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Abstract

Autophagy is central to the maintenance of organismal homeostasis in both physiological and 

pathological situations. Accordingly, alterations in autophagy have been linked to clinically 

relevant conditions as diverse as cancer, neurodegeneration and cardiac disorders. Throughout the 

past decade, autophagy has attracted considerable attention as a target for the development of 

novel therapeutics. However, such efforts have not yet generated clinically viable interventions. In 

this Review, we discuss the therapeutic potential of autophagy modulators, analyse the obstacles 

that have limited their development and propose strategies that may unlock the full therapeutic 

potential of autophagy modulation in the clinic.
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Autophagy is a highly conserved mechanism through which eukaryotic cells deliver 

dispensable or potentially dangerous cytoplasmic material to lysosomes for degradation1. 

Thus far, three major routes for the delivery of autophagic substrates to lysosomes have been 

characterized: microautophagy, chaperone-mediated autophagy (CMA) and 

macroautophagy.

Microautophagy relies on the direct uptake of cytoplasmic material through an invagination 

of the lysosomal membrane2. CMA involves the lysosomal-associated membrane protein 2 

(LAMP2)-dependent translocation of autophagic substrates bound to cytosolic chaperones of 

the heat shock protein family across the lysosomal membrane3. Macroautophagy involves 

specialized double-membraned vesicles known as autophagosomes, which progressively 

sequester autophagic cargo and — upon closure — deliver the cargo to lysosomes by 

membrane fusion1. The organelle that forms upon the fusion of one autophagosome and one 

lysosome is generally referred to as an autolysosome1. Macroautophagy is by far the best-

characterized form of autophagy. For this reason, the word autophagy is used throughout this 

article to refer to macroautophagy, unless otherwise specified.

Autophagy is fundamental to the preservation of organismal fitness, for multiple reasons. 

Constitutive autophagic responses efficiently degrade products of normal cellular 

metabolism that can become cytotoxic upon accumulation, such as damaged mitochondria 

and redox-active protein aggregates4. Inducible autophagic responses promote the survival 

of cells that respond to perturbations of intracellular or extracellular homeostasis5. 

Autophagy is indeed central to adaptation to stress, as demonstrated by the fact that 

pharmacological or genetic inhibition of autophagy usually precipitates the demise of cells 

facing infections and nutritional, metabolic, physical and chemical challenges6. 

Furthermore, autophagy is intimately connected with cell-extrinsic circuitries that operate to 

maintain homeostasis and support healthy ageing at the whole-body level. For instance, 

autophagic responses in the liver, skeletal muscle and other tissues underlie the beneficial 

effects of physical exercise on whole-body glucose metabolism7. Along similar lines, 

autophagy induction in malignant cells that succumb to some chemotherapies and 

radiotherapies results in the emission of danger signals and, ultimately, the initiation of a 

therapeutically relevant anticancer immune response8. Autophagy can also mediate 

cytotoxic effects, at least in specific pathophysiological settings9, although the term 

<m>autophagic cell death</m> should be used with extreme caution (BOX 1). Moreover, 

components of the autophagic apparatus have recently been shown to participate in 

processes other than the degradation of cytoplasmic material. These processes include: LC3-

associated phagocytosis (LAP)10 (BOX 2), migration (mainly as a result of focal adhesion 

turnover)11 and unconventional secretion, which is a mechanism by which cytoplasmic 

entities (including soluble proteins, organellar material and pathogens) are exported from the 

cell in a manner that does not depend on the conventional secretory route that operates 

between the endoplasmic reticulum and the Golgi apparatus12.

The detailed description of the molecular machinery that underlies constitutive and inducible 

autophagic responses is beyond the scope of this Review (BOX 2). However, it should be 

noted that the biochemical reactions that enable the generation of autophagosomes, the 
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recognition of autophagic substrates, their sequestration and the delivery of autophagic cargo 

to lysosomes for degradation involve at least 100 different proteins1. Thus, they provide 

multiple targets for the activation or inhibition of autophagy (FIG. 1). Although alterations 

in autophagy have been implicated in the aetiology of neurodegeneration, acute neuronal 

injury, ageing, cardiovascular conditions, hepatic and metabolic disorders, cancer, infectious 

diseases, inflammatory and autoimmune conditions, and other pathological conditions (as 

discussed below), no intervention aimed specifically at modulating autophagy is currently 

available for use in humans (TABLE 1). Indeed, although rapamycin (also known as 

sirolimus), chloroquine, hydroxychloroquine (HCQ) and other drugs that are approved for 

some indications stimulate or inhibit autophagy, they were not developed for this purpose. 

Thus, there is considerable, but still unrealized, potential for translating preclinical findings 

on autophagy modulation into therapeutic benefit for different patient populations13. 

Notably, the key role of autophagy in cell biology and its considerable therapeutic potential 

recently received one of the most important forms of recognition from the scientific 

community as the Japanese cell biologist Yoshinori Ohsumi was awarded the 2016 Nobel 

Prize in Physiology or Medicine for his discoveries on the mechanisms of autophagy.

Here, we discuss recent progress on the therapeutic potential of pharmacological and 

nutritional modulators of autophagy, dissect the obstacles that have limited the development 

of these interventions thus far, and propose strategies by which such hurdles may be 

circumvented in the near future to obtain clinically relevant interventions for a variety of 

human disorders.

Autophagy as a therapeutic target

Whole-body knockout studies in mice have demonstrated that specific components of the 

autophagic machinery are required for embryonic development or are critical for animals to 

survive birth and reach adulthood14–16. Three main approaches have been pursued as 

alternatives to the use of whole-body knockout mice to study the role of autophagy in 

physiology and disease: the generation of animals with partial autophagic defects at the 

whole-body level (such as Becn1+/− mice); the engineering of tissue-specific or inducible 

knockout models; and the restoration of autophagic activity in key organs (such as the 

central nervous system (CNS)) in animals with whole-body autophagic defects17. Results 

obtained with these models have implicated alterations of autophagy or autophagy-

associated processes in a wide range of clinically relevant disorders (as discussed below), 

which supports the possibility that pharmacological modulators (activators or inhibitors) of 

autophagy may be beneficial for large patient populations.

Neurodegeneration

The deletion of autophagy-related 5 (Atg5) or Atg7 in the mouse CNS during embryonic 

development results in the delivery of viable pups that survive birth, but develop progressive 

motor and behavioural deficits starting at 3 weeks of age18,19. The cortex and cerebellum of 

these animals exhibit swelling, markers of <m>regulated cell death</m> (RCD) and 

ubiquitin-containing inclusions18,19, which are pathological hallmarks of various 

neurodegenerative disorders, including Alzheimer disease (AD), Parkinson disease (PD), 
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dementia with Lewy bodies (DLB), Huntington disease (HD), amyotrophic lateral sclerosis 

(ALS) and Lafora disease20. Autophagy robustly protects neurons from RCD by preventing 

the accumulation of cytotoxic protein aggregates and by preserving metabolic 

homeostasis21. In line with this idea, markers of impaired autophagy — such as activation of 

mechanistic target of rapamycin (mTOR), autophagosome accumulation and limited 

degradation of sequestosome 1 (SQSTM1; also known as p62) — have been detected in 

samples from patients with multiple forms of neurodegeneration22. Moreover, many of the 

genes that are mutated in familiar variants of PD — including parkin RBR E3 ubiquitin 

protein ligase (PARK2), Parkinsonism-associated deglycase (PARK7), PTEN-induced 

putative kinase 1 (PINK1) and leucine-rich repeat kinase 2 (LRRK2) — are involved in 

<m>mitophagy or aggrephagy</m>23,24. Furthermore, AD-associated variants of 

<m>presenilin 1</m> (PSEN1) block autophagy as a result of impaired lysosomal 

acidification25; mutations in SQSTM1, optineurin (OPTN, which encodes another 

<m>autophagic adaptor</m>) and TANK-binding kinase 1 (TBK1, which encodes a 

regulator of both p62 and OPTN) are common among individuals with familial and sporadic 

ALS26–28; and both laforin glucan phosphatase (EPM2A) and NHL repeat-containing E3 

ubiquitin protein ligase 1 (NHLRC1), which are mutated in individuals with Lafora disease, 

also seem to promote autophagy29. Finally, mutations in WD repeat domain 45 (WDR45) — 

which encodes an ATG9 interactor of the WD repeat domain phosphoinositide-interacting 

(WIPI) family — have been shown to be involved in the pathogenesis of static 

encephalopathy of childhood with neurodegeneration in adulthood, which is a rare 

neurological disorder30. Interventions that promote autophagy or autophagy-associated 

processes have been shown to mediate beneficial effects in animal models of 

neurodegeneration.

Alzheimer disease—Administration of the mTOR inhibitor rapamycin — which potently 

activates autophagy — ameliorates cognitive deficits and alleviates the accumulation of β-

amyloid in mice expressing mutant <m>myloid-β precursor protein</m> (APP)31 as well as 

in 3xTg-AD mice (which bear three distinct genetic alterations that are associated with AD 

in humans)32. Along similar lines, resveratrol, which is a natural polyphenol that promotes 

autophagy by operating as a <m>caloric restriction mimetic</m> (CRM), decreased β-

amyloid overload in mice expressing a chimeric variant of mutant APP and AD-associated 

human PSEN1. This effect was ascribed to the AMP-activated protein kinase (AMPK)-

dependent inhibition of mTOR complex 1 (mTORC1)33 (BOX 2). Of note, behavioural 

alterations that develop in mice engineered to express one or several APP mutations that are 

linked to AD in humans could also be ameliorated by the concomitant deletion of genes that 

encode endogenous inhibitors of lysosomal proteases, such as cystatin B (Cstb) or cystatin C 

(Cst3)34,35.

Parkinsonism—The intracerebral injection of a lentiviral vector encoding ATG7 or 

BECN1 decreases neuronal inclusions in synuclein-α (SNCA)-expressing mice (a model of 

PD and DLB), and this has been associated with reduced neurodegeneration22,36. Along 

similar lines, the intracerebral administration of an adenoviral vector encoding BECN1 or 

transcription factor EB (TFEB) — which is a master transcriptional regulator of autophagy 

and lysosomal functions — to rats expressing SNCA in the brain limited the accumulation 
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of SNCA aggregates within dopaminergic neurons and prevented behavioural impairment37. 

Comparable results have been obtained by activating autophagy with systemic or 

intracerebral administration of rapamycin, <m>trehalose</m> or <m>valproate</m> in 

several mouse models of PD and DLB, including SNCA-expressing mice22, mice expressing 

mutant Park2 (REF. 38), Park2−/− mice expressing human microtubule-associated protein tau 

(MAPT)39 as well as mice or rats that develop parkinsonism upon administration of 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)40–42, 6-hydroxydopamine (6-

OHDA)43,44 or lactacystin45. Rapamycin also alleviated neurotoxicity in Drosophila 
melanogaster with mutations in parkin (park; the fly orthologue of human PARK2) or Pink1 
(REF. 46) as well as in flies treated with the dopaminergic toxin paraquat47. Of note, defects 

in late-stage autophagy leading to PD-like and DLB-like disorders in mice have also been 

ascribed to loss of type I interferon signalling48. Accordingly, intracerebral interferon β1 

(Ifnb1) delivery by a lentiviral vector boosted autophagy and limited the loss of 

dopaminergic neurons in rats expressing human SNCA in the brain48. These findings 

identify cytokine signalling as a potential target for the treatment of PD and DLB through 

the induction of autophagy. Interestingly, defects in CMA may also be implicated in the 

development of PD and DLB, as was demonstrated recently in rats49. Whether boosting 

CMA ameliorates the manifestations of disease in animal models of parkinsonism remains 

to be elucidated.

Huntington disease—In flies and mice expressing HD-associated variants of human 

huntingtin, rapamycin (and other mTOR inhibitors, including temsirolimus and everolimus) 

alone or combined with <m>lithium</m> exerts considerable neuroprotective effects, as has 

been determined histologically and in behavioural tests50,51. However, the adenovirus-

mediated intracerebral delivery of either of two mTORC1 activators — namely, RASD 

family member 2 (RASD2; also known as RHES) and RAS homologue enriched in brain 

(RHEB) — in a constitutively active form alleviated metabolic, histological and behavioural 

manifestations of the disease in HD-prone mice52. mTORC1 activation by RHEB was 

paradoxically associated with an increase in multiple biomarkers of autophagy52. Although 

this was not formally investigated, RHEB and/or RHES may be involved in the regulation of 

autophagy or autophagy-associated processes that are independent or downstream of 

mTORC1 (TABLE 2).

Amyotrophic lateral sclerosis—Activation of autophagy with caloric restriction, 

trehalose, valproate or lithium delays disease onset, reduces neurological deficits and 

prolongs survival in mice expressing an ALS-associated variant of superoxide dismutase 1 

(SOD1), namely SOD1-G93A53–55. However, rapamycin had detrimental effects on motor 

neuron degeneration and overall survival in mice expressing SOD1-G93A56. Moreover, 

crossing these mice with Becn1+/− mice resulted in a paradoxical increase in lifespan that 

was accompanied by p62 accumulation and an unexpected interaction between SOD1-G93A 

and BECN1 (REF. 57). The reasons that underlie these contrasting observations remain to be 

elucidated. At least theoretically, when lysosomal degradation is congested, limiting the 

initiation of autophagy may be more beneficial than attempting to boost autophagic 

responses with interventions that fail to overcome the block in autophagosomal processing 

(see below). It remains to be determined whether this applies to ALS (TABLE 2).
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Acute neuronal injury

Acute challenges to the CNS, including drug and ethanol intoxication, seizures, adult stroke, 

neonatal asphyxia and traumatic brain injury (TBI), have been associated with biomarkers of 

ongoing or blocked autophagic responses (see below), which suggests that autophagy 

modulators might provide therapeutic benefits9. However, a clear aetiological link between 

failing autophagic responses and acute neuronal injury has not yet been confirmed, not only 

owing to methodological issues but also owing to an inherent heterogeneity in models (see 

below).

Acute intoxication—Autophagic responses have been documented in the cortex of mice 

that were exposed to cocaine58, but other neuronal populations, including the nucleus 

accumbens, respond to systemic cocaine with mTORC1 activation (and hence autophagy 

inhibition)59. Depletion of mTOR or regulatory-associated protein of mTOR complex 1 

(RPTOR; a key component of mTORC1) from specific neuronal populations reduced 

<m>locomotor sensitization</m> (one of the symptoms of cocaine administration) in 

mice59, as did rapamycin administration in rats60. By contrast, inhibition of autophagy with 

small interfering RNAs (siRNAs) targeting Atg5 or Becn1 limited the capacity of cocaine to 

trigger RCD in mouse primary cortical neurons58. Similar results were obtained in vitro with 

chemical inhibitors of autophagy, including 3-methyladenine (3-MA) and wortmannin, 

which target phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3; also known as 

VPS34), as well as the lysosomal inhibitor bafilomycin A1 (BafA1)58. Thus, some aspects 

of cocaine neurotoxicity (for example, cocaine-driven RCD) may be aggravated, whereas 

others (for example, locomotor sensitization) may be alleviated, by efficient autophagic 

responses. As the pathogenesis of acute cocaine intoxication involves multiple cell-extrinsic 

components (for example, neuroinflammation), great caution should be taken before 

extrapolating in vitro data to human disease. Likewise, numerous studies suggest that 

autophagic responses are beneficial in the course of acute brain intoxication with 

methamphetamine, ethanol or olanzapine (an antipsychotic drug)9. However, studies to 

elucidate the relationship between autophagy or autophagy-associated processes and acute 

neuronal responses to toxicants in vivo are urgently awaited to clarify the potential of 

modulating autophagy for therapeutic purposes in this setting (TABLE 2).

Seizures—One of the mechanisms by which seizures mediate neurotoxic effects involves 

the sustained depolarization of postsynaptic terminals and consequent influx of Ca2+ ions 

from the synaptic cleft, which is a process that is commonly known as excitotoxicity61. 

Cytosolic Ca2+ is a potent activator of autophagy, and several excitotoxic neurotransmitters 

— including glutamate, N-methyl-D-aspartate (NMDA) and kainic acid — induce the 

expression of autophagy biomarkers in the rodent brain, possibly as a compensatory 

response to damage62,63. The depletion of BECN1 by siRNAs as well as pharmacological 

inhibitors of autophagy aggravated (whereas rapamycin and trehalose limited) the demise of 

primary rodent neurons and multiple neuronal cell lines of human origin that were exposed 

to glutamate, NMDA or kainic acid in vitro64,65, which suggests that autophagy supports 

neuronal viability in the course of excitotoxic challenges. Further corroborating this idea, 

mutations in three different genes encoding endogenous inhibitors of mTORC1 — namely, 

tuberous sclerosis 1 (TSC1), TSC2 and phosphatase and tensin homologue (PTEN) — are 
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associated with an increased predisposition to epilepsy in humans66. Accordingly, mice 

lacking Tsc1, Tsc2, Pten or Atg7 in neuronal or glial cell populations experienced 

spontaneous epileptic episodes that were associated with premature death, which is an 

outcome that could be limited by systemic rapamycin administration67–70. However, mice 

receiving an siRNA targeting Atg7 in the hippo campus were more resistant to the 

neurotoxic effects of kainic acid than mice receiving a control siRNA71. Moreover, the 

stable depletion of Becn1 or Atg7 expression as well as the administration of 3-MA, 

LY294002 (another VPS34-targeting agent) or lysosomal inhibitors limited the death of 

cultured rodent neurons from the striatum, cerebellum and cortex that were challenged with 

NMDA or kainic acid72,73. Further experiments are required to understand whether 

autophagy modulators may indeed benefit patients with seizures and to what extent this may 

involve autophagy-associated processes (TABLE 2).

Adult stroke—Tissues that are served by an occluded artery experience nutrient 

deprivation and hypoxia, which are two potent activators of autophagy, and this is potentially 

followed by excessive reactive oxygen species (ROS) production (at reperfusion), which has 

also been associated with autophagy activation9. Consistent with this, biomarkers of 

autophagy activation have been detected in the brain of adult rodents experiencing stroke9. 

The intracerebral delivery of a lentiviral vector encoding a Tsc1-targeting short hairpin RNA 

(shRNA) aggravated neuronal loss in rats experiencing permanent middle carotid artery 

occlusion (pMCAO), which supports the notion that autophagy mediates neuroprotective 

effects in the course of a stroke74. Similarly, inhibition of autophagy through deletion of 

Prkaa2 (which encodes AMP-activated, α2 catalytic subunit) or sirtuin 1 (Sirt1), or by 

downregulation of ATG7 or TSC1, aggravated the cytotoxicity of oxygen glucose 

deprivation (OGD) in primary mouse75 or rat74,76 cortical neurons. In addition, autophagy 

activation (with rapamycin) or inhibition (with 3-MA, BafA1 or AMPK inhibitors) improved 

or worsened, respectively, disease outcome in rodents that were experiencing transient 

middle carotid artery occlusion (tMCAO) or pMCAO76,77, as well as neuroprotection in 

multiple models of <m>ischaemic preconditioning</m> in vivo78–82. Stable downregulation 

of Becn1 in the rat brain by stereotactic injection of a lentiviral vector limited the neurotoxic 

effects of tMCAO83. Moreover, both 3-MA and BafA1 limited infarct size in various rodent 

models of tMCAO84,85, pMCAO86,87 or four-vessel occlusion88, and multiple molecules that 

protect neurons in adult rodents experiencing stroke (for example, melatonin and edavarone) 

also seem to inhibit autophagy73,89, possibly through their antioxidant effects. Thus, 

although autophagy seemingly participates in the pathophysiology of stroke in adults, 

whether therapeutic interventions should aim to activate or inhibit autophagy remains to be 

clarified. Although not yet demonstrated, the time at which autophagy modulators are 

administered to a patient experiencing stroke (for example, before versus after reperfusion) 

may considerably influence their therapeutic effects (TABLE 2).

Neonatal asphyxia—Although it has been suggested that autophagy would be activated 

as an adaptive response to neonatal asphyxia90, accumulating evidence indicates that 

autophagy contributes mechanistically to neuronal loss in the course of neonatal asphyxia9. 

Newborn rats that received a Becn1-specific shRNA intracerebrally displayed twice the 

amount of intact striatal tissue 24 hours after ischaemia compared with their control 
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counterparts (that received a non-targeting shRNA)72. In addition, the neuron-specific 

knockout of Atg7 in mice provided a high degree of long-term protection from neonatal 

asphyxia to hippocampal cornu ammonis regions91. Similarly, the hippocampus, thalamus, 

cortex and striatum of newborn mice lacking Atg7 in neurons were considerably protected 

from RCD following hypoxia–ischaemia, which corresponds to a global decrease in tissue 

loss of approximately 40%92. Finally, newborn rats treated with intracerebroventricular 3-

MA up to 4 hours after ischaemia exhibited considerably smaller lesions than did control 

animals93, as did newborn rats receiving the <m>cardiac glycoside</m> neriifolin, which is 

an inhibitor of autosis (BOX 1), immediately after carotid artery occlusion94. In summary, 

inhibiting autophagy is expected to limit the severity of hypoxic–ischaemic encephalopathy 

in newborn rodents (TABLE 2).

Neurotrauma—Consistent with the hypothesis that autophagy is beneficial, but usually 

impaired, in the context of neurotrauma, rapamycin and other molecules with autophagy-

inducing potential (for example, melatonin and retinoic acid) limit CNS damage, support 

regeneration and improve the restoration of neuromuscular functions in rodents experiencing 

spinal cord injury (SCI)95 or subarachnoid haemorrhage (SAH)96–98. Chemical inhibitors of 

autophagy, including 3-MA, wortmannin and the antimalarial drug chloroquine (which 

blocks lysosomal degradation), aggravated neurological damage imposed by SCI or 

SAH96,99, and abolished the neuroprotective effects of autophagy inducers98,100. Activating 

autophagy with rapamycin or melatonin also had beneficial effects in rodents experiencing 

several forms of TBI, including closed-head injury101, weight-drop damage102 and 

hemicerebellectomy103, even when the drug was administered after traumatic injury. In this 

latter model, neuroprotection by rapamycin was lost in Becn1+/− mice, which were a priori 

more sensitive to hemicerebellectomy-induced damage103. Of note, melatonin has been 

suggested to inhibit autophagy in other settings73. Moreover, post-injury chloroquine 

administration limited neuronal damage and improved neurological recovery in rats that 

were subjected to controlled cortical impact104, as did 3-MA and BafA1 administered as a 

prophylactic intervention in a mouse weight-drop model105. Thus, autophagy activators may 

be beneficial for patients experiencing SCI or SAH, even if administered in a therapeutic (as 

opposed to prophylactic) setting. It remains to be clarified whether the same holds true for 

other forms of neurotrauma, including TBI (TABLE 2).

Cardiovascular conditions

The efficient disposal of various autophagic substrates seems to be crucial for the 

maintenance of cardiovascular homeostasis, in both physiological and pathological 

conditions106. For example, ageing Lamp2−/− mice, which display defective CMA, develop 

a disorder that is characterized by cardioskeletal myopathy similar to that associated with 

Danon disease, and patients with this condition exhibit LAMP2 defects107,108. Similarly, the 

temporally controlled deletion of Atg5 from mouse cardiomyocytes promoted cardiac 

hypertrophy109, and the hearts of Park2−/− mice, which are mitophagy-incompetent, failed to 

benefit from cardiac ischaemic preconditioning ex vivo110. In addition, the conditional 

knockout of Atg5 in macrophages of Ldlr−/− mice fed a high-fat diet (HFD) — which are 

prone to accumulate atherosclerotic plaques — aggravated arterial lesions (by facilitating 

apoptotic and necrotic RCD, and by worsening <m>efferocytosis</m>111). Furthermore, the 
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cardiomyocyte-specific deletion of Dnase2a (which encodes a lysosomal nuclease that is 

involved in the autophagic degradation of mitochondrial DNA) sensitized mice to pressure 

overload-driven hypertrophy that was accompanied by a robust inflammatory response112. 

Finally, the Becn1+/− genotype aggravated the disease progression in mice overexpressing 

mutant crystallin αB (CRYAB) in the heart (which is a model of desmin-related 

cardiomyopathy)113. Conversely, the cardiomyocyte-specific overexpression of ATG7 

reduced biochemical and functional biomarkers of the disease in this model, as did physical 

exercise (which is an established activator of autophagy)114. Consistent with this, autophagy 

activators — including (but not limited to) caloric restriction, physical exercise, rapamycin, 

<m>spermidine</m> and a peptide derived from the BECN1 region that interacts with the 

HIV-1 protein Nef (whose mechanism of action has not been characterized yet) — had 

beneficial effects in models of myocardial ischaemia reperfusion115–117, pressure overload-

driven hypertrophy or heart failure118–120, and cardiac senescence121. Notably, the devices 

that are currently used in the clinic for <m>coronary angioplasty</m> generally deliver 

rapamycin122, although the underlying rationale resides in the antiproliferative activity of 

this drug123. Moreover, endurance exercise may preserve cardiovascular and metabolic 

fitness by activating autophagy in multiple organs7. Interestingly, the Becn1+/− genotype was 

associated with some extent of cardioprotection in the setting of myocardial ischaemia 

reperfusion, pressure overload-driven hypertrophy and diabetic cardiomyopathy, which the 

authors ascribed to reduced maladaptive autophagy124–126. Data obtained in mice subjected 

to the inducible cardiomyocyte-specific deletion of Atg5, however, argue against these 

findings109, which highlights the potential bias introduced by the organismal adaptation to 

life-long gene knockout (see below).

In summary, activation of autophagy seems to be a main goal not only for the preservation of 

cardiovascular fitness but also for the management of multiple cardiovascular disorders 

(TABLE 2).

Hepatic and metabolic disorders

Several reports suggest that the cell-intrinsic and cell-extrinsic functions of autophagy in the 

liver and pancreas are crucial not only for the maintenance of organ homeo stasis but also for 

the regulation of neuroendocrine circuitries that control systemic metabolism127. Thus, 

acutely activating autophagy with caloric restriction, physical exercise, rapamycin, CRMs 

(that is, <m>metformin</m> or resveratrol), AMPK-targeting agents or hydrogen sulfide 

limits non-alcoholic steatohepatitis (NASH) and/or improves various metabolic parameters 

(including body weight, circulating glucose or triglyceride levels, and insulin sensitivity) in 

24-month-old rats128, rodents that had been fed a HFD129–133, mice acutely or chronically 

exposed to ethanol134 as well as in <m>db/db mice</m> or <m>ob/ob mice</m> (which are 

two genetic models of hyperphagia and thus metabolic syndrome)130,135,136. Moreover, 

activation of autophagy with carbamazepine considerably reduced hepatic fibrosis in a 

model of α1<m>-antitrypsin deficiency</m>-associated liver disease137. However, 

rapamycin administered according to specific schedules also causes insulin resistance as it 

inhibits mTORC2 (REFS 138,139). This suggests that adequate administration schedules or 

alternative autophagy activators are preferable for the treatment of metabolic disorders that 

are linked to type 2 diabetes.
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An Atg7-targeting shRNA delivered by an adenoviral vector, an Atg7-targeting siRNA that 

was injected intravenously, the whole-body knockout of forkhead box O3 (Foxo3, which 

encodes a transcription factor that supports autophagic responses), or the conditional co-

deletion of Prkab1 and Prkab2 (which encode the AMPK subunit β1 and the AMPK subunit 

β2, respectively) in adipocytes aggravated hepatic damage and metabolic dysregulation in 

HFD-fed mice140, ob/ob mice141 and mouse models of ethanol intoxication142,143, which 

further corroborates the beneficial role of autophagic responses in hepatic and metabolic 

conditions. The hepatocyte-specific deletion of serine/threonine kinase 11 (Stk11, which 

encodes the main AMPK activator and is also known as Lkb1) compromised glucose 

homeostasis in mice and rendered them insensitive to metformin144. Furthermore, mice 

expressing a non-phosphorylatable mutant BCL-2, apoptosis regulator (BCL-2) — a model 

in which inducible autophagy is selectively blocked — were unable to obtain metabolic 

benefits from physical exercise7, whereas ob/ob mice specifically lacking Atg7 in the 

myeloid compartment were more susceptible to obesity-induced diabetes than their 

autophagy-proficient littermates145. These findings are intriguing, as they suggest that 

systemic metabolic homeostasis may (at least partially) rely on efficient autophagic 

responses in compartments other than the liver, pancreas and adipose tissue. Interestingly, 

acute caloric restriction, rapamycin and resveratrol also attenuated multiple manifestations 

of the diabetic syndrome induced by <m>streptozotocin</m> — including nephropathy — 

in mice and rats146–148. In addition, Atg7 was required for pancreatic β-cells to develop 

normally and to ensure physiological glucose control149. However, autophagic responses 

within pancreatic β-cells seem to contribute to the physiological inhibition of insulin release 

by fasting150. It remains to be elucidated whether autophagy inhibitors may support insulin 

secretion and systemic glucose control in patients with type 1 diabetes (which is 

characterized by a primary defect in insulin secretion). Finally, the deletion of Atg5 or 

Atg12 in UCP1+ adipocytes prevented the beige-to-white fat transition in mice, hence 

limiting HFD-driven obesity and glucose intolerance151. This inhibition of beige-to-white fat 

transition suggests that — although autophagy seems to globally support metabolic fitness 

— the development, survival or functions of some detrimental cells (such as white 

adipocytes) may also rely on efficient autophagic responses.

Taken together, these observations suggest that systemic autophagy activators may mediate 

therapeutic activity in patients with a variety of metabolic disorders, although the inhibition 

of autophagic responses in specific cell compartments might amplify such a beneficial effect 

(TABLE 2).

Cancer

Autophagic responses contribute to preservation of homeostasis and adaptation to stress in 

both normal and malignant cells152. Thus, autophagy has been shown to inhibit 

<m>malignant transformation</m> in a variety of models and by a multitude of 

mechanisms152. Accordingly, Becn1+/− mice were more prone to developing spontaneous 

malignancies as they aged than were their wild-type littermates15,16. Mice with a systemic 

mosaic deletion of Atg5 or the liver-specific knockout of Atg7 spontaneously accumulated 

benign liver adenomas153, and the local deletion of Atg5 or Atg7 markedly accelerated the 

onset of KRAS-G12D-driven or BRAF-V600E-driven pancreatic or pulmonary adenomas in 
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mice154–156. In addition, multiple <m>oncosuppressor genes</m> — including tumour 

protein 53 (TP53) and PTEN — support autophagic responses, whereas several <m>proto-

oncogenes</m> — such as BCL2, AKT serine/threonine kinase 1 (AKT1) and epidermal 

growth factor receptor (EGFR) — inhibit them157–160. However, autophagy also promotes 

<m>tumour progression</m> and resistance to treatment, at least at the cancer cell-intrinsic 

level, through a multitude of mechanisms152. Thus, the conversion of early KRAS-G12D-

driven or BRAF-V600E-driven pancreatic or pulmonary adenomas into advanced, invasive 

adenocarcinomas was attenuated in the context of local Atg5 or Atg7 deletion154–156. Along 

similar lines, the stable depletion of ATG5, ATG7 or BECN1 with shRNA-coding constructs 

limited the growth of multiple human cancer cells that were subcutaneously or 

orthotopically xenografted into athymic immunodeficient mice161. Furthermore, human 

cancer cells that were implanted in immunodeficient hosts were more sensitive to 

chemotherapy or radiotherapy in the presence of pharmacological inhibitors of autophagy, 

including 3-MA, wortmannin, chloroquine and HCQ (which is another antimalarial 

agent)161. Taken together, these findings suggested that autophagy inhibitors would be 

useful agents for the clinical management of cancer, either as a standalone intervention or as 

a means to sensitize malignant cells to therapy162.

Recent clinical trials testing chloroquine or HCQ (alone or combined with chemotherapy or 

radiotherapy) in patients with lymphoma, melanoma, glioblastoma and other solid 

neoplasms established the safety of this approach161, which fostered the initiation of 

additional phase II and phase III clinical studies in Europe and the United States 

(ClinicalTrials.gov). However, none of these clinical trials has formally confirmed the 

hypothesis that inhibiting autophagy in cancer cells provides therapeutic benefits to patients 

with cancer161. Moreover, preclinical findings indicate that intact autophagic responses in 

malignant cells are required for appropriate danger signalling (and hence for the initiation of 

therapeutically relevant anticancer immune responses) in tumours established in syngeneic 

immunocompetent hosts and treated with immunogenic chemotherapy or radiotherapy8,163. 

Consistent with this, caloric restriction and various CRMs enhanced (rather than limited) the 

therapeutic efficacy of mitoxantrone, oxaliplatin and radiotherapy in the same tumour 

models161,163,164. Furthermore, biomarkers of autophagic responses in malignant cells were 

associated with intensified <m>immunosurveillance</m> and improved disease outcome in 

cohorts of patients with breast carcinoma who were treated with anthracyclines165. Finally, 

local as well as systemic inhibition of autophagy could have short-term and long-term 

detrimental effects in patients with cancer for two reasons. First, autophagy is important for 

the survival, proliferation and effector functions of immune cell subtypes that are involved in 

tumour control166,167. Second, at least hypothetically, inhibiting autophagy may increase the 

risk of healthy tissues to undergo malignant transformation or experience other toxic effects. 

Thus, the activation of autophagy with safe nutritional measures stands out as a promising 

approach to improve the clinical efficacy of anticancer agents that operate (at least in part) 

by promoting tumour-specific immune responses (TABLE 2).

Infectious diseases

Autophagy is required for the cellular and organismal control of multiple pathogens, 

including bacterial, viral and eukaryotic parasites (such as fungi).
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Bacterial infections—Autophagic responses that are specific for cytoplasmic bacteria 

(referred to as xenophagy) are a crucial component of the innate immune system and have 

been shown to restrict the growth of bacterial pathogens, including Salmonella enterica 
subsp. enterica serovar Typhimurium168, Mycobacterium tuberculosis169,170, Listeria 
monocytogenes171 and group A Streptococcus spp.172. Accordingly, many bacteria have 

evolved strategies to inhibit autophagic responses in the host. These include (but are not 

limited to) the production of cAMP-elevating toxins (Vibrio cholera and Bacillus 
anthracis)173, the normalization of otherwise dwindling amino acid levels at the surface of 

bacterium-containing vacuoles (S. Typhimurium)174, the deconjugation of microtubule-

associated protein 1 light chain 3β (MAP1LC3B; also known as LC3) (Legionella 
pneumophila)175, the inactivation of GTPases that are required for normal vesicular 

trafficking (Shigella flexneri and pathogenic Escherichia coli)176 and the escape from 

autophagic recognition (L. monocytogenes)177. Activation of autophagy through starvation 

or treatment with rapamycin, a BECN1-derived peptide or other agents restricted bacterial 

growth and improved cellular or organismal resistance to infection caused by M. 
tuberculosis (in D. melanogaster and mouse macrophages)169,178, S. enterica (in human 

cancer cell lines)179, or pathogenic E. coli (in mice and human cancer cell lines)180,181. 

Moreover, autophagic responses to carbon monoxide protected mice from sepsis induced by 

cecal ligation and puncture182. Of note, LAP (BOX 2) is also involved in the control of 

intracellular bacteria, including Burkholderia pseudomallei and L. monocytogenes, by 

monocytes10,183,184.

Interestingly, the ability of mice to control M. tuberculosis infection was partially abrogated 

by the Park2−/− genotype (which imposes a selective defect on mitophagy)185 as well as by 

the conditional deletion of Atg5 (but not other autophagy-related genes) from monocytes 

and neutrophils, possibly as a consequence of exacerbated lung inflammation186. Thus, 

caution should be taken when extrapolating data obtained from single-gene knockouts to 

entire cellular processes (see below). Nevertheless, activators of autophagy, mitophagy and 

LAP may constitute promising tools for the clinical management of some bacterial 

infections, whereas molecules with unsuspected autophagy-inhibitory functions may be 

detrimental (such as azithromycin for patients with cystic fibrosis)187. That said, other 

pathogenic bacteria, including Anaplasma phagocytophilum (which causes a tick-borne 

disease with relatively mild symptoms) and Coxiella burnetii (which causes a severe 

endocarditis), stimulate autophagy in the host to support their own metabolic needs188,189. In 

this situation, autophagy inhibitors (including HCQ) have been shown to provide some 

clinical benefits190 (TABLE 2).

Viral infections—Several viruses are efficiently controlled by autophagic responses in 

host cells191. The autophagic degradation of viruses, which is commonly referred to as 

‘virophagy’, relies on core components of the autophagic machinery, including BECN1 

(REF. 192), as well as on proteins that also participate in mitophagy, such as SMAD-specific 

E3 ubiquitin protein ligase 1 (SMURF1) and Fanconi anaemia complementation group C 

(FANCC)191,193. Consistent with an important role of virophagy in the control of viral 

infections, some viruses evolved virulence factors that actively inhibit autophagy, such as the 

BECN1 inhibitor ICP34.5 from herpes simplex virus 1 (HSV-1)194. Interestingly, Becn+/− 

Galluzzi et al. Page 12

Nat Rev Drug Discov. Author manuscript; available in PMC 2017 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and Fancc−/− mice were more susceptible to Sindbis virus infection than their wild-type 

littermates, and D. melanogaster that had received an Atg18-targeting shRNA exhibited 

increased sensitivity to vesicular stomatitis virus infection192,193,195. Futher findings 

corroborate the potential therapeutic value of autophagy activators for the control of viral 

infections: rapamycin and a BECN1-derived peptide efficiently limited HIV-1 replication in 

a human lymphoblastoid cell line196, in primary human monocyte-derived macrophages197 

and in peripheral blood lymphocytes (PBLs) from healthy donors196,198 as well as in severe 

combined immunodeficient (SCID) mice reconstituted with human PBLs (which is a model 

for the study of HIV-1 infection in vivo)198. The same BECN1-derived peptide restrained 

viral replication and improved overall survival in mouse models of West Nile virus and 

chikungunya virus197. Specific viruses, such as coxsackievirus B3, however, may have a 

replication advantage linked to autophagy activation, as was demonstrated in mice with a 

conditional deletion of Atg5 in pancreatic acinar cells199 (TABLE 2).

Eukaryotic parasites—Mice lacking Atg5 or Atg7 specifically in the myeloid cell 

compartment are more susceptible to an intravenous challenge with Candida albicans (but 

not with Cryptococcus neoformans) than their wild-type counterparts, possibly as a result of 

defective neutrophil recruitment200,201. Similarly, mice bearing Atg7-deficient or Becn1-

deficient macrophages, as well as Rubcn−/− mice, were less resistant to intra-nasal 

Aspergillus fumigatus infection than their control litter mates10. Moreover, some fungal 

pathogens, such as A. fumigatus, seem to have evolved strategies to block LAP, including 

the production of a cell wall component that specifically inhibits the activation of NADPH 

oxidases at the phagosome202. Atg5, Atg7 and autophagy-related 16-like 1 (Atg16l1) in 

macrophages were also required for mice to control infection caused by the eukaryotic 

parasite Toxoplasma gondii, although such a process was not accompanied by autophagic 

degradation203–205. These data point to an essential contribution of autophagy and, to a 

greater degree, LAP in the control of fungal infections and eukaryotic parasites. 

Interestingly, two commonly used inhibitors of autophagy (chloroquine and HCQ) have long 

been used for the treatment of malaria, which is caused by the eukaryote Plasmodium 
falciparum206. Chloroquine and HCQ, however, inhibit both the autophagic and non-

autophagic functions of lysosomes, and have been proposed to exhibit antimalarial 

properties through inhibition of haem polymerase, which is toxic to the parasite207. Taken 

together, these observations suggest that autophagy activators may be beneficial for the 

treatment of fungi and other eukaryotic parasites (TABLE 2). However, it should be borne in 

mind that autophagy is conserved across the eukaryotic kingdom, which implies that 

pathogenic eukaryotes may also take advantage of enhanced autophagic responses208. In this 

setting, specific LAP activators may represent superior therapeutic tools, and efforts should 

be dedicated to the development of such molecules.

Of note, autophagy engages in extensive crosstalk with Toll-like receptor signalling and 

plays a crucial part in antigen cross-presentation209, which together underlie optimal innate 

and adaptive immunity against bacteria, viruses and eukaryotic parasites. Thus, autophagy 

activators may also support the eradication of invading pathogens by promoting innate and 

adaptive immune responses.
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Inflammatory and autoimmune conditions

Autophagy mediates prominent anti-inflammatory effects, which reflects its ability to 

degrade inflammasomes as well as to limit the availability of endogenous inflammasome 

activators, including ROS and mitochondrial DNA210,211. However, intact autophagic 

responses may also support the survival, proliferation and activity of multiple cells that 

contribute to the aetiology of autoimmune disorders166,167. Thus, although autophagy 

represents a promising target for the treatment of multiple inflammatory and autoimmune 

disorders, including (but not limited to) systemic lupus erythematosus (SLE), Crohn’s 

disease, rheumatoid arthritis and multiple sclerosis, the implementation of autophagy-

modulatory interventions for the management of these pathologies may be less 

straightforward than was initially envisioned.

Systemic lupus erythematosus—Genetic polymorphisms in ATG5 and possibly ATG7 
have been associated with SLE in multiple studies212, which suggests that autophagic 

defects may contribute to the pathogenesis of disease. Accordingly, mice lacking Atg5, Atg7 
or Becn1 in LysM+ cells — which comprise macrophages, monocytes, some neutrophils and 

some dendritic cells — as well as Rubcn−/− and Cybb−/− mice (which are characterized by a 

specific defect in LAP) spontaneously developed an SLE-like autoimmune disorder linked to 

deficient phagocytic uptake of dying cells and consequent production of pro-inflammatory 

cytokines213. Importantly, a similar phenotype is not observed in Ulk1−/− mice and mice 

lacking RB1-inducible coiled-coil 1 (Rb1cc1) in LysM+ cells (which are two genetic 

alterations that provoke an autophagic defect but spare LAP)213. Thus, similarly to wild-type 

mice, autophagy-deficient but LAP-competent mice do not develop an SLE-like disease and 

exhibit a normal phagocytic response to dying cells coupled to the production of anti-

inflammatory mediators such as interleukin-10 (IL-10)213. These findings suggest that 

pharmacological LAP activators may be beneficial for patients with SLE. It remains to be 

elucidated whether general autophagy activators may compensate for LAP defects. Of note, 

autophagy has been involved in the production of <m>neutrophil extracellular traps</m> 

(NETs), which contributes to SLE pathogenesis214. Thus, the inhibition of autophagy in 

specific cell populations may also provide therapeutic benefits to patients with SLE. Indeed, 

chloroquine and HCQ have been used for the treatment of SLE with some success215. 

However, this clinical activity probably reflects the immunosuppressive effects of these 

molecules rather than their capacity to block autophagy. Indeed, neither the cell populations 

nor the cellular processes that are targeted by HCQ have been formally investigated in the 

context of SLE (TABLE 2).

Crohn’s disease—Various non-synonymous polymorphisms that are associated with an 

increased susceptibility to Crohn’s disease (data on prevalence are not available for all 

polymorphisms and vary considerably in different studies) negatively affect the activity of 

proteins that participate in autophagic or xenophagic responses, such as ATG16L1, UNC-51-

like autophagy-activating kinase 1 (ULK1) and nucleotide-binding oligomerization domain-

containing 2 (NOD2)216,217. This reflects the multifactorial aetiology of this disorder, which 

involves both a microbial or epithelial and an autoimmune component218, and suggests that 

autophagy activators may be beneficial for patients with Crohn’s disease. Indeed, everolimus 

ameliorated disease severity in Il10−/− mice, which spontaneously develop a Crohn’s 
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disease-like syndrome219. Moreover, everolimus has been used with some success in the 

management of specific SLE cases220. However, it remains to be determined whether the 

activity of everolimus in this context truly stems from the activation of autophagy or from its 

autophagy-independent immunosuppressive effects (TABLE 2).

Rheumatoid arthritis—There are contrasting observations about autophagy in CD4+ T 

cells in the context of rheumatoid arthritis. Naive CD4+ T lymphocytes from patients with 

rheumatoid arthritis have been reported to exhibit autophagic defects that are secondary to a 

metabolic reprogramming that affects glycolysis221. By contrast, CD4+ T cells from patients 

with rheumatoid arthritis reportedly display increased autophagic responses, hence 

resembling CD4+ T lymphocytes that are activated in vitro222. Whether this apparent 

discrepancy reflects the CD4+ T cell subset under consideration (naive versus total or 

activated CD4+ T cells) or a methodological bias remains unclear. Irrespectively, HCQ limits 

the resistance to apoptosis displayed by CD4+ T cells from patients with rheumatoid arthritis 

ex vivo and reduces disease severity in a mouse model of collagen-induced arthritis222. In 

addition, the specific deletion of Atg5 from mouse CD4+ T cells limits their proliferation 

and activation ex vivo222. Taken together, these observations suggest that the inhibition of 

autophagy in specific immune cell populations, notably CD4+ T cells, may limit disease 

progression in patients with rheumatoid arthritis (TABLE 2).

Multiple sclerosis—Rapamycin treatment limits skin and lung fibrosis in mouse models 

of multiple sclerosis induced by bleomycin administration or a hetero zygous mutation in 

fibrillin 1 (Fbn1), which is accompanied by reduced production of fibrogenic cytokines and 

decreased levels of hypergammaglobulinaemia and anti-DNA topoisomerase 1 antibodies 

(two circulating markers of disease)223. However, these findings were not mechanistically 

linked to the activation of autophagy, which implies that they could reflect the established 

antiproliferative and immunosuppressive activity of rapamycin. Conversely, the specific 

deletion of Atg7 from dendritic cells in mice ameliorates experimental autoimmune 

encephalomyelitis — which is a model of CD4+ T cell-dependent multiple sclerosis — by 

reducing the priming of autoimmune responses224. Consistent with this, chloroquine delays 

disease progression if administered before disease onset and reduces disease severity if 

administered after onset224. These findings suggest that the specific inhibition of autophagy 

in dendritic cells may constitute a desirable therapeutic objective for the management of 

some forms of multiple sclerosis (TABLE 2).

Other conditions—Autophagy may also be involved in the pathogenesis of other 

inflammatory and autoimmune conditions. Rapamycin administration provided beneficial 

effects in mouse models of autoimmune myositis225, autoimmune encephalomyelitis226 and 

autoimmune uveitis (only when used at high doses)227, as well as in patients with 

autoimmune lymphoproliferative syndrome228. Conversely, low-dose rapamycin 

administration aggravated experimental autoimmune uveitis in mice227. It remains to be 

clarified to what extent these findings relate to autophagy activation versus immuno-

suppression by rapamycin (TABLE 2).
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Ageing

The healthy lifespan of multiple model organisms, including Saccharomyces cerevisiae 
(yeast)229,230, Caenorhabditis elegans (worm)231–233, D. melanogaster (fly)47,230, Mus 
musculus (mouse)234–236 and Macaca mulatta (monkey)237, can be experimentally extended 

by autophagy-activating measures, and this lifespan extension almost invariably depends on 

an intact autophagic machinery238. Indeed, autophagy mediates robust homeostatic 

functions at both the cell-intrinsic and cell-extrinsic levels, which directly counteract several 

processes that are associated with ageing. These processes include (but may not be limited 

to): the accumulation of macromolecular damage that drives cellular senescence and RCD 

(which are particularly detrimental in the context of an aged stem cell compartment); 

systemic metabolic deregulation; chronic, mild inflammation (so-called inflammaging); and 

accrued oncogenesis239. It is common knowledge that a balanced dietary regimen coupled 

with regular exercise preserves organismal fitness and can postpone several, if not all, of the 

manifestations of ageing. Accumulating evidence suggests that various beneficial effects of a 

healthy lifestyle depend (at least in part) on the activation of autophagy240. It will therefore 

be interesting to see whether CRMs or other pharmacological activators of autophagy can be 

used to extend lifespan (TABLE 2).

Other disorders

Autophagy modulators may also be beneficial for patients that are affected by pathologies 

such as pulmonary, renal and skeletal diseases.

Pulmonary disorders—On the one hand, autophagic defects have been documented in 

the lungs of patients with idiopathic pulmonary fibrosis (IPF)241, pulmonary arterial 

hypertension (PAH)242 and cystic fibrosis243. Accordingly, rapamycin treatment partially 

protects mice from IPF caused by bleomycin241 or radiation244, as well as from hypoxia-

induced PAH245. Similarly, the intranasal delivery of a Becn1-coding lentivirus successfully 

restores autophagy and limits inflammation in CftrF508Δ mice (a model of cystic fibrosis)243, 

as does the genetic inactivation of Rptor or Mtor in mouse models of hyperoxia-induced or 

lipopolysaccharide-induced acute lung injury246,247. Moreover, Map1lc3b−/− mice exhibit 

aggravated PAH upon chronic hypoxia242. Thus, pharmacological activators of autophagy 

may be beneficial in patients with some pulmonary disorders (TABLE 2).

On the other hand, autophagy contributes to (rather than counteracts) the aetiology of 

chronic obstructive pulmonary disease (COPD). Indeed, Map1lc3b−/− and Becn1+/− mice 

develop limited emphysema upon chronic cigarette smoke exposure compared with their 

wild-type littermates248,249. Similar observations were made in Pink1−/− mice as well as in 

mice receiving the mitophagy inhibitor Mdivi-1 (REF. 250). Interestingly, the transcription 

factor early growth response 1 (EGR1) seems to be mechanistically involved in detrimental 

autophagic responses that underlie COPD251. However, no direct links between EGR1 

signalling and mitophagy have been established yet. Similarly, whether pharmacological 

inhibitors of EGR1 signalling may be beneficial for individuals with COPD remains to be 

determined (TABLE 2).
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Renal conditions—Autophagy may mediate important homeostatic functions in the 

kidney. The podocyte-specific deletion of Atg5 or Atg7 in mice results in spontaneous 

glomerulosclerosis that is preceded by mitochondrial alterations (which are also documented 

in patients with idiopathic <m>focal segmental glomerulosclerosis</m>), excessive ROS 

production and podocyte loss252,253. Similarly, mice bearing Atg5−/− podocytes exhibit 

increased glomerular degeneration that is caused by puromycin aminonucleoside (PAN) or 

doxorubicin compared with their wild-type littermates252. In addition, the podocyte-specific 

knockout of Atg7 considerably sensitizes mice to kidney overload imposed by unilateral 

nephrectomy254. Comparable results were obtained in PAN-treated rats receiving chemical 

autophagy inhibitors (3-MA or chloroquine), whereas autophagy activation with rapamycin 

limited glomerular degeneration in this model255. Thus, autophagy activators may not only 

benefit diabetic patients who are at risk of nephropathy (see above) but also individuals with 

other renal conditions (TABLE 2).

Skeletal disorders—Autophagy has recently been identified as an important mediator of 

bone growth in response to fibroblast growth factor (FGF) signalling256. Thus, the bone 

growth defects that are imposed by the Fgf18+/− or Fgfr4−/− phenotype can be rescued by 

intraperitoneal administration of a BECN1-derived peptide256. However, the deletion of 

Mtor or Rptor from PRX1+ cells (which are found in the limb, cranial and interlimb 

mesenchymal tissues) significantly impairs skeletal growth in mouse embryos, which results 

in a severe phenotype that is associated with death shortly after birth257. Similarly, 

rapamycin administration has been found to mediate beneficial258 and detrimental259,260 

effects in rodent models of bone fracture. It remains to be determined whether these 

apparent discrepancies reflect the pleiotropic effects of mTORC1 (which, among various 

functions, controls cell proliferation). Additional investigation is required to elucidate the 

potential benefits that are associated with the use of autophagy modulators in skeletal 

disorders (TABLE 2).

Lysosomal storage disorders—Lysosomal storage disorders (LSDs) are a 

heterogeneous group of rare inheritable conditions that originate from defects in lysosomal 

activity, which result in the cytotoxic accumulation of specific lysosomal substrates261. The 

conditional deletion of Atg5 or Atg7 from myocytes alleviates lysosomal overload and 

enables enzyme replacement therapy in a mouse model of Pompe disease (which is 

characterized by glycogen accumulation)262,263. Similarly, rapamycin is toxic for inducible 

pluripotent stem cells (iPSCs) from patients with Gaucher disease (which is characterized by 

<m>glucosylceramide</m> accumulation)264. Conversely, rapamycin, carbamazepine, 

trehalose and other autophagy inducers have cytoprotective effects on iPSCs from patients 

with Niemann–Pick type C disease (which is characterized by the accumulation of 

cholesterol and glycolipids)265. These observations suggest that the inhibition of autophagy 

upstream of autophagosome formation may be beneficial for patients with certain LSDs. By 

contrast, autophagy activators may have detrimental effects, unless they successfully 

overcome the lysosomal blockage that characterizes these disorders.

Vision disorders—Autophagy and related processes sustain healthy vision by a number 

of mechanisms. Retinal photoreceptor cells, especially cones, exhibit high mitochondrial 
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turnover by mitophagy and rely on AMPK-dependent autophagic responses to cope with 

glucose deprivation266. Consistent with this, the cone-restricted deletion of Atg5 results in a 

functional decline that is accompanied by the accumulation of damaged mitochondria, an 

increased sensitivity to light toxicity and glucose deprivation266. Moreover, the inhibition of 

autophagy reportedly contributes to photoreceptor cell loss in models of <m>retinitis 

pigmentosa</m>267. ATG5-dependent and BECN1-dependent LAP has been involved in a 

process known as the ‘visual cycle’, in which shedding photoreceptor outer segments are 

engulfed by the retinal pigment epithelium (RPE), and all-trans-retinoic acid is converted to 

11-cis-retinal for photoreceptor regeneration. Thus, mice lacking Atg5 (but not Ulk1) in the 

RPE display defective 11-cis-retinal generation and reduced vision, which can be transiently 

corrected by the administration of all-trans-retinol268. Mice with a macrophage-specific 

deletion of Atg5 as well as mice carrying the Atg16l1T300A mutation exhibit increased 

susceptibility to lipopolysaccharide-induced uveitis that is associated with increased 

inflammasome activation269. In humans, the ATG16L1T300A mutation is associated with 

Crohn’s disease (see above), which is also linked to an increased predisposition for 

uveitis270. Finally, mutations in OPTN as well as duplications of TBK1 are associated with 

normal-tension glaucoma271,272. One of these mutants (namely, OPTN-E50K) displays an 

increased interaction with TBK1, and mice that are engineered to express the OPTN-E50K 

variant develop a disease that phenocopies the human disorder273. At this point, it is unclear 

whether these mutations promote normal-tension glaucoma as a consequence of changes in 

autophagy or other TBK1-related processes. However, activators of autophagy or LAP may 

counteract the pathogenesis of multiple vision disorders.

Challenges in developing autophagy modulators

In spite of great potential, no interventions that are specifically aimed at modulating 

autophagy are currently available for use in humans. Indeed, although rapamycin, 

chloroquine, HCQ and several drugs that are licensed for the use in humans activate or 

inhibit autophagy, they were not developed for this purpose. What are the obstacles that, 

until now, have prevented the development of autophagy modulators for clinical use? How 

can we circumvent them and finally harness the entire therapeutic potential of autophagy 

activators and inhibitors?

Specificity

Besides being used with limited rigour (that is, at non-standardized concentrations or time 

points), multiple chemical agents that are currently available to activate or inhibit autophagy 

have limited specificity for the autophagic process, for either of two reasons. First, some of 

these molecules have an intrinsically low pharmacological specificity for their target. This is 

the case for 3-MA and wortmannin, both of which are non-selective phosphoinositide 3-

kinase (PI3K) inhibitors and hence block the catalytic activity of several PI3Ks beyond 

VPS34 (REF. 274). Along similar lines, although acute rapamycin administration results in 

the relatively specific inhibition of mTORC1 through FK506-binding protein 1A (FKBP1A), 

chronic exposure to rapamycin promotes mTORC2 disassembly139. Second, several 

components of the autophagic machinery operate at the interface of multiple cellular 

processes, that is, they mediate autophagy-independent functions203,275. Thus, the inhibition 
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of mTORC1 using rapamycin not only activates autophagy but also inhibits translation, 

cellular growth and proliferation276. Similarly, the blockage of lysosomal functions using 

chloroquine, HCQ or BafA1 inhibits not only the disposal of autophagosomes but also the 

degradation of endosomes and impairs vesicular trafficking277. In line with this notion, 

rapamycin and multiple <m>rapalogues</m> mediate robust immunosuppressive effects, as 

they block T cell proliferation278, whereas both chloroquine and HCQ exert 

immunomodulatory as well as antineoplastic effects that are independent of 

autophagy279–281. Several approaches are being explored to circumvent these specificity 

issues, including the development of novel autophagy modulators (BOX 3).

An additional specificity-related issue derives from the complex architecture of all tissues, 

which contain several different cell types that are engaged in extensive homologous and 

heterologous interactions. Most autophagy modulators available at present are also poorly 

specific because they do not preferentially target one cell type. Thus, evaluating the actual 

impact of autophagy activators or inhibitors in disease scenarios in which autophagic 

responses in different tissue compartments may have opposite effects is challenging. 

Addressing this complexity by studying the effects of highly targeted autophagy modulators 

in disease models with cell-specific autophagic defects (see below), is key to the 

development of clinically viable strategies to activate or inhibit autophagy. Of note, this 

issue may predominantly concern the development of autophagy inhibitors. Indeed, there is 

not necessarily a downside to activating autophagy at the whole-body level for the treatment 

of diseases in which autophagy activation may be useful.

Biomarkers and assays

Multiple biomarkers that are routinely used to monitor autophagy in vitro and in vivo are 

intrinsically unsuitable to monitor autophagic flux, that is, the actual degradation of 

autophagosomes and their content within lysosomes274. Several of these indicators, such as 

the levels of lipidated LC3 (measured by immunoblotting) or the amount of GFP–LC3+ 

puncta (measured by fluorescence microscopy or flow cytometry upon cell 

permeabilization), statically monitor the size of the autophagosomal compartment, which 

expands not only in the course of productive autophagic responses (increased on-rate) but 

also when the formation or activity of autolysosomes is blocked (decreased off-rate). Such a 

technical concern de facto invalidates the conclusions of multiple studies in which 

autophagy was monitored only with static autophagosomal biomarkers9.

Besides assessing the actual degradation of autophagic substrates (which may be 

cumbersome and cannot be carried out in all experimental scenarios), several strategies have 

been developed to circumvent this issue274. One common approach relies on comparing LC3 

lipidation (or the accumulation of GFP–LC3+ puncta) in the presence or the absence of 

lysosomal inhibitors, such as BafA1 (REF. 282). This approach can differentiate between 

situations of increased on-rate and decreased off-rate and can be conveniently applied to 

human peripheral blood mononuclear cells ex vivo274. As an alternative, tandem 

fluorescence-tagged versions of LC3 have been successfully used to identify cells in which 

autophagic flux is operational in vitro and in vivo274,283. In paraffin-fixed formalin-

embedded patient samples, encouraging results have been obtained by simultaneously 
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quantifying LC3+ puncta and p62 abundance165. We are convinced that accurately 

measuring autophagic flux is key to the development of clinically viable modulators of 

autophagy.

An additional problem relates to the lack of reliable methods for discriminating between 

distinct forms of autophagy (for example, general autophagy versus mitophagy), especially 

in vivo and in patient material274. This issue is particularly relevant, as it prevents the 

establishment of proof of principle (that is, the mechanistic correlation between an 

autophagy-modulating intervention and actual autophagy modulation) and proof of concept 

(that is, the mechanistic correlation between an autophagy-modulating intervention and 

disease outcome) for most pathologies. Moreover, despite considerable efforts towards 

standardization274, many assays to measure autophagy and autophagy-related processes are 

still implemented with consistent variability across the scientific community. Thus, new 

highly standardized approaches that allow for monitoring specific forms of autophagy and 

autophagy-related processes in vivo and in patient material are urgently awaited.

Genetic models

Many of the genetic models that have been used so far for studying the impact of autophagy 

on the pathogenesis of disease and developing autophagy-targeting agents suffer from 

limitations that are often overlooked. One of the initial obstacles was the embryonic or 

perinatal lethality imposed by the whole-body knockout of several components of the 

autophagic machinery14–16. As mentioned above, this issue has been partially circumvented 

by the generation of mice with partial autophagic defects at the whole-body level, such as 

Becn1+/− or Atg4b−/− mice15,16,284. These animals have been highly instrumental for 

studying the role of autophagy in multiple disorders. However, they preserve some 

proficiency in <m>canonical autophagy</m> and mount normal non-canonical autophagic 

responses in several tissues, including the liver282. This implies that observing normal 

disease progression or the response to treatment in Becn1+/− or Atg4b−/− mice does not 

formally exclude a role for autophagy.

As an alternative approach, multiple models of tissue-specific autophagic incompetence 

have been generated. Most of these models rely on the deletion of ‘floxed’ Atg5, Atg7 or 

Becn1 in selected cell types, which is based on the expression of Cre recombinase under the 

control of a promoter of choice285. In this scenario, gene knockout occurs upon the 

physiological activation of the Cre-controlling promoter, which introduces considerable 

variability. Thus, whereas some promoters — such as the collagen, type II, alpha 1 (Col2a1) 

promoter286 — impose an autophagic defect early during differentiation or embryonic 

development, others — such as the cyclin-dependent kinase inhibitor 2A (Cdkn2a) 

promoter287 — abolish autophagic proficiency in terminally differentiated cells (in this case, 

senescent) cells. One of the major issues in this setting is the occurrence of compensatory 

processes, that is, a general reorganization of cellular functions that partially (if not totally) 

compensate for the lack of a specific protein. This is generally favoured when gene knockout 

occurs early during cellular or organismal lifespan as well as when the degree of functional 

redundancy is high (as is the case for the autophagic machinery)1.

Galluzzi et al. Page 20

Nat Rev Drug Discov. Author manuscript; available in PMC 2017 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Two main strategies have been devised to minimize this potential source of bias: the tissue-

specific administration of viral vectors coding for Cre recombinase154 or the use of Cre 

variants that can be activated pharmacologically (for example, by the systemic 

administration of tamoxifen)109. One potential problem with these models relates to the 

efficiency of Cre activation. Indeed, viral infection may not affect all target cells, or 

tamoxifen concentrations may be suboptimal in some tissue areas, resulting in partial 

autophagic defects. However, both these approaches generally display high efficiency and 

result in widespread gene knockout within a specific tissue.

All types of conditional knockout models (including those that rely on viral Cre delivery) 

also suffer from some degree of nonspecificity, which may impose autophagic defects in 

tissues that are unintentionally affected. For instance, genes that are under the control of the 

Col2a1 promoter are expressed not only by chondrogenic tissues but also — transiently — 

in non-chondrogenic tissues, including the notochord, eye, heart, epidermis and discrete 

areas of the brain286. Although this issue is generally marginal, it may have affected — at 

least to some degree — data interpretation in specific cases. Finally, it should be kept in 

mind that most, if not all, components of the autophagic machinery mediate known or 

hitherto undiscovered autophagy-unrelated functions203. This implies that great caution 

should be taken before attributing the phenotype that results from whole-body or conditional 

knockout of a single component of the autophagic machinery to autophagy as a process.

Developing new models that circumvent these persisting obstacles may be less 

straightforward than desirable. Nonetheless, careful consideration of the limitations that are 

associated with each model may enable the correct interpretation of data and hence support 

drug discovery and development in this field.

Future development of autophagy modulators

There seems to be considerable confusion as to how autophagy modulators should be 

developed and used for the treatment of several pathologies (BOX 4), which has limited the 

development of novel therapeutic agents. Here, we summarize some principles that must be 

carefully considered in the future development and use of autophagy-targeting interventions 

in the context of three specific scenarios.

Autophagy activation underlies disease

For cases in which the activation of autophagy underlies disease, pharmacological inhibition 

in specific cell populations constitutes an obvious therapeutic objective. However, the 

functional outcome and actual therapeutic value of such an intervention may vary 

considerably depending on the stage of the autophagic cascade that is targeted. For instance, 

whereas inhibiting autophagy by targeting upstream modulators — such as AMPK (with 

compound C), ULK1 (with SBI-0206965) or Na+/K+-ATPase (with cardiac glycosides) — 

seems to be a potentially safe intervention, using lysosomal inhibitors may increase (rather 

than decrease) the detrimental effects of autophagy activation by causing the accumulation 

of non-functional autophagosomes and autolysosomes, and hence a general blockage in 

vesicular trafficking (FIG. 2a).
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Autophagy inhibition underlies disease

Autophagic defects can contribute to disease by two general, non-mutually exclusive 

mechanisms: the accumulation of potentially dangerous autophagic substrates or non-

functional autophagosomes and autolysosomes, and the lack of potentially beneficial 

autophagic products or functions. In this situation, the activation of autophagy with 

nutritional or pharmacological interventions may ameliorate disease outcome. However, the 

exact nature of the autophagic defect determines which approach should be undertaken to 

obtain beneficial (rather than detrimental) effects. Autophagy can be blocked upstream of 

autophagosome formation, which results in a limited number of autophagosomes and 

reduced autophagic activity. In this case, nutritional interventions (that are mainly detected 

by the AMPK–mTORC1 signalling node) or molecules that promote the formation of 

phosphatidylinositol-3-phosphate (PtdIns3P) by the BECN1–VPS34 complex are expected 

to mediate positive effects, as they boost autophagy initiation (FIG. 2b). Conversely, 

interventions that are aimed at the acceleration of lysosomal degradation, such as the 

inhibition of CST3 or CSTB, may not mediate therapeutic effects. Autophagy can also be 

blocked downstream of autophagosome formation, for instance, as a consequence of a 

lysosomal defect. In this case, further boosting the generation of autophagosomes is not only 

expected to have little therapeutic activity but may also aggravate the homeostatic 

perturbations imposed by the lysosomal blockage. On the contrary, the acceleration of 

lysosomal degradation may relieve the blockage in the disposal of autophagosomes and 

autolysosomes, and mediate beneficial effects. Of note, the inhibition of autophagy upstream 

of autophagosome formation (by targeting AMPK or ULK1, for instance) may also mediate 

therapeutic activity in this setting, which reflects a relative normalization of the 

autophagosomal and autolysosomal compartments (FIG. 2c). Thus, clinically useful 

autophagy activators should be designed based on careful characterization of the autophagic 

defect that accompanies each specific disease. At least theoretically, the combination of 

upstream autophagy activators with molecules that accelerate lysosomal degradation might 

overcome multiple forms of autophagic blockade. However, it has not yet been formally 

demonstrated whether this approach mediates superior benefits in models of disease that are 

caused by autophagic defects.

Autophagy activation compensates for disease

In some cases, autophagy alterations have little (if any) relationship to primary disease 

aetiology, but autophagy activation may still support compensatory mechanisms, including 

the degeneration of cells and tissues. Although many preclinical models that have been used 

thus far do not allow discrimination between these two aspects of pathogenesis (aetiology 

versus recovery; see below), interventions that boost autophagic activity in cells that are not 

directly affected by disease may ameliorate the long-term outcome in multiple disorders, 

even when administered after the primary pathological insult. This is particularly true for 

conditions with multifactorial aetiology, such as cerebral stroke or neurotrauma. In this 

scenario, efficient autophagic responses in glial cells that survive stroke considerably limit 

RCD-driven inflammation and the consequent loss of additional neurons (which is known to 

participate in the pathogenesis of disease), hence mitigating long-term functional 

impairment9. Thus, the activation of autophagy in cells that survive the primary pathological 

insult or in non-diseased cells (which exhibit normal autophagic capacity) may constitute a 
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promising therapeutic intervention for multiple disorders with complex aetiologies (FIG. 

2d). It is possible that patients with some of these pathologies may benefit from a sequential 

approach in which autophagy is inhibited first (or selectively in diseased cells) and activated 

subsequently (or selectively in non-diseased cells). Future studies are required to elucidate 

this possibility in specific pathologies.

Conclusions and perspectives

As discussed throughout this Review, the therapeutic potential of interventions that activate 

or inhibit autophagy is enormous. Nonetheless, multiple obstacles of pharmacological, 

technical or experimental nature have hampered the straightforward implementation of 

autophagy modulators in the clinic. We are confident that many of these hurdles can be 

circumvented upon the development of more selective autophagy modulators, more precise 

biomarkers of the autophagic flux and more physiological models of autophagy deficiency 

in vivo. The very nature of autophagy imposes obstacles that must also be overcome for the 

development of clinically viable autophagy activators and inhibitors. Additional work is 

required to understand how to inhibit or activate autophagy independently of cellular 

processes including proliferation and RCD, and hence harness the full therapeutic potential 

of autophagy modulators.
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Glossary

Autophagic cell death
A variant of regulated cell death (RCD) that is precipitated by the autophagic machinery and 

hence can be retarded with pharmacological or genetic inhibitors of autophagy

Regulated cell death (RCD)
A form of cell death that relies on the activation of genetically encoded machinery and hence 

can be retarded or accelerated with specific pharmacological or genetic interventions

Mitophagy
Autophagic response that is specific for depolarized or otherwise damaged mitochondria.

Aggrephagy
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Autophagic response that is specific for intracellular protein aggregates, which often are 

highly ubiquitylated

Presenilin 1 (PSEN1)
Component of the γ-secretase complex that contributes to the accumulation of amyloid 

plaques in the brain of patients with Alzheimer disease (AD).

Autophagic adaptor
A protein that directs autophagic substrates to forming autophagosomes through its capacity 

to bind ubiquitylated structures and lipidated Atg8 family members

Amyloid-β precursor protein
(APP). A protein that — upon cleavage — accounts for the majority of amyloid plaques in 

the brain of patients with Alzheimer disease (AD).

Caloric restriction mimetic (CRM)
A molecule that mimics the biochemical and cellular effects of fasting, including autophagy 

activation and cytosolic acetyl-CoA depletion, but does not provoke a sizeable weight loss

Trehalose
A natural α-linked disaccharide that potently activates autophagy through poorly 

characterized mechanisms

Valproate
A widely used antiepileptic drug that induces autophagy by affecting myo-inositol-1,4,5-

trisphosphate levels

Lithium
An antidepressant that promotes autophagic responses by altering myo-inositol-1,4,5-

trisphosphate levels

Locomotor sensitization
Long-lasting exacerbation of a psychostimulant-induced locomotor response, which is 

brought about by repeated intermittent administration of the same psychoactive agent

Ischaemic preconditioning
An experimental technique for increasing the resistance of neurons or cardiomyocytes to 

prolonged, severe ischaemia based on the repeated administration of short, mild ischaemic 

episodes

Cardiac glycoside
A natural compound that exerts positive inotropic effects and retards some forms of 

autophagic cell death as it inhibits the plasma membrane Na+/K+-ATPase

Efferocytosis
The removal of dying or dead cells by professional phagocytes

Spermidine
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A natural polyamine that potently activates autophagy by operating as a caloric restriction 

mimetic (CRM)

Coronary angioplasty
A minimally invasive surgical procedure for the treatment of narrowed or weakened arteries, 

which consists of the insertion of a small mesh tube (stent) through the femoral artery

Metformin
An antidiabetic agent with pleiotropic effects, including the capacity to trigger autophagy by 

acting as a caloric restriction mimetic (CRM)

db/db mice
Mice homozygous for the spontaneous db (for diabetes) mutation in leptin receptor (Lepr), 
which causes limited leptin signalling. These animals are commonly used as models for type 

2 diabetes and metabolic syndrome

ob/ob mice
Mice homozygous for the spontaneous ob (for obesity) mutation in leptin receptor (Lepr), 
which causes absent leptin signalling. These animals are commonly used as models for 

obesity and metabolic syndrome

Carbamazepine
A widely used antiepileptic drug that induces autophagy by altering myo-inositol-1,4,5-

triphosphate levels

α1-antitrypsin deficiency
A genetic disease that causes the defective production of serpin family A member 1 

(SERPINA1; also known as α1-antitrypsin) in the lungs and liver, which results in 

pulmonary disorders that are often associated with hepatic symptoms.

Streptozotocin
A naturally occurring toxin that is commonly used to generate rodent models of type 1 

diabetes owing to its pronounced selectivity for pancreatic β-cells

Malignant transformation
The conversion of a healthy, normal cell into a neoplastic cell precursor. Malignant 

transformation is insufficient to drive tumorigenesis

Oncosuppressor genes
Genes mutated or silenced in familial or sporadic forms of cancer. Many of these genes 

encode proteins that are involved in the maintenance of cellular homeostasis or in the 

activation of regulated cell death (RCD)

Proto-oncogenes
Genes overexpressed or hyperactivated in familial or sporadic forms of cancer. Many of 

these genes encode positive regulators of cellular proliferation or proteins that inhibit 

regulated cell death (RCD)
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Tumour progression
A process through which a neoplastic cell precursor acquires additional genetic or epigenetic 

alterations that allow it to escape cell-intrinsic and cell-extrinsic control mechanisms and 

form aggressive tumours

Immunosurveillance
A process in which the immune system recognizes and eliminates a potentially dangerous 

entity, including invading pathogens as well as pre-malignant and malignant cells

Inflammasomes
Supramolecular platforms that support caspase 1 activation, hence allowing for the 

proteolytic maturation and secretion of pro-inflammatory interleukin-1β (IL-1β) and IL-18

Neutrophil extracellular traps (NETs)
Chromatin-based and granule protein-containing fibres that are released by neutrophils to 

immobilize and kill invading microorganisms.

Cellular senescence
A permanent proliferative arrest that is generally associated with specific morphological and 

biochemical features, including the secretion of multiple cytokines and other biologically 

active factors

Chronic obstructive pulmonary disease (COPD)
A progressive lung disease that is characterized by long-term limited airflow, which is often 

caused or aggravated by tobacco smoke

Focal segmental glomerulosclerosis
A leading cause of kidney failure in adults that is characterized by the degeneration of 

sections of the glomerulus with a focal (as opposed to diffuse) intrarenal distribution

Glucosylceramide
A sphingolipid that accumulates in patients with Gaucher disease (mostly in the 

macrophages) as a result of mutations in glucosylceramidase beta (GBA)

Retinitis pigmentosa
An inherited, degenerative eye disease that causes severe vision impairment owing to the 

progressive degeneration of the rod photoreceptor cells

Rapalogues
Rapamycin derivatives with improved pharmacodynamic and pharmacokinetic properties

Canonical autophagy
A term commonly used to refer to an autophagic response that is dependent on autophagy-

related 5 (ATG5), ATG7, beclin 1 (BECN1) and phosphatidylinositol-3-phosphate 

(PtdIns3P) production
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Box 1

Autophagic cell death in development and disease

When light microscopy was the main — if not the sole — technique to study cell biology, 

investigators noted that the cytoplasm of dying eukaryotic cells sometimes becomes 

clogged with vacuoles. Soon thereafter, the term ‘autophagic cell death’ (also known as 

type II cell death) was introduced to indicate instances of cellular demise that are 

accompanied by cytoplasmic vacuolization288. This expression rapidly acquired a causal 

implication and has subsequently been extensively used, which led to the assumption that 

autophagy aetiologically contributes to cell death. With the advent of modern molecular 

biology techniques, however, it became clear that autophagy generally mediates 

cytoprotective — rather than cytotoxic — effects. Indeed, pharmacological or genetic 

inhibition of core components of the autophagic machinery most often accelerates — 

rather than retards — the death of mammalian cells that experience perturbations of 

homeostasis289. Thus, autophagic responses often accompany the cellular demise (as an 

ultimate attempt of cells to cope with stress and to survive), but rarely cause it.

However, instances of cell death that are precipitated by the autophagic machinery have 

been described, both in developmental scenarios and during adaptation to stress289. 

Various autophagy-related (Atg) genes were shown to be required for the physiological 

demise of cells from developing Drosophila melanogaster larvae290. The neuron-specific 

knockout of Atg7 limited tissue loss in a mouse model of severe neonatal hypoxia–

ischaemia9. Similarly, pharmacological inhibition of autophagy with 3-methyladenine (3-

MA) as well as the depletion of various components of the autophagic machinery, 

including beclin 1 (BECN1), protected human cancer cells from a Na+/K+-ATPase-

dependent form of autophagic cell death known as ‘autosis’ (REF. 94). In line with this 

notion, cardiac glycosides (which are potent inhibitors of the Na+/K+-ATPase) mediated 

robust neuroprotective effects in a rat model of neonatal hypoxia–ischaemia94. Thus, 

autophagy may precipitate cell death in some circumstances. However, this possibility 

must be addressed experimentally with specific pharmacological and genetic tools.
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Box 2

Mechanisms of autophagy

Canonical autophagy relies on two ubiquitin-like conjugation systems. One involves 

autophagy-related 7 (ATG7) and ATG10, and is responsible for the formation of a 

supramolecular protein complex containing ATG5, ATG12 and autophagy-related 16-like 

1 (ATG16L1)1. The other ubiquitin-like conjugation system, which involves ATG3, 

ATG4 and ATG7, promotes the cleavage of members of the Atg8 protein family, 

including human LC3, and their conjugation to phosphatidylethanolamine (PE)1. 

Lipidated LC3 (LC3-II) and LC3-like molecules such as GABA type A receptor-

associated protein (GABARAP) are recruited to forming autophagosomes, to operate as 

receptors for autophagic substrates or autophagic adaptors like p62 and have largely been 

exploited for monitoring autophagy in vitro and in vivo274. ATG9, another member of the 

ATG protein family, has a crucial function in autophagosome nucleation, which is 

initiated by a supramolecular complex that contains UNC-51-like autophagy-activating 

kinase 1 (ULK1), RB1-inducible coiled-coil 1 (RB1CC1; also known as FIP200), ATG13 

and ATG101 (REF. 1). Of note, recent data indicate that the ATG conjugation systems are 

less important for autophagosome formation than previously thought but are crucial for 

the degradation of the inner autophagosomal membrane291 (see the figure).

Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) exerts prominent 

autophagy-suppressing functions by catalysing the inactivating phosphorylation of 

ATG13 and ULK1 (REF. 276). Such an inhibition can be relieved upon the inactivation of 

mTORC1 by AMP-activated protein kinase (AMPK), which is sensitive to cAMP 

accumulation (a consequence of ATP consumption) and also catalyses the activating 

phosphorylation of ULK1 and beclin 1 (BECN1)292. ULK1 promotes autophagic 

responses by activating a multiprotein complex with phosphatidylinositol 3-kinase 

activity that contains BECN1, VPS34 and phosphoinositide 3-kinase regulatory subunit 4 

(PIK3R4; also known as VPS15)1. The BECN1–VPS34 complex can interact with a 

variety of additional regulatory factors, including UV radiation resistance-associated 

(UVRAG) and autophagy and beclin 1 regulator 1 (AMBRA1), which stimulate the 

catalytic activity of VPS34, as well as BCL-2, apoptosis regulator (BCL-2), which 

mediates VPS34-inhibitory effects1,157. The expansion of autophagosomes in the course 

of canonical autophagic responses indeed relies on phosphatidylinositol-3-phosphate 

(PtdIns3P) production and PtdIns3P-binding proteins of the WD-repeat domain 

phosphoinositide-interacting (WIPI) family1 (see the figure). Finally, closed 

autophagosomes fuse with lysosomes to generate autolysosomes, followed by luminal 

acidification and consequent activation of lysosomal hydrolases1.

Several non-canonical instances of autophagy that proceed independently of specific 

components of the autophagic apparatus have also been described204,205,282,293. This 

suggests the existence of functional redundancy in the molecular mechanisms that 

underlie autophagic responses (at least in mammals). One of these pathways, that is, 

LC3-associated phagocytosis (LAP), involves the recruitment of parts of the autophagic 

machinery to single-membraned phagosomes that form in the context of danger 

signalling, followed by LC3 lipidation and delivery of phagosomes to lysosomes for 
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degradation10,213. LAP proceeds independently of the ULK1 complex, AMBRA1 and 

ATG14 (which are required for canonical autophagy) but it relies on LC3, RUN and 

cysteine-rich domain-containing beclin 1 interacting protein (RUBCN) and NADPH 

oxidase 2, which are dispensable for canonical autophagy10,213. Finally, the molecular 

machineries for canonical autophagy and LAP share multiple components, including 

BECN1, VPS34, UVRAG, ATG3, ATG5, ATG7, ATG12 and ATG16L1 (REFS 10,213). 

Thus, the role of LAP in various processes might have been overlooked based on the 

pharmacological or genetic modulation of these shared factors. AKT1S1, AKT1 substrate 

1; DEPTOR, DEP domain-containing mTOR-interacting protein; MLST8, mTOR-

associated protein, LST8 homologue; RPTOR, regulatory-associated protein of mTOR 

complex 1.
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Box 3

Emerging autophagy modulators with increased specificity

Considerable efforts are being dedicated to the development of agents with increased 

pharmacological specificity (TABLE 1), including new lysosomal inhibitors (such as 

Lys05)294 as well as new mechanistic target of rapamycin complex 1 (mTORC1)-

targeting and VPS34-targeting agents (including SAR405 and VPS34-IN1)295,296 (see 

also Navitor Pharmaceuticals). In parallel, increasing attention has been dedicated to 

components of the autophagic machinery that seem to have limited roles in other 

processes, such as autophagy-related 4B cysteine peptidase (ATG4B; which can be 

targeted by NSC185058)297 and UNC-51-like autophagy-activating kinase 1 (ULK1; 

which can be targeted by SBI-0206965, MRT67307 and MRT68921)298,299, as well as to 

specific autophagic pathways, including mitophagy and LC3-associated phagocytocis 

(LAP)193,213. Lys05, SAR405, NSC185058, and SBI-0206965 have been shown to 

mediate anticancer effects in vitro and in vivo294,295,297. Lys05 had single-agent 

antineoplastic activity in xenograft models of human metastatic melanoma (1205Lu cells) 

and colorectal carcinoma (HT29 cells)294, as did NSC185058 in xenograft models of 

human osteosarcoma (Saos-2 cells)297. SAR405 and SBI-0206965 synergized with 

mTORC1 inhibitors in arresting the proliferation of human lung (H1299 and A549) and 

kidney (ACHN and 786-O) cells in vitro295,298. Conversely, the potential therapeutic 

activity of VPS34-IN1 (which has been characterized biochemically in human 

osteosarcoma U2OS cells), MRT67307 and MRT68921 (both of which have been studied 

for their biochemical properties in mouse embryonic fibroblasts) has not yet been tested 

in relevant disease models296,299. Thus, the actual therapeutic potential of these 

approaches remains largely unexplored.
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Box 4

Improving the pharmacological audit trail for autophagy modulators

The so-called pharmacological audit trail (PhAT) is a conceptual guide to the preclinical 

and clinical development of novel therapeutic agents that sequentially assesses the risk of 

failure at key steps of the entire process as it guides decision-making300. It is clear that 

therapeutic interventions aimed at modulating autophagy or autophagy-related processes 

cannot be developed according to a generic PhAT (see the figure, left). On the one hand, 

it will be imperative to identify with precision: the pathologies that are mechanistically 

determined or aggravated by alterations in autophagy (patient selection); the cell 

population or populations in which such alterations actually underlie disease, as opposed 

to bystander cell populations that may exhibit secondary autophagic defects (cell type 

identification); and how autophagy is specifically altered in such cells (for example, 

hyperactivation, inhibition before autophagosome formation or inhibition after 

autophagosome formation) (autophagic pathway characterization). This will enable the 

development of a therapeutic strategy that is aimed at activating or inhibiting autophagy 

in specific cell types (including diseased and bystander cells) with one (or more) targeted 

drug candidate or candidates. On the other hand, besides carrying out conventional 

pharmacokinetic and pharmacodynamic studies, it will be important to determine 

whether and how the autophagic flux changes in response to the drug candidates in both 

target and bystander cells, followed by a step of hypothesis validation with intermediate 

end points of clinical efficacy. In case of disease progression, compensatory mechanisms 

(related to autophagy) that are possibly operating in diseased or bystander cells will have 

to be assessed, which may lead to a complete re-evaluation of the initial therapeutic 

strategy (see the figure, right).
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Figure 1. Autophagic processes amenable to therapeutic modulation
Several pharmacological and nutritional interventions are available to inhibit autophagy at 

the nucleation, elongation, fusion or degradation phase. In addition, several agents modulate 

autophagy through multipronged or hitherto uncharacterized molecular mechanisms. For 

additional details, please refer to TABLE 1. 3-MA, 3-methyladenine; AMPK, AMP-

activated protein kinase; ATG4B, autophagy-related 4B cysteine peptidase; BafA1, 

bafilomycin A1; BECN1, beclin 1; CRM, caloric restriction mimetic; H2S, hydrogen sulfide; 

HCQ, hydroxychloroquine; IFNγ, interferon-γ; Ins(1,4,5)P3, inositol-1,4,5-trisphosphate; 

MAPK, mitogen-activated protein kinase; mTORC1, mechanistic target of rapamycin 

complex 1; ROS, reactive oxygen species; ULK1, UNC-51-like autophagy activating kinase 

1.
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Figure 2. Principles of autophagy modulation
a | When autophagy mechanistically contributes to the aetiology of the disease, inhibiting 

autophagy initiation in diseased cells is expected to restore normal autophagic degradation 

and mediate therapeutic effects, whereas blocking lysosomal degradation may favour a 

detrimental accumulation of non-functional autophagosomes and autolysosomes. b | In the 

presence of initiation defects, stimulating autophagy upstream of autophagosome formation 

(in diseased cells) is expected to normalize autophagic flux (at least in part) and hence 

mediate beneficial effects, whereas boosting lysosomal degradation may exert limited (if 
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any) therapeutic activity. c | In the presence of degradation defects, activating autophagy 

upstream of autophagosome formation (in diseased cells) may aggravate disease severity by 

exacerbating (thick arrows) the accumulation of non-functional autophagosomes and 

autolysosomes. Conversely, accelerating lysosomal degradation or inhibiting initiation (in 

diseased cells) may exert beneficial effects, at least to some degree (dashed arrow). d | 

Boosting autophagic flux in cells that survived a pathological insult or in non‐diseased cells 

may favour functional recovery and/or mediate beneficial effects linked to improved 

inflammatory tissue homeostasis. Beneficial and detrimental interventions are indicated by 

green and red arrows, respectively.
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Table 2

Pathologies potentially responding to autophagy-modulatory interventions

Disease Approach Observations Refs

Acute brain intoxication Debated • Role of autophagy in neuronal responses to toxicants 
has not been studied in appropriate models

9,58–60

Ageing Activation • Most lifespan-extending interventions activate 
autophagy, and their beneficial effects depend on an 
intact autophagic machinery in multiple model 
organisms

47,229–240

Atherosclerosis Activation • Efficient autophagic responses in macrophages from 
arterial lesions limit disease progression
• Coronary angioplasty generally involves rapamycin-
eluting stents

111

Autoimmune disorders Debated • LAP defects cause an SLE-like disease in mice
• Autophagy activators mediate therapeutic effects in 
multiple autoimmune diseases
• Autophagy supports cell populations or processes that 
underlie disease

166,167,210–228

Bacterial infections Activation • Elimination of intracellular bacteria relies on 
xenophagic responses, which couple danger signalling 
to autophagosome formation

10,168–190

Cancer Debated • Autophagy inhibition may exacerbate effect of 
cytotoxic therapies
• Autophagy underlies the activation of therapeutically 
relevant immune responses

8,15,16,152–167

Cardiac stroke Debated • Both autophagy activators and the Becn1+/− genotype 
are associated with cardioprotection in models of 
stroke

110,115–117,22,125

Cardiomyopathy Debated • Autophagic defects in cardiomyocytes provoke 
cardiomyopathies
• Autophagy activators mediate beneficial effects in 
multiple disease models

107–109,112–114, 118–121,124,126

Cerebral stroke Debated • There is conflicting literature on the impact of 
autophagy on disease outcome in models of 4VO, 
pMCAO and tMCAO

9,73–89

COPD Inhibition • Mitophagy may participate in the pathogenesis of 
cigarette smoke-associated COPD

248–251

Diabetes Debated • Autophagy activation improves insulin sensitivity in 
type 2 diabetes models
• Insulin release by β-cells is negatively regulated by 
autophagy during fasting

130,141,145–150

Eukaryotic parasites Debated • LAP activation may control fungal and eukaryotic 
parasites

10,200–208

Hepatic disorders Activation • Autophagy activators limit hepatic fat accumulation 
and damage in models of steatosis and α1-antitrypsin 
deficiency-associated liver disease

127,129,133–137, 140,142,143

Lysosomal storage disorders Debated • The inhibition of autophagy upstream of 
autophagosome formation may ameliorate lysosomal 
overload. Similar effects may be achieved with 
autophagy activators that overcome lysosomal 
blockage

262–265

Metabolic syndrome Activation • Exercise links intact autophagic responses in multiple 
organs with leanness and improved systemic 
metabolism

7,128–133,135,140, 141,144,145,151

Neonatal asphyxia Inhibition • Pharmacological and genetic inhibition of autosis or 
autophagy mediates neuroprotective effects

9,72,90–94
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Disease Approach Observations Refs

Neurodegenerative disorders Activation • Autophagy is inhibited in the ageing brain, which 
contributes to the accumulation of pathogenic and 
pathognomonic neuronal inclusions

18–20, 22–57

Neurotrauma Debated • Autophagy activation limits functional impairment 
and promotes recovery in models of SCI and SAH, 
whereas data are conflicting in models of TBI

95–105

Pulmonary disorders other 
than COPD

Activation • Autophagic defects have been documented in patients 
with certain pulmonary disorders. Preclinical data 
support the benefit of autophagy activation in mouse 
models of cystic fibrosis, IPF and PAH

241–247

Renal conditions Activation • Deletion of Atg5 or Atg7 in podocytes induces 
glomerulosclerosis and aggravates renal degeneration 
that is caused by PAN administration or kidney 
overload

252–255

Seizures Activation • Preclinical data and epidemiological studies link 
excitotoxicity to defective autophagic responses

61–73

Skeletal conditions Debated • Autophagy is crucial for bone growth
• Administration of rapamycin has been associated 
with both beneficial and detrimental effects in mouse 
models of bone fracture

256–260

Viral infections Debated • Preclinical data link autophagic responses to 
improved cellular and organismal control of viruses
• Some viruses exploit autophagic responses in the host

191–199

Vision disorders Activation • Efficient autophagic responses and LAP are required 
for the survival and function of retinal photoreceptors

266–269,271–273

4VO, 4-vessel occlusion; Atg, autophagy-related; Becn1, beclin 1; COPD, chronic obstructive pulmonary disease; IPF, idiopathic pulmonary 
fibrosis; LAP, LC3-associated phagocytosis; PAH, pulmonary arterial hypertension; PAN, puromycin aminonucleoside; pMCAO, permanent 
middle carotid artery occlusion; SAH, subarachnoid haemorrhage; SCI, spinal cord injury; SLE, systemic lupus erythematosus; TBI, traumatic 
brain injury; tMCAO, transient middle carotid artery occlusion.
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