domain containing receptor 1 (NLRP1),
NLRP3, and NLR and caspase recruitment domain containing
receptor 4 (NLRC4) and the AIM2-like receptors (ALR)
family including absent in melanoma 2 (AIM2) (5, 6). This
review will describe NLRP3 inflammasome and some reported
pharmacological inhibitors targeting this most important
inflammasome complex.

NLRP3 INFLAMMASOME

NLRP3 inflammasome is the best characterized inflammasome
at present, named after the NLRP3 protein in the complex which
belongs to the NLR family and is also termed as NALP3, CIASI or
pyrin domain-containing protein 3 (7). Besides NLRP3 protein,
the adapter protein apoptosis-associated speck-like protein
containing a caspase recruitment domain (ASC) and procaspase-
1 are also part of this inflammasome (8, 9). NLRP3 is a 115 kDa
cytosolic protein expressed in monocytes, neutrophils, dendritic
cells, lymphocytes, osteoblasts, and epithelial cells (10). It
contains three domains which are: a leucine-rich repeat (LRR) at
the C-terminal, a central nucleotide-binding and oligomerization
domain NACHT which possesses ATPase activity, and a pyrin
domain (PYD) at the N-terminal which recruits ASC (11). The
danger signal is sensed by the LRR domain which leads to the
oligomerization of NLRP3 monomers through their NACHT
domains. This is followed by the interaction between the PYD
domains of NLRP3 and ASC. Finally, procaspase-1 is recruited
into the complex through its CARD domain by ASC which acts
as an adaptor protein (12). Recently, Sharif et al. determined the
structure of recombinant complex of maltose binding protein
(MBP)-tagged NLRP3 protein without pyrin domain and mitotic
Ser/Thr kinase NEK7. The cryo EM map showed an earring
shape structure composed of curved LRR and globular NACHT
domains. The C-terminal lobe of NEK7 interacts with multiple
NLRP3 domains including the LRR, HD2 (helical domain 2),
and NBD (nucleotide-binding domain). This structure suggests
the possibility that NEK7 joins adjacent NLRP3 subunits into
bipartite interactions to bring about the activation of NLRP3
inflammasome (13).

NLRP3 Inflammasome recognizes a wide range of stimuli
which include various protozoans, e.g., Plasmodium, ameba,
viruses such as adenoviruses, influenza, and Sendai virus,
fungi such as Saccharomyces cerevisiae and Candida albicans,
different bacteria such as Listeria monocytogenes, Escherichia
coli, and Staphylococcus aureus (14). NLRP3 Inflammasome can
also respond to damage-associated endogenous factors such
as drusen (15), uric acid crystals (16), extracellular adenosine
triphosphate (ATP) (17), β-amyloid plaques (11), and islet
amyloid polypeptide (18).

Activation of NLRP3 inflammasome signaling pathway
needs two independent yet parallel steps i.e., priming and
activation (19–21). Basal expression of NLRP3 protein and the
precursor pro-form of IL-1β is very low, therefore a priming
step or “signal 1” initiates the transcription of these targets.

Priming step is induced by toll-like receptors (TLRs), myeloid
differentiation primary response 88 (MyD88) and/or cytokine
receptors, e.g., TNF receptor, which recognize PAMPs or
DAMPs and activate the transcription of NLRP3 and pro-IL-1β
(14, 22, 23) as illustrated in Figure 1. Recently, many studies
have provided strong evidences that priming step is not limited
to transcriptional upregulation, post-translational modifications
(PTMs) such as ubiquitination and phosphorylation of NLRP3
protein also play critical roles in NLRP3 inflammasome
activation (24–26). The second activation step occurs
as the primed cell recognizes another stimulus (usually a
DAMP) (27, 28).

As a result of the second step, caspase-1 is activated and
carries out resultant processing and secretion of IL-1β and IL-
18 (29). Various molecular mechanisms to explain the activation
of NLRP3 inflammasome have been proposed which include
mitochondrial reactive oxygen species (ROS) generation (30, 31),
pore formation and potassium (K+) efflux (32, 33) and lysosomal
destabilization and rupture (30, 34).

NLRP3 INFLAMMASOME ASSOCIATED
DISEASES

Anomalous NLRP3 inflammasome activation is linked with
the development of many diseases, especially age-associated
ailments for example various metabolic syndromes and
metabolic disorders including gout (16), atherosclerosis (35),
Alzheimer’s disease (AD) (11), and type II diabetes (T2D) (36).
Enhanced secretion of IL-1β and IL-18 by NLRP3 inflammasome
is associated with the progression of atherosclerotic plaque in
atherosclerotic patients and animal models (37–39). NLRP3
inflammasome is involved in experimental autoimmune
encephalomyelitis (EAE) in animal models and multiple sclerosis
(MS) in humans (40, 41). Inappropriate NLRP3 inflammasome
activation is also implicated in Crohn’s disease, inflammatory
bowel disease (IBD), and ulcerative colitis (42–44). NLRP3
inflammasome is also linked with various cancers, such as colon
cancer, breast cancer, melanoma, hepatitis C virus-associated
hepatocellular carcinoma, and gastrointestinal cancers (45, 46).
In addition to NLRP3 activation anomalies, there are also NLRP3
genetic abnormalities collectively termed as cryopyrin-associated
periodic syndromes (CAPS). Gain of function mutations in
NLRP3 gene give rise CAPS disorders, resulting in enhanced
IL-1β secretion, and other CAPS specific symptoms (47).

PHARMACOLOGICAL INHIBITION OF
NLRP3 INFLAMMASOME

The association of NLRP3 inflammasome with the plethora
of diseases evokes a substantial interest in the scientific
community to discover the effective NLRP3 inflammasome
inhibitors. By taking advantage of complex signaling cascade
of NLRP3 inflammasome, a diverse range of targets can be
used for its inhibition. For example, inhibition of NLRP3
inflammasome activation, suppression of upstream signals,
blockade of inflammasome assembly, caspase-1 activation
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FIGURE 1 | Schematic illustration of NLRP3 inflammasome pathway and potential blockade sites of various pharmacological inhibitors. The signal 1 or the priming

signal is mediated by pathogenic PAMPs from bacteria or virus, or sterile DAMPs resulting in NF-κB-dependent upregulation of NLRP3 and pro-IL-1β expression. The

signal 2 or activation signal mediated by numerous PAMP or DAMP stimulation, promotes the NLRP3 oligomerization, and recruitment of ASC and pro-caspase-1,

leading to the activation of NLRP3 inflammasome complex. NLRP3 can be activated in response to extracellular ATP and K+ efflux through the ATP-gated P2X7

channel, in response to cathepsin B release from damaged lysosomes or in response to reactive oxygen species (ROS) released from damaged mitochondria. NLRP3

inflammasome activation results in active caspase-1, which cleaves the proforms of IL-1β and IL-18 into their mature forms. ASC, apoptosis-associated speck-like

protein containing a C-terminal caspase recruitment domain; ATP, adenosine triphosphate; BHB, β-Hydroxybutyrate; CARD, caspase recruitment domain; DAMPS,

danger or damage associated molecular patterns; IL, interleukin; LRR, leucine-rich repeat; MNS, methylenedioxy-β-nitrostyrene; NACHT, central nucleotide-binding

and oligomerization; NF-κB, nuclear factor kappa B; Ori, oridonin; P2X7, P2X purinergic receptor 7; PAMPS, pathogen associated molecular patterns; PYD, pyrin

domain; ROS, reactive oxygen species; TLR, toll-like receptor; TR, tranilast.

inhibition, blockade of pore-forming protein gasdermin D
(GSDMD) cleavage, and neutralizing the inflammatory cytokines
produced by the NLRP3 inflammasome can be targeted
for potential inhibition of NLRP3 inflammasome. Different
mechanisms can be opted to achieve these outcomes for example
inhibition of NLRP3 inflammasome assembly, inhibition of
P2X7 receptor, inhibition of K+ efflux, and ROS scavengers
can be used (48–51). Furthermore, NLRP3-NLRP3 interactions
or NLRP3-ASC interactions can be disrupted. Inhibitors can
be directed at the ATP-binding domain of NLRP3 resulting
in blockade of its ATPase activity (52, 53). PTMs of NLRP3

protein and other constituents of the NLRP3 inflammasome
are reported as an important step to control its assembly. It
can be anticipated that future studies may target the biological
components which are involved in these PTMs to inhibit
NLRP3 inflammasome. In the recent years, several inhibitors
of NLRP3 inflammasome pathway have been reported. Here,
we describe some recent pharmacological inhibitors of NLRP3
inflammasome pathway, their proposed mode of action and
therapeutic potential (Table 1). Figure 1 depicts the proposed
sites of action of these inhibitors provided by in vitro and in vivo
experimental data.
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TABLE 1 | Potential inhibitors of NLRP3 inflammasome and their targets.

Agent Target(s) Potential mechanism References

Glyburide NLRP3 (indirectly) Inhibits ATP-sensitive K+ channels; downstream of P2X7 resulting in

inhibition of ASC aggregation

(48, 54)

16673-34-0 NLRP3 (indirectly) Induces NLRP3 conformational changes secondary to its activation or

binding to ASC

(55, 56)

JC124 NLRP3? Blocks the expression of NLRP3, ASC, caspase-1, pro-IL-1β, TNFα

and iNOS

(57)

FC11A-2 NLRP3 (indirectly) Interferes with proximity induced autocleavage of pro-caspase-1,

suppresses IL-1β/18 release

(58)

Parthenolide NLRP1, NLRP3

inflammasome,

Caspase-1, NF-κB, IKKβ

kinase activity

Alkylates cysteine residues in caspase-1 and in ATPase domain of

NLRP3, inhibits NLRP3 ATPase activity

(59, 60)

VX-740 Caspase-1 Covalent modification of the catalytic cysteine residue in the active site

of caspase-1 resulting in caspase-1 blocking and resultant cleavage of

pro-IL-1β/18

(61, 62)

VX-765 Caspase-1 Covalent modification of the catalytic cysteine residue in the active site

of caspase-1 resulting in caspase-1 blocking and resultant cleavage of

pro-IL-1β/18

(61, 63)

Bay 11-7082 NLRP3, IKK, E2/3

enzymes, PTPs

Alkylates the cysteines in the ATPase domain of NLRP3, inhibits

NLRP3 ATPase activity

(59, 64–66)

BHB NLRP3 (Indirectly) Inhibits K+ efflux resulting in reduced oligomerization of ASC and

IL-1β/18 release

(49)

MCC950 NLRP3 Blocks the ATPase domain of NLRP3 resulting in inhibition of canonical

and non-canonical NLRP3 inflammasome activation

(67, 68)

MNS NLRP3 Inhibits NLRP3 ATPase activity by cysteine modification, blocks NLRP3

inflammasome activation

(53)

CY-09 NLRP3 Inhibits NLRP3 ATPase activity, blocks NLRP3 inflammasome activation (69)

Tranilast NLRP3 Binds to NLRP3 NACHT domain to block NLRP3-NLRP3 and

NLRP3-ASC interaction

(52)

OLT1177 NLRP3 Inhibits NLRP3 ATPase activity, blocks NLRP3 inflammasome activation (70)

Oridonin NLRP3 Binds to cysteine 279 of NLRP3 to abolish NLRP3-NEK7 interaction,

blocks NLRP3 inflammasome activation

(71)

Indirect Inhibitors
Glyburide
Glyburide is a sulfonylurea drug which is widely used in the
United States for the treatment of T2D (72). It inhibits ATP-
sensitive K+ (KATP) channels in pancreatic β cells (73). One study
conducted by Lamkanfi et al. showed that glyburide prevents
PAMP-, DAMP-, and crystal-induced NLRP3 inflammasome
activation in bone marrow-derived macrophages (BMDMs).
Its inhibitory potential seems to be specific for NLRP3
inflammasome, since it did not prevent the IL-1β release from
activated NLRC4 or NLRP1 pathway (48). When tested in
response to stimuli which work independent of the P2X7 receptor
but require TLR4 signaling, glyburide effectively prevented the
activation of caspase-1 and 1L-1β secretion, suggesting that it
works downstream of the P2X7 receptor (48). It did not block the
caspase-1 activation in S. typhimurium-infected BMDMs which
do not require NLRP3 for caspase-1 activation (74), suggesting
that it works upstream of NLRP3 (48). Furthermore, glyburide
showed inhibitory activity in vitro (48, 75) or in vivo (76)
during NLRP3 inflammasome activation. However, the in vivo
doses of glyburide to exert its inhibitory affect are quite high,
which cause hypoglycemia, therefore its usage is limited to T2D
only (21).

16673-34-0
16673-34-0 is an intermediate substrate produced during
glyburide synthesis, however, it lacks the cyclohexylurea moiety
of glyburide which is involved in insulin release, therefore, it
does not affect glucose metabolism. A study carried out by
Marchetti et al. in J774A.1 murine macrophages and primary
adult rat cardiomyocytes showed that 16673-34-0 inhibits NLRP3
inflammasome formation, but shows no effect on AIM2 or
NLRC4 inflammasome. When tested in vivo, it showed positive
outcome in mouse models of non-reperfused and reperfused
acute myocardial infarction. 16673-34-0 was tested with multiple
diverse stimuli of NLRP3 inflammasome, independent of which
stimuli is used, inhibitory effects of 16673-34-0 remained the
same suggesting that it interferes with downstream events
involved in either NLRP3 conformational changes secondary
to activation or binding to ASC (55, 56). However, the exact
mechanism of inhibition is not completely clear and additional
studies are needed to fully determine its inhibitory potential.

JC124
Kuwar et al. recently developed a novel small molecule
JC124, through structural optimization of glyburide. JC124
was rationally designed to remove the potential hypoglycemic
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effects of glyburide. They explored the potential of JC124 for
traumatic brain injury (TBI) therapy and it was demonstrated
to exert significant anti-inflammatory effect to protect the
injured brain following TBI. JC124 treatment significantly
reduced the expression of NLRP3, ASC, caspase-1, pro-
IL-1β, TNFα, and inducible nitric oxide synthase (iNOS).
This targeting of NLRP3 inflammasome activation and its
downstream neuroinflammatory cascade is suggested to confer
JC124 its protective effect for TBI (57). It blocked ASC
aggregation, caspase-1 activation, and IL-1β secretion. JC124
showed protective effects in a mouse model of acute myocardial
infarction (77) and in transgenic AD models (77, 78). Further
studies aiming at determining the efficacy of JC124 will render
more information for its translational value.

FC11A-2
Liu et al. investigated a synthetic small molecular compound,
1-ethyl-5-methyl-2-phenyl-1H-benzo[d]imidazole, which is also
known as FC11A-2, for its inhibitory potential of NLRP3
inflammasome. FC11A-2 was examined in THP-1 cells and
in mouse model of dextran sulfate sodium (DSS)-induced
experimental colitis, and it showed highly effective outcomes by
repressing IL-1β/18 release. FC11A-2 hindered the proximity-
induced autocleavage of procaspase-1, eventually resulting in
reduced amount of activated caspase-1, by a pathway which is
independent of activation of NF-κB (58).

Inhibitors for the Constituents of NLRP3
Inflammasome
Parthenolide
Parthenolide is a plant sesquiterpene lactone and has numerous
anti-inflammatory properties, therefore, it is utilized in herbal
medicines of various inflammatory diseases (79). It inhibited
caspase-1 activation in response to NLRP1, NLRC4, and NLRP3
stimulation by alkylating many cysteine residues of caspase-1.
Parthenolide can also target ATPase activity of NLRP3 protein
directly, probably through cysteine modification (59). However,
it had poor solubility and bioavailability, therefore now its water
soluble analogs are being evaluated (80, 81).

VX-740 and VX-765
VX-740 (Pralnacasan) and its analog VX-765 are peptidomimetic
inhibitor of caspase-1. They are prodrugs which are metabolized
by plasma esterases to their corresponding aldo-acids (63, 82).
Both compound act by covalent modification of the catalytic
cysteine residue in the active site of caspase-1, hence they block
caspase-1 and resultant cleavage of pro-IL-1β/18 (61). VX-740
showed good results for the treatment of rheumatoid arthritis
(RA) and osteoarthritis (OA) in mice models (62). In phase
I and II clinical trials in RA patients, it exhibited significant
anti-inflammatory effects with good pharmacokinetics profile
(83, 84). However, hepatic toxicity in animals after its long-term
exposure led to discontinuation of further development (85).
VX-765 showed even higher potency for RA and also showed
reduction in IL-1β/18 in mouse model of dermatitis. It also
had positive outcomes for treatment of epilepsy and psoriasis in
mice and was announced to undergo clinical trial (63, 86). Some

recent findings have reported that VX-765 helped in alleviating
the cognitive impairment and severity of AD in mice (87). It
also lowered myocardial infarction and preserved ventricular
function in mice (88).

Bay 11-7082
Bay 11-7082 is a phenyl vinyl sulfone, it inhibits NF-κB
pathway through blockade of kinase activity of IKKβ. It inhibits
its target proteins using alkylation of essential nucleophilic
residues, for example cysteines. Studies with NG5 cells and
mouse primary BMDMs showed that bay 11-7082 prevents the
organization of ASC pyroptosome and NLRP3 inflammasome
function through alkylation of cysteine residues of NLRP3
ATPase region. Importantly, it showed selective inhibition of
NLRP3 inflammasome as compare to other inflammasomes (59).
Recently, vinyl sulfone derivatives were used as antiparasitic
agents in dogs and mice (89), these preclinical trials revealed
that these compounds are well-tolerated, non-mutagenic and
have suitable pharmacokinetic profiles. They also permeate
cell membrane easily (59). Bay 11-7082 and other vinyl
sulfone/sulfonate compounds provides an applicable framework
for the future design.

β-Hydroxybutyrate (BHB)
ß-hydroxy butyrate (BHB) is a ketone metabolite, which was
tested by Youm et al. for NLRP3 inflammasome blockade.
It affectively lowered the production of IL-1ß and IL-
18 in human monocytes in response to activated NLRP3
inflammasome, without interfering with activated AIM2 or
NLRC4 inflammasome. Treatment of BMDMs from mouse
models of familial cold auto inflammatory syndrome (FCAS) and
Muckle–Wells syndrome (MWS) with BHB dose-dependently
inhibited constitutive NLRP3 inflammasome activation. BHB is
effective only for canonical activation during which it inhibits
K+ efflux and reduces the oligomerization and speck formation
of ASC. It blocks the activation of NLRP3 inflammasome
independent of ROS, AMP-activated protein kinase, glycolytic
inhibition, or autophagy (49). From these findings it can be
anticipated that pharmacological or dietary attempts to raise
BHB level may reduce the severity of NLRP3-mediated chronic
inflammatory diseases.

Direct Inhibitors of NLRP3 Protein
MCC950
A diarylsulfonylurea-containing compound termed as MCC950,
is considered one of the most potent and selective inhibitor of
NLRP3 inflammasome. There is an extensive consideration in
the development of MCC950 as a treatment for the NLRP3-
driven disorders. MCC950 was previously reported to block the
processing of IL-1β by caspase-1 (54), later it was described by
Coll et al. that in mouse and human macrophages, MCC950 has
the potential to block both canonical and non-canonical NLRP3
inflammasome activation and IL-1β production by abrogating
ASC oligomerization. Notably, MCC950 had no effect on AIM2,
NLRC4, or NLRP1 inflammasome activation (67, 90, 91).
Another latest study has reported that MCC950 directly binds
to the NLRP3 NACHT domain’s Walker B motif, and blocks
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the hydrolysis of ATP and formation of NLRP3 inflammasome
(68). Very recently, a preprint paper at BioRxiv has reported
by utilizing photoaffinity labeling and iBody technology that
MCC950 interacts with the NACHT domain of wild type NLRP3.
The binding was lessened in most of CAPS-related NLRP3
mutants, moreover, in two mouse models of CAPS, MCC950
did not inhibit the NLRP3-driven inflammatory pathology.
This study implies that MCC950 may only be effective in
inflammation driven by wild type NLRP3 protein, but not in
ailments driven by CAPS-related NLRP3 mutants (92).

MCC950 was reported to lower skin and pulmonary
inflammation in mice (93) and some other in vivo experiments
in mouse model of human MS showed that MCC950 alleviates
the severity of EAE (67). Oral treatment of MCC950 rescued
the dopaminergic degeneration in a mouse model of Parkinson’s
disease (PD) (94). Future studies are needed to warrant the exact
potential of MCC950.

3,4-Methylenedioxy-β-nitrostyrene (MNS)
A potent NLRP3 inhibitor, 3,4-Methylenedioxy-β-nitrostyrene
(MNS) was found through screening a kinase inhibitory
library by He et al. By utilizing immunoprecipitation, mass
spectrometry, and mutational studies, it was demonstrated that
MNS binds to the LRR and NACHT domains and suppresses
ATPase activity of NLRP3, while the activation of AIM2 or
NLRC4 inflammasomes was unaffected by it. MNS may directly
target the cysteine(s) of NLRP3 as implicated by its inhibition
of ATPase activity of NLRP3 (53). Future studies on MNS may
confer additional insights on this potential inhibitor.

CY-09
Jiang et al. identified an effective and direct inhibitor of NLRP3
which showed significant inhibition of NLRP3 inflammasome
in vivo in mice models and ex vivo in human cells (52). CY-
09 is an analog of CFTR(inh)-172 (C172), which inhibits the
cystic fibrosis transmembrane conductance regulator (CFTR)
channel (95). CY-09 lacks CFTR-inhibitory activity (96). In
BMDMs primed with LPS, CY-09 dose-dependently blocked
the ATP, monosodium urate (MSU), and nigericin-induced
activation of caspase-1 and resultant release of IL-1β. Its
inhibitory effect is not dependent on signal 1 and NLRP3 post-
translational modification (ubiquitination). Mechanistically, it
directly interacts with the NLRP3 Walker A motif to eliminate
the ATP binding of NLRP3, however, it does not affect NLRP1,
NLRC4, RIG-1, or NOD2 (52).

CY-09 demonstrated outstanding preventive or therapeutic
properties in the mice models of gout, T2D, and CAPS. Most
importantly, it exhibited a promising pharmacokinetic profile
and showed good oral bioavailability, safety, and stability.
Nonetheless, more studies are required to broaden its full
potential (52).

Tranilast
Tranilast (N-[3′,4′-dimethoxycinnamoyl]-anthranilic acid, TR)
is a tryptophan metabolite analog which showed inhibitory
potential for homologous passive cutaneous anaphylaxis (97). TR
is a fairly safe compound and its high doses showed appropriate

tolerance levels when tested in patients (98, 99). It showed
inhibitory effect for NLRP3 inflammasome but not for NLRC4
or AIM2 inflammasome. TR impaired the endogenous NLRP3-
ASC interaction but did not affect the NLRP3-NEK7 interaction,
raising the possibility that it targets NLRP3 directly. Indeed, it
was demonstrated to bind to the NLRP3 NACHT domain and,
abolish the direct NLRP3-NLRP3 interaction (52). Moreover,
TR does not impede with the upstream signaling events of
NLRP3 inflammasome, e.g., expression of NLRP3 and pro-IL-1β,
ROS production, K+ efflux, chloride efflux, and mitochondrial
damage. TR has demonstrated significant therapeutic and
preventive outcomes in gout, CAPS, and T2D mice models (69).
Considering the high safety of TR in clinic, it can be of significant
importance for treating NLRP3-driven diseases.

OLT1177
OLT1177 is an active β-sulfonyl nitrile compound, which cleared
phase I clinical trial for the treatment of degenerative arthritis
successfully, and now being evaluated under phase II clinical
trial (100).

A study in mice model of MSU- and zymosan-induced
arthritis by Marchetti et al. demonstrated that OLT1177 has
the potential to lower the neutrophil infiltration and joint
swelling, as well as to inhibit the secretion of IL-1β and IL-6.
In in vitro studies, OLT1177 blocked both canonical and non-
canonical activation of NLRP3 inflammasome and showed direct
binding with NLRP3 to block its ATPase activity. Moreover, in
monocytes from CAPS patients, it lowered caspase-1 activity
and resultant IL-1β secretion, and reduced LPS-induced systemic
inflammation in mice. Significantly, OLT1177 did not inhibit
NLRC4 or AIM2 inflammasome. OLT1177 was given orally to
the healthy subjects in phase 1 trials, and it showed good safety
and tolerance levels. Additionally, it had long half-life and did
not show any organ or hematological toxicity at various doses
(70). Thus, OLT1177 seems to have a significant potential to treat
NLRP3-related diseases.

Oridonin
Oridonin (Ori) is a bioactive ent-kaurane diterpenoid, a
main component of herbal plant Rabdosia rubescens, which
is extensively utilized in traditional Chinese medicine (101,
102). There are a number of anticancer activities which have
been associated with Ori, such as cell cycle arrest, angiogenesis
suppression and apoptosis induction (103, 104). It is reported to
inhibit the NF-κB or MAPK activation and repress the release of
inflammasome-independent proinflammatory cytokines release
(105–107). Furthermore, it has good therapeutic effects on
neuroinflammation, sepsis and colitis (108–110). He et al.
reported that Ori interacts with the cysteine 279 of NLRP3
NACHT domain through a covalent bond, abolishes NLRP3-
NEK7 interaction, and inhibits consequent activation of NLRP3
inflammasome. The inhibitory effects of Ori are limited to
NLRP3 inflammasome only and it does not inhibit AIM2
or NLRC4 inflammasome activation. When used in mice
models of T2D, peritonitis and gouty arthritis, Ori exhibited
significant preventive, and therapeutic effects (71). Thus, it can
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be anticipated that future studies may establish Ori as a clinically
applicable inhibitor of NLRP3 inflammasome.

CONCLUDING REMARKS

NLRP3-induced pyroptosis and IL-1β/18 secretion is linked to
various diseases. The extent to which NLRP3 inflammasome
activation contributes to the pyroptosis is still unclear, however,
NLRP3 activation does results in pyroptosis which in turn
can cause serious injury to vital organs (111). At present, to
treat NLRP3-associated diseases, many drugs are available which
block IL-1β such as neutralizing IL-1β antibody canakinumab,
recombinant IL-1 receptor antagonist anakinra, and the soluble
decoy IL-1 receptor rilonacept. These biological agents are
being used to treat CAPS and other diseases associated with
IL-1β (112). However, activated NLRP3 inflammasome does
not produce only IL-1β, there are other cytokines such as
IL-18 which may also contribute to the NLRP3-associated
disorders (113, 114). Moreover, IL-1β production can be
mediated by other inflammasomes or by inflammasome-
independent pathways; thus inhibitors aimed at IL-1β can
result in unintentional immunosuppressive effects. Therefore,
pharmacological inhibitors which specifically target the NLRP3
inflammasome only could be a better option for treatment
of NLRP3-associated diseases. NLRP3-induced pyroptosis has
been reported by many recent studies as a critical mechanism
contributing to the NLRP3 inflammasome related pathologies
(115, 116). Emerging evidences have reported GSDMD as
an executive protein responsible for pyroptosis (117, 118),
making it an attractive therapeutic target for curing NLRP3-
induced pyroptosis associated diseases. Future studies should
take advantage of now available structure of NLRP3 and focus
on the development of structure-guided direct inhibitors with
improved specificity and potency. Furthermore, nanobodies

(Nbs) are now being explored extensively as therapeutics due
to their high specificity, stability, and low toxicity (119, 120).
It can be anticipated that Nbs may also be evaluated for
NLRP3 inflammasome inhibition. In the past decade, great
leaps forward were made to determine the structure of NLRP3
inflammasome, its activation mechanisms and its contribution
to the initiation and progression of different diseases. Moreover,
many small molecule inhibitors for NLRP3 inflammasome have
been reported and some of them have shown remarkable
therapeutic potential. However, none of them is currently
approved by food and drug administration (FDA) or other
agents. Current research should focus on the development of
specific, small-molecular inhibitors of NLRP3 inflammasome
which have improved pharmacokinetic properties, can penetrate
the blood brain barrier more readily and be more cost-effective.
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