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Abstract: Dengue virus (DENV) is the causative agent of DENV infection. To tackle DENV infec-
tion, the development of therapeutic molecules as direct-acting antivirals (DAAs) has been demon-
strated as a truly effective approach. Among various DENV drug targets, non-structural protein 5
(NS5)—a highly conserved protein among the family Flaviviridae—carries the RNA-dependent RNA
polymerase (DENVRdRp) domain at the C-terminal, and its “N-pocket” allosteric site is widely con-
sidered for anti-DENV drug development. Therefore, in this study, we developed a pharmacophore
model by utilising 41 known inhibitors of the DENVRdRp domain, and performed model screening
against the FDA’s approved drug database for drug repurposing against DENVRdRp. Herein, drugs
complying with the pharmacophore hypothesis were further processed through standard-precision
(SP) and extra-precision (XP) docking scores (DSs) and binding pose refinement based on MM/GBSA
binding energy (BE) calculations. This resulted in the identification of four potential potent drugs:
(i) desmopressin (DS: −10.52, BE: −69.77 kcal/mol), (ii) rutin (DS: −13.43, BE: −67.06 kcal/mol),
(iii) lypressin (DS: −9.84, BE: −67.65 kcal/mol), and (iv) lanreotide (DS: −8.72, BE: −64.7 kcal/mol).
The selected drugs exhibited relevant interactions with the allosteric N-pocket of DENVRdRp, includ-
ing priming-loop and entry-point residues (i.e., R729, R737, K800, and E802). Furthermore, 100 ns
explicit-solvent molecular dynamics simulations and end-point binding free energy assessments
support the considerable stability and free energy of the selected drugs in the targeted allosteric
pocket of DENVRdRp. Hence, these four drugs, repurposed as potent inhibitors of the allosteric site of
DENVRdRp, are recommended for further validation using experimental assays.

Keywords: dengue virus; pharmacophore model; drug repurposing; NS5; RNA-dependent RNA
polymerase; binding free energy

1. Introduction

In current global healthcare systems, epidemics instigated by viral infections have
proven to be a major threat and a burden on socioeconomic growth. Dengue virus (DENV),
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which causes a mosquito-borne viral disease, reports around 100–400 million infections
every year. DENV is spreading noticeably, and has reached 100+ countries, with a high
rate of geographical expansion from urban to rural areas as well [1]. However, 80% of
the cases report mild symptoms or are asymptomatic in nature, but in 20% of cases, the
infection causes lethal effects. Although the first vaccine to provide immunity against
DENV infection is already approved, it has been linked with various limitations [2,3].
Likewise, several challenges and limitations are also associated with the development of
small-molecule-based direct-acting antiviral (DAA) therapeutics [4]. For instance, one of
the major challenges reported with DAAs is the chance of development of resistance [5,6].
Thus, to design and develop therapeutic molecules, the mechanisms of the infection and
growth of DENV need to be properly elucidated [7].

DENV infection begins with viral surface adhesion to host cells, and later replication
of viral RNA on endoplasmic reticulum membranes, where non-structural proteins (NSPs)
of the virus and co-factors from the host cell are involved in this process [8,9]. Here, in the
resulting multi-subunit replication complex (RC), the NS5 protein unit plays a role as the
biggest interacting partner in the viral RNA replication via C-terminal RNA-dependent
RNA polymerase (DENVRdRp) domain activity by a de novo mechanism [10]. Due to this
essential role, DENVRdRp has been characterised as an important drug target to inhibit
DENV infection [11].

Structural analysis of DENVRdRp has identified three subdomains: the (i) thumb,
(ii) finger, and (iii) palm subdomains [12]. The thumb subdomain performs an essential
role in the polymerase activity of DENVRdRp by covering the RNA-binding site, and assists
in the RNA synthesis by enduring conformational changes [13]. Notably, several inhibitors
have been demonstrated that bind with this domain or are in close proximity to inhibit
the activity of DENVRdRp [14–16]. However, this subdomain was also discovered to have
an “N-pocket” allosteric site, which has not yet been significantly reported for inhibitor
binding. Nonetheless, targeting the interface of the thumb and palm subdomains for
molecule binding has been reported to be able to cause changes in the conformation of the
protein [14].

Thus, the structure of DENVRdRp leverages two binding sites for small molecules: one
is its active binding site, which regulates polymerase activity, while the other is an allosteric
binding site [17]. There are several recognised nucleotide/nucleoside inhibitors targeting
the polymerase site of DENVRdRp [18–20]. These inhibitors target the DENVRdRp activity
that causes the termination of growing RNA strands. However, there is always a possibility
of off-target side effects [21]. Thus, allosteric binding sites were prioritised to mitigate the
risk of off-target effects. Binding of an inhibitor at the allosteric site can cause conforma-
tional changes in the RdRp protein, and results in inhibition of RNA transcription [22].
These allosteric site binders/inhibitors are known as non-nucleoside inhibitors (NNIs).
DENVRdRp has been characterised as having one allosteric site called an “N-pocket”, which
allows small molecules to bind to it, potentially resulting in conformational changes of the
active site [14–16].

Drug repurposing has attracted significant attention from pharmaceutical companies
and researchers, offering the chance to find new clinical indications for approved or failed
drugs [23]. In the case of DENV, several therapeutic molecules have been repurposed
for roles in controlling DENV infection, including antidiabetic drugs, anti-cholesteremic
drugs, antihistamines, antipsychotic drugs, antibiotics, antiparasitic agents, and antimalar-
ial drugs [24,25]. The skin disease drugs aminolevulinic acid and azelaic acid, the an-
ticancer drug mitoxantrone, and the antimalarial drug quinine have been repurposed
for DENV [26]. Previously, in silico methods were applied for drug repurposing against
DENV, ZIKV, and CHIKV proteins [27]. Omics-data-based drug repurposing has also been
used against DENV [28]. For instance, a pharmacophore model was reported to design a
drug-repurposing architecture for NS3 proteases against DENV infection [29].

This study reports the in silico testing and validation of FDA-approved drugs against
the allosteric site (N-pocket) of the DENVRdRp domain. Here, the known allosteric site
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binders of RdRp were used to create a pharmacophore model essential for the binding of
molecules to the allosteric site. Furthermore, this pharmacophore was screened against
approved drug compounds to examine the drug repurposing case against the DENV RdRp
protein. The screened drug compounds were further processed through structure-based
screening to determine their binding affinity scores using the MM/GBSA method. Eventu-
ally, four drug compounds—(a) desmopressin, (b) rutin, (c) lypressin, and (d) lanreotide—
were selected for final molecular dynamics (MD) simulations to determine the dynamicity
of their binding with the RdRp protein. This study shows the binding stability of these four
approved drug compounds and their binding with DENVRdRp at its allosteric site, with the
potential to cause conformational changes and inhibit DENV infection.

2. Methodology
2.1. Structure Collection and Preparation

The protein structure of the DENVRdRp domain (PDB ID: 5K5M) [14] solved at 2.01 Å
resolution was sourced from the RCSB Protein Data Bank (PDB) [30]. Before computational
analysis, the protein structure was processed by adding polar hydrogen atoms and bond
orders using the protein preparation wizard of the Maestro-Schrödinger suite [31–33].
Moreover, residual protonation states were determined by PROPKA at pH 7.0, and to
remove the steric clashes, restrained minimisation using the Optimized Potentials for Liquid
Simulations 2005 (OPLS-2005) force field was performed on the protein structure using the
Maestro-Schrödinger suite (tool) [31–33]. A total of 41 known inhibitors of DENVRdRp were
collected from the DenvInD database [34] for generation of the pharmacophore modelling
hypothesis. Three-dimensional (3D) structures of known inhibitors were collected from
the PubChem database using fetched PubChem IDs [35], and were pre-processed using
the LigPrep module in the Schrödinger suite [36]. In ligand preparation, each ligand was
considered for at least 32 tautomeric conformations using EPIK state penalty at pH 7.0± 2.0
with OPLS-2005 force field with other default parameters. Likewise, FDA approved drugs
were downloaded from NCGC Pharmaceutical Collection (NPC) resource and prepared
under similar parameters for ligand-based and structure-based screening using LigPrep
module in the Schrödinger suite [36,37].

2.2. Pharmacophore Modelling and Ligand-Based Screening

The pharmacophore model was built using 41 known inhibitors of DENVRdRp col-
lected from the DenvInD database [34]. The pharmacophore features considered included
acceptor (A), donor (D), hydrophobic (H), negative (N), positive (P), and aromatic rings
(R). We started by defining the hypothesis panel, where we set the number of features
in the hypothesis as 4–5, creating a pharmacophore with a minimum of 4 points and a
maximum of 5 points. When compounds were aligned, these features would be searched.
The geometric arrangement of these features would be different in different compounds;
thus, there was a requirement of a minimum match of the hypothesis within the complete
library (41 compounds). Here, the minimum percentage of hypothesis matching was set to
50%; this implies that at least 50% of the compounds should have these features, with simi-
lar geometric arrangement. Selected common features in the pharmacophore hypothesis
were used to perform ligand-based screening of the FDA’s approved drug database. All
of these predictions were performed by employing the Phase program of the Schrodinger
suite [38–40].

2.3. Structure-Based Virtual Screening

Pharmacophore screening resulted in 221 drugs, which were further screened using
structure-based virtual screening (SBVS), deploying a docking exercise against the protein
allosteric site. The Glide module of the Schrödinger suite [41–44] was used for the structure-
based screening. Glide has two protocols for screening: (1) SP (standard-precision) and
(2) XP (extra-precision). The SP algorithm was used first on the 221 compounds, and the
top 50% (111 compounds) were selected for further testing with the XP algorithm, the top
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25% of which (27 compounds) were selected for final energy estimation. Here, the docking
grid of the protein was prepared using the allosteric residues (K800, Q802, and R729) in the
co-crystallised ligand 68T of the RdRp PDB structure designed using the Grid Generation
tool of the Schrödinger suite [41–44]. Under similar conditions, the native ligand 68T was
removed and re-docked using the XP protocol in the selected pocket and binding pose,
with the highest docking score taken as a positive control for comparative analysis. All of
the docking simulations were performed under the OPLS-2005 force field.

2.4. MM/GBSA Binding Free Energy

The docked complexes were further assessed using the MM/GBSA module of the
Prime Schrödinger suite [45]. This module has molecular mechanics/generalised Born
surface area components [46], and calculates the free energy change of binding using a
continuum solvation model. It is composed of gas-phase energy (MM) that represents the
molecular mechanic terms, electrostatic solvation energy (GB), and non-polar solvation
energy (SA). Free energy calculated by the Prime MM/GBSA module includes (1) free
protein = “Receptor”, (2) free ligand = “Ligand”, (3) complex = “Complex”, (4) receptor
from complex, and (5) ligand from complex. Furthermore, these energies were used for
the calculation of strain and binding free energy. The ∆G binding energy of the complex
(protein–ligand) was calculated under the OPLS-2005 force field as a difference between
the free energy of the complex and the free energy of the receptor and ligand alone (as
shown in Equation (1)):

∆GBind = GComplex(minimised) −
(

GReceptor (minimised) − GLigand (minimised)

)
(1)

where:
∆Gbind = ∆H − T∆S ≈ ∆Egas + ∆Gsol − T∆S (1.1)

∆Egas = ∆Eint + ∆EELE + ∆EVDW (1.2)

∆Gsol = ∆GGB + ∆GSurf (1.3)

where ∆GBind: change in binding free energy; GComplex(minimized): free energy of the complex;
GReceptor (minimised): free energy of the receptor; GLigand (minimised): free energy of the ligand;
∆H: change in enthalpy; ∆S: change in entropy (neglected in this equation ≈ 0); ∆Egas:
change in gas-phase interaction energy; ∆Eint: change in internal energy (no change, as the
same receptor and ligand are considered for the trajectory ≈ 0); ∆Gsol: change in solvation
energy; ∆GGB: polar solvation energy; ∆Gsurf: non-polar solvation energy.

2.5. Molecular Dynamics Simulation

The dynamic nature of protein–ligand complexes can be studied using molecular
dynamics simulations. This was performed using the free academic Desmond-Maestro
2018-4 package [32,33,47,48]. The protein–ligand complex was placed at the centre of
a 10 Å × 10 Å × 10 Å orthorhombic box, solvated with water (TIP4P: transferable inter-
molecular potential 4-point model). Salt was added at a 0.15 M concentration to simulate
physiological conditions. Furthermore, the system was neutralised using Na+ and Cl− ions.
The complete system was minimised and processed for 100 ns simulation under the NPT
ensemble using the OPLS-2005 force field at 300 K temperature and 1.01325 bar pressure.
We used the default relaxation protocol provided by Desmond. The complete trajectory
obtained from the simulation could be analysed using various metrics to determine the
conformational stability of the molecule. The evaluation metrics used were (1) RMSD
(root-mean-square deviation) and (2) RMSF (root-mean-square fluctuation).

RMSDX =

√
1
N

N

∑
i=1

(r′i(tx)− ri(tre f ))
2 (2)
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where N: the number of atoms selected; tref: the reference time at zero interval; ri: the
position of the atoms under evaluation in frame x; r’

i: the position of the atoms in the
reference frame; tx: the time frame for RMSD calculation.

RMSFi =

√
1
T

T

∑
t=1

(r′i(t)− ri(tre f ))
2 (3)

where T: the simulation interval; tref: the reference time; ri: the position of the atoms under
evaluation in frame x; r’

i: the position of the atoms in the reference frame.

2.6. End-Point Binding Free Energy Calculation

Following the simulations, the last 10 ns of the simulation trajectory was used for
calculating the molecular mechanics/generalised Born surface area (MM/GBSA) binding
free energies using the OPLS-2005 force field in the Prime MM/GBSA module in the
Schrödinger suite [45]. Solvent molecules and ions were excluded from the last 10 ns of the
simulation trajectory, and ∆G was calculated as per Equation (1).

3. Results
3.1. Pharmacophore Model Generation and Screening

This study started with 41 known inhibitors of DENVRdRp; Supplementary Table S1
shows the PubChem IDs and IC50 values of these known DENVRdRp allosteric site binders.
Table 1 shows the molecular masses, hydrogen bond donors, hydrogen bond acceptors,
and aromatic components of all 41 molecules. Table S2 shows the IUPAC names of all
41 compounds considered for pharmacophore building. These molecules were used to
construct 4–5-point pharmacophore descriptors with the selection criterion of existence
among 50% of the compounds. Hydrogen bond donors, hydrogen bond acceptors, aromatic
rings, hydrophobicity, negative ions, and positive ions were considered as descriptors, and
were used in the development of a pharmacophore model containing two hydrogen bond
acceptors and two aromatic rings, as shown in Figure 1; this is often referred to as the best
common pharmacophore hypothesis (CPH). This given CPH (Figure 1) was found in 35 out
of the 41 compounds used in pharmacophore modelling. Furthermore, the four-point
pharmacophore built using the known set of 41 compounds was screened against the FDA’s
approved drug compounds library. Supplementary Table S3 shows the number of sites
matched in each drug compound and the type of matched pharmacophore. It was found
that 221 approved drugs followed the pharmacophore screening criteria shown in Table S3.
The screened compounds were additionally validated by structure-based screening, where
the binding site of RdRp was used (guided by native ligands) to dock all 221 compounds.
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Figure 1. Pharmacophore model developed using 41 known RdRp inhibitors, with 4–5 selected
pharmacophore features observed among 35 compounds. A2 (acceptor) and A4 (acceptor) are
hydrogen bond acceptors (arrows), while R9 and R11 are the aromatic rings (ring), constituting the
4-point pharmacophore presented over the reference ligand 68T inhibitor.
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Table 1. Physicochemical properties of the 41 compounds used for building the pharmacophore model.

S. No. PubChem ID HBA HBD Molecular
Mass

Number
of Rings

Aromatic
Bonds

1 6439576 60 3 618.842 6 6
2 21672233 28 4 376.357 3 12
3 44577154 37 5 526.489 4 18
4 46898022 26 3 375.406 4 16
5 49799036 32 4 418.473 4 16
6 49799133 28 3 339.395 4 16
7 56834067 32 3 458.502 4 18
8 56834069 48 4 660.751 5 24
9 56834070 48 4 660.751 5 24

10 56834169 48 4 660.751 5 24
11 56834170 48 4 660.751 5 24
12 56834171 32 3 458.502 4 18
13 56834172 32 3 458.502 4 18
14 56834173 32 3 458.502 4 18
15 56834283 32 3 458.502 4 18
16 57409245 49 6 670.614 5 18
17 57409246 50 7 698.624 5 18
18 57409247 47 6 680.609 5 18
19 60165190 43 5 646.594 5 24
20 70683874 47 6 680.609 5 18
21 118717693 26 5 538.458 6 34
22 118779901 22 1 301.301 4 11
23 118797900 16 2 276.308 2 11
24 118797902 23 2 379.451 2 11
25 121232415 29 2 487.545 3 17
26 127043014 16 2 288.318 2 11
27 127043015 18 2 302.345 2 11
28 127043016 17 2 312.346 3 16
29 127043018 19 2 324.397 3 16
30 127043019 23 2 379.451 2 11
31 127043024 25 2 441.52 3 17
32 127043025 26 2 457.519 3 17
33 127043211 25 2 491.964 3 17
34 127043212 27 2 492.567 4 22
35 127043361 15 2 310.753 2 11
36 127044830 20 4 410.804 4 23
37 127044864 18 2 302.345 2 11
38 127045349 15 2 355.204 2 11
39 137243533 18 2 342.369 3 16
40 57409350 52 5 784.715 6 24
41 135434165 32 7 507.181 3 10

3.2. Structure-Based Screening

The standard-precision algorithm was used on 221 drug compounds with the 50%
selection criterion, resulting in 111 compounds for the next phase. Here, a 25% selection
criterion was applied on the XP score. Finally, 22 approved drug compounds were selected
based on XP scores, as shown in Figure 2; 68T from the PDB co-crystallised ligand was
used as a control. Iotrolan showed the best XP binding score, but it was eliminated from
the list as it is a radiocontrast element used in X-ray testing. The top four compounds after
iotrolan were selected; these compounds were (1) desmopressin, (2) lypressin, (3) rutin,
and (4) lanreotide. The chemical structures of the top five selected compounds are shown
in Figure 3. These compounds showed strong binding energy with DENVRdRp.
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Desmopressin, rutin, lypressin and lanreotide showed −10.57, −13.43, −9.84, and
−8.72 kcal/mol binding energies, respectively. Interestingly, rutin, which is the smallest
compound among the four, showed the greatest binding energy (−13.43 kcal/mol). Fur-
thermore, the MM/GBSA energies of these compounds were also calculated for their best
docked poses. Here, desmopressin showed the best MM/GBSA energy (−69.77 kcal/mol),
while rutin and lypressin had similar results (−67.06 and −67.65 kcal/mol, respectively).
Lanreotide had the lowest binding energy based on MM/GBSA, with −64.7 kcal/mol.
Moreover, all four compounds showed high affinity, and were significantly similar in terms
of their MM/GBSA scores (Table 2).

Figure 3 also shows the 68T ligand (sourced from PDB: 5K5M) that was used as a
control molecule in this study. Desmopressin is a larger molecule, with a molecular mass
of 1069.2, and is used in the treatment of many medical conditions, including bedwetting,
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diabetes insipidus, bleeding disorders, and nightmare urination [49]. Rutin is a plant-
based phenolic compound that belongs to the flavonoid group, with a molecular mass of
610.51. It is mainly used as a vitamin supplement approved by the FDA [50]. Lypressin
is another larger compound similar to desmopressin, with a molecular mass of 1056.2;
medical application of lypressin is very similar to that of desmopressin [51]. Lanreotide is
another heavy molecule screened in this study, used for the treatment of acromegaly. It has
also shown activity against non-endocrine tumours, and has been extensively researched
for use as an anti-tumour agent [52]. Figure 3 shows that the compounds screened in
structure-based screening are rich in aromatic rings and hydrogen bond acceptors. In the
presence of these two functional chemical moieties, there is a high chance of hydrogen
bond formation and stacking interaction. It can be observed that these molecules have
complex scaffolds that reduce the number of possible structural conformational variations.
This also increases the molecular stability of these compounds in the binding region of the
RdRp protein.
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Figure 3. Top four approved drug compounds selected—(a) desmopressin, (b) rutin, (c) lypressin,
and (d) lanreotide—that showed the minimum MM/GBSA free energies in structure-based screening
of 27 potential hits; (e) 68T is the control ligand co-crystallised with the protein structure, used as a
reference compound.
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Table 2. Binding scores of the top four screened drug compounds against DENV RdRp.

S.No. Drugs Docking Score
(kcal/mol)

XP GScore
(kcal/mol)

MMGBSA
∆GBind

(kcal/mol)

1 Iotrolan −14.071 −14.965 −88.58
2 Desmopressin −10.527 −10.527 −69.77
3 Rutin −13.435 −13.463 −67.06
4 Lypressin −9.84 −10.597 −67.65
5 Lanreotide −8.727 −9.436 −64.7
6 Bosentan −7.194 −7.194 −64.61
7 Sennoside −11.979 −11.987 −62.2
8 Valrubicin −8.814 −8.814 −58.41
9 Sincalide −9.432 −9.449 −53.1
10 Riboflavin −8.185 −8.185 −48.71
11 Daunorubicin −7.349 −7.376 −47.72
12 Idarubicin −7.251 −7.3 −47.51
13 Deferasirox −8.929 −8.935 −46.56

14 2-(3,4-Dihydroxyphenyl)-3,5,7-
Trihydroxy-4h-chromen-4-one −7.347 −7.379 −45.74

15 Genestein −6.912 −6.937 −43
16 Olmesartan medoxomil −7.242 −7.283 −42.33
17 Isobarbaloin −8.356 −8.356 −39.58
18 Doxorubicin −9.315 −9.342 −38.01
19 Urispas −7.21 −7.21 −36.82
20 Alatrofloxacin −7.455 −8.841 −30.63
21 Iodixanol −11.839 −11.839 −29.7
22 Dicoumarol −7.82 −7.935 −11.43
23 2-Methyl-1,4-naphthalenediol −7.121 −8.539 −6.99

3.3. Molecular Interactions

The top docked poses were analysed to determine the close interactions of ligands
with the binding site residues of the RdRp protein. Furthermore, these interactions were
categorised into hydrogen bonds, hydrophobic interactions, polar contacts, π–π interactions,
salt bridges, and negative/positive ion interactions. Figure 4 shows the 3D placement of
ligands in the binding cavity of the protein, along with a 2D interaction plot of various
binding site residues with the ligands of interest. The control ligand 68T, extracted from the
co-crystallised experimental structure, was also docked, and the best pose was considered
to establish the accuracy and credibility of the protocol. The docked pose of this ligand
showed that K800 and E802 were involved in the formation of hydrogen bonds (H-bonds)
with the hydroxyl (-OH) group of the ligand. Both of these interactions were also detected
in the experimental crystal structure 5K5M. In addition, R729 formed a hydrogen bond with
the oxygen atom of the 8-quinolinol ring of the ligand. During docking, Glide was used
to detect the hydrogen bonds in the protein–ligand complex. Glide’s H-bond standards
are more lenient than Maestro’s. H-bonds with lengths and angles that differ greatly from
“perfect” (1.65 Å H-A distance, 180◦ D-H..A angle) are partially rewarded by Glide. Similar
interactions were again detected in the experimental structure. These data confirmed the
sanctity of the docking protocol. The 3D placement of the ligands in the binding cavity, as
shown in Figure 4, indicates that apart from Rutin, the other three screened compounds
were found at a similar geometrical location compared to the control ligand molecule. The
priming loop that acts as a critical structural domain of the allosteric N-pocket has T794,
which forms a polar contact with the native ligand and desmopressin. Supplementary Table
S4 shows that most of the native interacting residues in the control ligand molecule were
also present in the proximity of the screened compound complexes. Desmopressin showed
7 H-bonds, rutin had 3 H-bonds, lypressin had 10 H-bonds, and lanreotide had 5 H-bonds
found in their docked complexes. These numbers show the stability of the complexes
with their respective ligands. D664 formed H-bonds with desmopressin, lypressin, and
lanreotide, and proved to be the most promising residue for the interaction. K402 and
R482 showed positive ion contacts in all four compounds. R729 and R737, which were
found to form H-bonds in the control compound 68T, also showed positive ion contacts
and π–π interactions in desmopressin. The binding behaviour of desmopressin showed the
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most overlap with the native ligand’s interactions compared to lypressin, lanreotide, and
rutin. The numbers of polar contacts (Table 2) and hydrogen bonds exhibited by all of the
ligand molecules confirm the ability of these compounds to bind to the allosteric site of
RdRp. Close contacts with the critical allosteric site residues also indicate the possibility of
conformational disruptions that can affect the catalytic activity of RdRp by virtue of the
binding of these compounds.
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3.4. Explicit Molecular Dynamics Simulations

Following the docking of the hit compounds shown in Figure 3 with the RdRp protein,
molecular dynamics simulations were performed to analyse the dynamic binding behaviour
of these compounds. Explicit-solvent 100 ns simulations were run on the best docked poses
for each compound. Figure 5 shows the initial and final pose of each molecule obtained
from the simulations, indicating that the final conformation had a marginal effect on the
geometric location of the compounds as compared with their initial positioning. This
confirms the thermodynamic stability of these compounds within the binding pocket of
the RdRp protein. It also indicates that the majority of interactions shown in Figure 5
were retained during the simulations. Although the pictorial representation of the initial
and final frames did not show any significant deviation, more precise calculation could
be performed using RMSD analysis. The molecular dynamics simulations were repeated
twice for better analysis.
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3.4.1. RMSD Fluctuation

Protein and ligand RMSD was calculated for the complete trajectory to measure the
equilibration stage of the protein–ligand complexes. Protein RMSD was calculated by
aligning the initial reference frame with the complete trajectory. Any deviation below
3 Å was considered to be within the acceptable range of deviation. A line parallel to the
X-axis on the RMSD plot shows the stability of the protein during the simulation, with
no or minimum structural fluctuation. Protein RMSD is shown in blue in Figure 6; all of
the complexes with the screened compounds showed a very stable RMSD pattern for the
protein. However, in the case of the native ligand 68T, the protein showed conformational
variation after 60 ns, but then stabilised. Moreover, all of these cases of protein RMSD
shown in Figure 6 have RMSD below 3 Å, which falls within the acceptable range. Ligand
RMSD from the trajectory showed how stable the ligand was in the protein’s binding site.
This was calculated by aligning the protein–ligand complex with the protein backbone of
the reference conformation (first frame), and the RMSD of the ligand was calculated for
the heavy atoms. Desmopressin and 68T showed the most stable patterns, and had RMSD
< 3 Å compared with the first frame conformation. Rutin, which is the smallest molecule
among the hit compounds, showed high fluctuation of 6 Å, and varied throughout the
simulation. Lypressin showed ~4–5 Å RMSD compared to the original initial frame, but
it stabilised after 60 ns of simulation time. This indicates that it showed initial motion
in the binding pocket, but then retained a similar conformation for the remainder of the
simulation. Lanreotide showed the greatest stability within the binding pocket, as its RMSD
curve was parallel to the X-axis for the entire simulation, at around 4 Å. Initially, it jumped
to 4 Å RMSD in <10 ns simulation time, but then remained in the same conformation for
the rest of the simulation. The RMSD plot of the repeated molecular dynamics simulations
shows very small changes (Figure S4). The RMSD plots and Lig-fit-Lig were also studied
for better understanding (Figure S3). The final pose analysis (Figure 5) and RMSD plots
(Figure 6) suggest that slight variations in the RMSD values of the docked ligands—except
for desmopressin and 68T—result from the change in the original docked position in
comparison to the first pose (reference pose) of the 100 ns MD simulation trajectory.

3.4.2. RMSF Fluctuation

Similarly, the root-mean-square fluctuation (RMSF) for each residue of the protein
was also measured for the complete simulation trajectory. All simulations showed similar
RMSF behaviour, where the N-terminal of the protein fluctuated more while the C-terminal
fluctuated less. Figure S1 shows the RMSF for the protein molecule. Here, none of the
critical residues (i.e., R729, R737, K800, E802) showed any significant fluctuation in the
conformational space. This further indicates the binding stability of the protein molecule.

3.4.3. MD Trajectory Interaction

The molecular interactions of these ligands with RdRp during the simulation were
determined based on the type and name of the residues from the allosteric site (as shown in
Figure 7 and Figure S2) of RdRp that participated in binding. R729 and K800 showed direct
hydrogen bonding with the hydroxyl group of 68T for 79% of the total frame, confirming
their strong presence in interaction. R729 was found as another critical residue, forming
one direct (35%) and two water-mediated interactions with 68T (48% and 39%). T794
also formed two H-bonds for 40% and 32% of the simulation time—one directly, and one
through a water molecule. In addition, T793 formed one direct hydrogen bond for 56% of
the total frames, while Y758 did so for 36%. H711 and W795 were involved in ring-stacking
interactions for 32–37% of the total frames. These interactions were also searched for the
other compounds; R729 was found to engage in H-bonding with desmopressin for 42% of
the simulation frames, showing 15 additional H-bonds that were not found in the control
ligand. R737 showed ring interaction with desmopressin for 59% of the frames. In the case
of rutin, we did not find any common interactions shared with the control reference ligand
68T. However, it showed four H-bonds with different sets of residues. Similarly, lypressin
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showed six H-bonds, where D663, D664, and I797 formed H-bonds in >90% of the frames.
Lanreotide also did not have any common residues that formed H-bonds in 68T, but it
also showed 14 H-bonds. This confirms that although there were no common interactions
compared with the native ligand’s interacting residues, the stability of the molecules is
high in the binding site.
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3.4.4. MD Trajectory MM/GBSA

Furthermore, the MM/GBSA binding free energy was calculated for the last 10 ns
of the trajectory to determine the stability of the complexes in the MD simulations. Ly-
pressin showed the lowest ∆G MM/GBSA (−100 kcal/mol), while rutin had the weakest
binding energy, with −40 kcal/mol ∆G. The control molecule 68T and desmopressin had
MM/GBSA ∆G of−70 kcal/mol, while lanreotide had−82 kcal/mol. The main contributor
to ∆G was van der Waals energy for all of the molecules. Covalent bonds, packing, and
H-bonds contributed minimally to the total ∆G. These data show that rutin is a weaker
binder compared to the control molecule (68T), while lypressin, desmopressin, and lan-
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reotide have better binding affinity for proteins than the control compound (Table S5). The
bar chart shown in Figure 8 illustrates the MM/GBSA ∆G for all five compounds.

Viruses 2022, 14, x  17 of 24 
 

 

3.4.4. MD Trajectory MM/GBSA 
Furthermore, the MM/GBSA binding free energy was calculated for the last 10 ns of 

the trajectory to determine the stability of the complexes in the MD simulations. Lypressin 
showed the lowest ΔG MM/GBSA (−100 kcal/mol), while rutin had the weakest binding 
energy, with −40 kcal/mol ΔG. The control molecule 68T and desmopressin had 
MM/GBSA ΔG of −70 kcal/mol, while lanreotide had −82 kcal/mol. The main contributor 
to ΔG was van der Waals energy for all of the molecules. Covalent bonds, packing, and 
H-bonds contributed minimally to the total ΔG. These data show that rutin is a weaker 
binder compared to the control molecule (68T), while lypressin, desmopressin, and lanre-
otide have better binding affinity for proteins than the control compound (Table S5). The 
bar chart shown in Figure 8 illustrates the MM/GBSA ΔG for all five compounds.  

 
Figure 8. Protein–ligand MM/GBSA binding energy components consisting of total binding energy,
columbic energy, covalent energy, H-bond energy, packing energy, solvent GB energy, and van der
Waals energy calculated over the 100 ns MD simulation trajectory for (a) desmopressin, (b) rutin,
(c) lypressin, (d) lanreotide, and (e) 68T. The interaction fraction on the Y-axis shows the percentage
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3.4.5. Principal Component Analysis

Principal component analysis (PCA) can be used to reduce the dimensions of move-
ment in the MD simulation trajectory, converting all correlated movements of all atoms
into a set of principal components. These principal components are linearly independent.
PCA is a mathematical transformation of data into a new coordinate system in which
the first coordinate reflects the greatest variation, the second coordinate represents the
second greatest variance, and so on. Here, PCA analysis was performed to determine the
relationships between statistically significant conformational deviations generated during
the MD simulations that could be obtained from the trajectory. In desmopressin, the first
three principal components represented 43.4% of total variance, while they represented
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41.5% in rutin, 45.3% in lypressin, 43.5% in lanreotide, and 55% in the control ligand, as
shown in Figure 9a1,b1,c1,d1,e1. Clustering of structures based on conformation and their
conformational variances are shown in Figure 9. All compounds showed two major clusters,
shown in red and black. Desmopressin showed one cluster with lower variance (black),
while the other showed higher variance (red). This also showed that the clusters were
connected in the largest conformational space (PC1 vs. PC2), as there was no discontinuity.
However, in PC2 vs. PC3 for desmopressin, one cluster was entirely overlapped with
another cluster. Focussing on the first two PCAs, desmopressin most resembled the control
ligand (68T), as shown in Figure 9e2. Lypressin was the second closest complex to 68T, as
shown in Figure 9c2. However, all four complexes showed the formation of distinct clusters
in the conformational space.
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pressin, (b1–b4) rutin, (c1–c4) lypressin, (d1–d4) lanreotide, and (e1–e4) the native ligand 68T. Red
and black show the cluster formation.
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4. Discussion

The N-pocket of the RdRp protein constitutes the allosteric site that can control the
overall conformation of the protein and, hence, regulate its enzymatic function. This
pocket is located near the priming loop (amino acids 782–809). In addition, R729 and
R737 form the mouth of the N-pocket. This study was based on the PDB structure 5K5M,
which has a compound bound at the allosteric site. This compound (68T) was used as a
control compound to compare the affinity and binding of the novel screened molecules.
Pharmacophore-based screening was performed using a set of 41 known RdRp binders
that were further restrained using a structure-based docking approach against the FDA’s
approved drug compound library. This study proposed four potential approved drugs that
can bind strongly at the allosteric site of RdRp. K800 and E802 were reported as two major
residues involved in H-bonds of 68T with RdRp in their crystal structure. R729 and R737
interacted with the phosphate moiety of GTP bound with RdRp; thus, binding with these
two residues would certainly alter the incoming NTP substrate. Both of these residues
were found in the proximity of 68T, where R729 formed H-bonds in the crystal structure.
Docking experiments performed in this study showed that R729, K800, and E802 were
involved in H-bonding in the case of 68T, while R737 participated in positive contacts. This
indicates that docking was able to capture the native contacts. The screening protocol used
in this study resulted in four approved drugs as hit compounds: (1) desmopressin, (2) rutin,
(3) lypressin, and (4) lanreotide. The best docked poses of these compounds showed
desmopressin to be the strongest candidate, as it participated in positive contacts with
R737 and R729, while additionally forming π–π interactions with R737. The rest of the hits
showed significant numbers of H-bonds and high binding energy, but could not involve
these critical residues in their interaction. However, rutin showed the greatest affinity
based on its docking score. Furthermore, these compounds’ complexes were subjected
to 100 ns simulations, and their MM/GBSA binding free energies were calculated. Here,
all compounds except for rutin showed better ∆G than the control ligand 68T. Moreover,
the binding was also assessed using molecular interactions for the complete trajectory of
the simulations. Desmopressin again showed interaction with R729 and R737 during the
simulation trajectory, while the other compounds showed high numbers of H-bonds/salt
bridges, but R729, R737, K800, and E802 were not found as interacting residues.

5. Conclusions

The computational study presented showed the potential of rapid screening of ap-
proved drug molecules for use against the RdRp protein of DENV. We used a combination
of ligand-based drug design and structure-based screening to identify hits from the FDA’s
approved drug library. Desmopressin, rutin, lypressin, and lanreotide are four drug
molecules that were screened from the pipeline. The protein structure was taken from
the Protein Data Bank (PDB ID: 5K5M) and its co-crystallised ligand (68T) was used as a
control compound for conducting the comparative study. All four screened compounds
showed high MM/GBSA binding energies with the allosteric binding site of the protein.
Ultimately, this study proposes the approved drug compound desmopressin as a potential
allosteric site inhibitor for RdRp of DENV, as it directly interacts with the critical residues
of the N-pocket. Direct interaction with these residues can certainly cause conformational
changes in the overall structure of the protein, which can further inhibit its enzymatic
action. Additionally, rutin, lypressin, and lanreotide also showed high predicted binding
affinity at the N-pocket, but no direct strong bonding with these critical N-pocket residues.
Future enzyme-based assays could be used to further validate the computational findings
reported in this paper.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v14081827/s1. Table S1. List of known RdRp compounds with their
Pubchem ID and IC50 taken for pharmacophore modelling. Table S2. IUPAC names of compounds
used for pharmacophore model generation. Table S3. Number and type of pharmacophore points
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matched in ligand-based screening against approved drug compound library. Table S4. Type and
name of residues involved in interaction with RdRp protein for the selected four compounds and
the native ligand in their best docked poses with the protein. Table S5. Calculated net binding free
energy for the selected docked poses of DENVRdRp-natural compounds snapshots from the last 10 ns
interval of 100 ns MD simulation. Figure S1. RMSF of RdRp protein complexed with (a) Demopressin,
(b) Rutin, (c) Lypressin, and (d) Lanreotide and (e) Native Ligand- 68T. Herein, residue number 1
is 273 and end at 617 is 889 according to the crystal structure of the DENVRdRp. Figure S2. 2D
interaction diagram of protein-ligand interactions maps for Dengue RdRp with the control Ligand-
68T extracted from the total 100 ns MD simulations. Figure S3. Root mean square deviation (RMSD) of
protein and ligand and, ligand and ligand for the docked poses obtained from 100 ns MD simulation
for (a) Desmopressin, (b) Rutin, (c) Lypressin, (d) Lanreotide and (e) 68T. Cα atoms of protein is used
for RMSD calculation (blue), Ligand RMSD (red) is calculated for heavy atoms by fitting the protein
ligand complex, Ligand RMSD (green) is calculated for heavy atoms by fitting the ligand -ligand
complex. In case of control Cα atoms of protein is used for RMSD calculation (blue), Ligand RMSD
(pink) is calculated for heavy atoms by fitting the protein ligand complex, Ligand RMSD (orange)
is calculated for heavy atoms by fitting the ligand -ligand complex. Figure S4. Root mean square
deviation (RMSD) of protein and ligand and, ligand and ligand for the docked poses obtained from
100 ns MD simulation for (a) Desmopressin, (b) Rutin, (c) Lypressin, (d) Lanreotide and (e) 68T. Cα

atoms of protein is used for RMSD calculation (blue), Ligand RMSD (red) is calculated for heavy
atoms by fitting the protein ligand complex. In case of control Cα atoms of protein is used for RMSD
calculation (blue), Ligand RMSD (pink) is calculated for heavy atoms by fitting the protein ligand
complex [15,53–56].
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