
pharmACOphore: Multiple Flexible Ligand Alignment Based on

Ant Colony Optimization

Oliver Korb,†,‡ Peter Monecke,§ Gerhard Hessler,§ Thomas Stützle,| and Thomas E. Exner*,†
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The flexible superimposition of biologically active ligands is a crucial step in ligand-based drug design. Here we
present pharmACOphore, a new approach for pairwise as well as multiple flexible alignment of ligands based on
ant colony optimization (ACO; Dorigo, M.; Stützle, T. Ant Colony Optimization; MIT Press: Cambridge, MA,
USA, 2004). An empirical scoring function is used, which describes ligand similarity by minimizing the
distance of pharmacophoric features. The scoring function was parametrized on pairwise alignments of
ligand sets for four proteins from diverse protein families (cyclooxygenase-2, cyclin-dependent kinase 2,

factor Xa and peroxisome proliferator-actiVated receptor γ). The derived parameters were assessed with
respect to pose prediction performance on the independent FlexS data set (Lemmen, C.; Lengauer, T.; Klebe,
G. J. Med. Chem. 1998, 41, 4502-4520) in exhausting pairwise alignments. Additionally, multiple flexible
alignment experiments were carried out for the pharmacologically relevant targets trypsin and poly (ADP-

ribose) polymerase (PARP). The results obtained show that the new procedure provides a robust and efficient
way for the pairwise as well as multiple flexible alignment of small molecules.

INTRODUCTION

The binding of a ligand to its protein target requires
complementarity of both binding partners in terms of shape
and electrostatics. Optimization of such interactions to
increase potency is a major goal in drug design. Although
the number of three-dimensional protein-ligand structures
is permanently increasing, there are still many pharmaceuti-
cally relevant proteins for which no three-dimensional
structure is known. In this situation, ligand-based design
techniques like 3D-QSAR (three-dimensional quantitatiVe

structure-actiVity relationship) or pharmacophore-based
methods are used for the optimization of ligand potency. A
prerequisite for these methods is the molecular alignment
of biologically active ligands.

Different approaches to the alignment problem have been
proposed in the literature. Only few of these will be
highlighted, while we refer to the literature for a more
detailed overview.1,2 A flexible alignment algorithm inspired
by the docking algorithm FlexX,3 called FlexS,4 is based on
a combinatorial matching procedure. It allows for the flexible
superimposition of a ligand structure onto a rigid template
molecule. Like in FlexX, the ligand structure is divided into
fragments, which are reassembled during the search process
guided by a similarity-based scoring function. Other
approaches5-8 use genetic algorithms (GA).9 The approach
published by Jones et al.5 is inspired by the genetic algorithm

used in the docking approach GOLD10 and allows for the
multiple flexible alignment of ligand structures. In Handschuh
et al.,7 the GA is combined with a numerical optimization
method and allows two ligand structures to adapt flexibly to
each other. In FLAME8 (FLexibly Align MolEcules), pairwise
and multiple flexible ligand alignment can be performed. A
multiple flexible alignment approach called QUASI is
proposed by Todorov et al.11 The ligands are aligned flexibly
with respect to a receptor model, which is coevolved
simultaneously with the flexible ligand alignment. In this
way, in addition to the ligand superimposition also a receptor
interaction model is retrieved, which can be used for ligand-
based virtual screening. The optimization itself is carried out
using a Monte Carlo stochastic tunneling procedure.
ROCS12-14 (Rapid OVerlay of Chemical Structures) from
OpenEye is a shape matching application maximizing the
overlap of smooth Gaussian functions representing the
molecular volumes of the ligand structures. Shin et al.15 used
a modified SEAL similarity index16 combined with an energy
penalty term to generate pairwise alignments. LigMatch17

is based on a geometric hashing method. Other approaches
generate multiple alignments by combinations of pairwise
ones. Jones et al.18 select the pairwise alignments to be
combined by a genetic algorithm. Another method is to
identify pharmacophore features in pairwise alignments and
then to merge all alignments exhibiting significant subsets
of corresponding features.19 MOGA20-22 uses a multiob-
jective genetic algorithm to generate conformations of the
ligands and a mapping of corresponding pharmacophoric
points, which are then matched onto each other using least-
squares fitting. Noteworthy, this approach also accounts for
the problem of partial overlap.21
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In recent years, numerous new methods have been
described indicating that the alignment problem is not
considered to be solved.23 An active field of research is the
identification of a fair balance of internal conformational
energy and similarity score for 3D alignments of molecules.
Also, the alignment scoring function may not be easily
customizable.8 Especially in the context of target-specific
scoring functions, the ability to fine-tune the influence of
specific scoring function contributions is of major impor-
tance. Here, we present a new approach called pharmA-
COphore for the structural alignment of multiple ligands
addressing these problems. We used a novel algorithm in
combination with an extensive parametrization process to
obtain a similarity-based alignment scoring function of a
nonphysical nature. The method is based on a hybrid ant

colony optimization algorithm (ACO),6 which combines a
global optimization based on a MAX-MIN Ant System24

with a local search by the Nelder Mead simplex algorithm.25

This hybrid algorithm was adopted from our protein-ligand
docking software PLANTS26-28 (Protein-Ligand ANT Sys-

tem), since the conformational search can be described
identically in both problems. While for the protein-ligand
docking problem the scoring function rewards complemen-
tarity of ligand and protein, the similarity of ligands is
rewarded in the case of the alignment problem. The descrip-
tion of molecular similarity is based on pharmacophoric
features like hydrogen bond donors and acceptors as well
as ring systems. The identification of corresponding phar-
macophoric features in our method solely relies on the
accuracy of the scoring function. Therefore we decided to
carry out an extensive parametrization process. This process
allows us to balance the various scoring contributions, for
example, intramolecular conformational strain vs intermo-
lecular alignment of pharmacophoric features. The new
pharmACOphore approach can be applied to the multiple
flexible alignment of ligands as well as the pairwise
alignment of ligand structures. We demonstrate the successful
application of the new algorithm to both problems and
discuss some limitations.

MATERIALS AND METHODS

Ant algorithms are inspired by the pheromone trail laying
and following behavior of some ant species, which are
capable of finding a shortest path between their nest and a
food source. These ants use indirect communication in the
form of pheromone trails to mark paths between their nest
and a food source. They tend to choose paths with high
pheromone intensities with a higher probability, thereby
reinforcing the pheromone trail. In ACO, an artificial ant
colony is employed to mimic the trail-laying behavior of real
ants. The ants deposit artificial pheromone trails to mark
solution components of the given optimization problem. The
amount of pheromone deposited is thereby usually dependent
on the solution quality. This artificial pheromone trail
information is modified in subsequent iterations to increase
the probability of generating high-quality solutions. In the
following, we will describe how the ACO metaheuristic can
be used in the context of molecular superimposition. The
pharmACOphore approach is based on the same algorithmic
outline as our protein-ligand docking algorithm, PLANTS,
which is described in detail elsewhere.26-28 Therefore, we
will only highlight the modifications necessary to apply the
approach in ligand-based drug design here.

Problem Representation and Algorithm. In order to
apply the hybrid ant colony optimization algorithm as
employed in PLANTS, the alignment problem must be
represented appropriately (for an illustration, see Figure 1).
In general, the approach takes into account translational,
rotational, and torsional degrees of freedom of all ligand
structures to be aligned. Ring flexibility is not accounted for
in this publication. Nevertheless, the approach is capable of
performing ring corner flipping. When multiple flexible
ligand alignment is performed, the translational and rotational
degrees of freedom for one ligand of the given ligand set,
Slig, can be neglected because these degrees of freedom only
influence the position and orientation of the final alignment.
Hence, the problem dimension becomes n ) 6(|Slig| - 1) +
∑l∈Slig

rl, where rl is the number of rotatable bonds in ligand
l. For the pairwise alignment problem, where all degrees of

Figure 1. Illustration of the problem encoding exemplified for the pairwise alignment problem. The template structure is shown in magenta,
while the flexible ligand is color-coded according to the atom type. The yellow sphere defines the origin of the local coordinate system
represented by the large arrows. Translational as well as rotational degrees of freedom are defined with respect to these three principal axes.
Small arrows mark torsional degrees of freedom, that is, rotatable single bonds not part of a ring system. All these degrees of freedom are
discretized resulting in pheromone Vectors as illustrated in the left part of the picture. The artificial ant colony employed in the ant colony
optimization approach uses this representation to mark favorable values for each degree of freedom by depositing a pheromone trail onto
the appropriate entry of the corresponding pheromone vector. The amount of pheromone deposited is proportional to the objective function
value of the solution.
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freedom for one ligand (template) are kept fixed, the problem
dimension equals n ) 6 + r, where r is the number of
rotatable bonds in the flexible ligand to be aligned. All
continuous variables are discretized, resulting in a pheromone

Vector for each degree of freedom with as many entries as
result from the discretization. In the case of a rotational or
torsional degree of freedom, a discretization step-size of 1°
is used resulting in 360 pheromone vector entries. Transla-
tional degrees of freedom are discretized in 0.1 Å steps, and
ligand translation is performed with respect to the origin of
its local frame of reference (illustrated by a sphere in Figure
1). The translational degrees of freedom of all nonfixed
ligands are restricted to a spherical domain, that is, a
representative point of each ligand (placed in the center of
the molecule) is not allowed to leave an enclosing sphere.
This sphere contains the heavy atoms of all fixed ligands
representing template structures extended by 5 Å. This
methodology follows binding site definitions used in
protein-ligand docking calculations, where usually all
protein residues up to 5-6 Å away from any ligand heavy
atom as given in an experimentally determined structure are
considered.

The artificial ant colony uses the pheromone vector
representation to mark favorable values for each degree of
freedom by depositing a pheromone trail onto the appropriate
entry of the corresponding pheromone vector. The amount
of pheromone deposited directly depends on the solution
quality; that is, more pheromone is deposited for higher
quality solutions as defined by the scoring function. In each
iteration of the ACO algorithm, each ant of the artificial
colony probabilistically constructs a new solution taking the
already existing pheromone trails into account. Thus, vector
entries with a higher pheromone intensity are chosen with a
higher probability. The constructed solutions are then locally
minimized with the Nelder Mead simplex algorithm, and the
iteration-best ant updates the pheromone trails. While the
ACO algorithm explores the search space by global optimi-
zation, the local minimization step focuses on the identifica-
tion of high-quality solutions. This combination of search
exploration and exploitation is especially beneficial in the
case of very rugged fitness landscapes as observed for the
alignment or docking problem. The use of upper and lower
pheromone limits in the MAX-MIN Ant System24 prevents
the algorithm from prematurely converging to suboptimal
solutions. Since each possible value for a degree of freedom
has a nonzero probability of being selected at any stage of
the optimization process, the independent selection of
solution components in the probability-based solution con-
struction step allows it to escape from local minima.
Therefore diverse solutions can still be constructed in
subsequent iterations of the algorithm. In pharmACOphore,
the number of iterations carried out by the ACO algorithm
is set to σ · 100, where the scaling factor σ is set to 1 in
standard settings. For a detailed description of the discreti-
zation procedure, as well as the combination of a MAX-MIN

Ant System with the Nelder Mead simplex algorithm, we
refer to our previous work on PLANTS.26-28

Scoring Function. The scoring function employed in
pharmACOphore consists of a user-configurable part for
describing the ligand similarity, as well as a clash and a
torsional potential for intraligand interactions:

Atom types and the intraligand potentials, that is, the
torsional potential, ftors, and the clash potential, fclash, con-
sidered for each ligand structure separately, are the same as
in the empirical scoring functions used in PLANTS.26 The
similarity part, fsim, is dependent on the distance between
identical pharmacophoric features in the different structures
to be aligned. Internally, pharmACOphore automatically
recognizes several pharmacophoric feature classes, which are
distinguished in distance-based and directional classes. Since
the distance-dependent potential is evaluated for each pair
of features of a specific kind, there is no explicit one-to-one
correspondence of features in multiple ligands. All combina-
tions of desired features are considered and partial alignments
may be generated if a specific feature is not present in all
ligands. While no explicit volume overlap is calculated
between ligands, this is implicitly accounted for by the
distance-dependent features, which contribute favorably to
the total score if many feature points overlap.

Distance-Based Pharmacophoric Features. Purely dis-
tance-based pharmacophoric features are used for the classes
donor (hydrogen bond donor), acceptor (hydrogen bond
acceptor), donor_acceptor (atom can act both as donor and
acceptor), nonpolar (nonpolar atom), and nonpolar_no_ring

(nonpolar atom not part of a ring system). In these cases,
each pharmacophoric feature is represented by an atom. A
limitation of this approach is that aligned hydrogen bond
features for which the counter groups in the protein point in
opposite directions will also contribute favorably to the total
score. This particular problem could be resolved by using
directional hydrogen bonding features. But for doing so, the
position of an optimal hydrogen partner has to be defined,
which is not possible unambiguously. Thus, multiple direc-
tional features would be needed, highly increasing the
complexity of the problem. Additionally, when we look at
crystal structure superimpositions, the directions of overlaid
hydrogen bonding groups in different ligands of the same
target do not necessarily coincide. Thus, also the introduction
of directional features can prevent the identification of the
correct overlay.

The similarity for these distance-based features is given
by the following potential, taking into account the actual
distance r between two pharmacophoric feature points:

A weight w is assigned for each pharmacophoric feature
class. For example, aligning a donor-donor pair may be
assigned an attractive weight of -6, while for mismatching
pairs, for example, a donor-acceptor pair, a weight of +6
may be assigned acting as a penalty and resulting in a
repulsive interaction. Hence, the scoring function not only
allows rewarding of desired matches of corresponding
features but also enables disfavoring matches of improper
features. It is assumed that the distance up to which the
optimal score is assigned, ropt, is lower than the total cutoff-

falign ) fsim + fclash + ftors (1)

fdist(r, w, ropt) ) w · {
0 if r > rcut

1 if r < ropt

(1 + s
r

2 - ropt
2

rcut
2 - ropt

2)
-1

otherwise

(2)
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radius used for all pairwise interactions, rcut, which is set to
10 Å. Parameter s defines the sharpness of the potential and
is set to 50 in all calculations. Figure 2a shows both potentials
given in the example above for ropt ) 0.25. For all selected
classes, all possible pairs of features in different ligands are
created and stored in a set called D. This set is subsequently
used to calculate the distance-based part of the alignment
score (see eq 4). As already mentioned above, the all-to-all
comparison allows for the matching of multiple features of
one ligand to one or more features of the other one. One
example is hydrophobic regions, for which the definition of
one single representative pharmacophoric point is difficult.
In the approach presented here, a hydrophobic part is
represented by one pharmacophoric point per heavy atom.
A hydrophobic region in a ligand is therefore modeled by a
cloud of hydrophobic points. Superimposing two or more
of these clouds using the all-to-all comparison inherently
accounts for different sizes of hydrophobic regions in
different ligands and thus also uncertainties in the alignment.

Directional Pharmacophoric Features. The second type
of pharmacophoric features considered is of directional
nature. Here, especially reduced representations of ring
systems are used. To define these features, the center of mass
of all non-hydrogen atoms constituting a ring is calculated
in a first step. Then a set of vectors connecting the center of
mass with each heavy atom of the ring is generated. From
this set, all pairs of vectors enclosing an angle of up to 120°
are used to calculate a corresponding perpendicular vector.
Finally, the direction of all these perpendicular vectors is
averaged, resulting in a normal vector defining a plane
equation. This ring plane is utilized to recognize either
planarity or nonplanarity of the ring system, thereby gaining
aromaticity information at the same time. If any ring heavy

atom has a distance deviation of more than 0.1 Å from the
ring plane, the ring is classified as nonplanar, otherwise it
is classified as planar. These two classes are further refined
with respect to the number of nonpolar atoms constituting
the ring system (Rnonpolar). This number directly influences
the ring score, which compares the topological similarity of
two ring systems without taking their relative orientations
into account and is calculated by eq 3. The weighting factor
wring defines the maximum contribution to the total scoring
function value. This weight is scaled by indicator function
Iplanar, which returns 1 if both ring systems R1 and R2 are
either planar or nonplanar; otherwise it returns 0.5. The last
part of this equation accounts for the atomic constitution and
the size of the ring systems.

If both rings are of the same size (Rsize in eq 3) and have
the same number of nonpolar atoms, Rnonpolar, the maximum
score is rewarded. Otherwise, the score is scaled by a factor
accounting for the difference in nonpolar atoms divided by
the maximum of both ring sizes. All possible pairs of rings,
apart from pairs of rings in the same ligand structure, are
finally stored in the vector-based set V. This set is subse-
quently used to calculate the directional part of the alignment
score (see eq 4).

Similarity Score. Given the set of distance-based phar-
macophoric features, D, and the set of directional pharma-
cophoric features, V, a combined similarity scoring function
is defined:

Figure 2. (a) Pairwise similarity function for attractive and repulsive interactions. (b) Vector-similarity function illustrated using a small
molecular fragment. The distance r12 is defined between the two ring centers and the dot product 〈nb1 | nb2〉 is a measure for the angular
deviation R12 of the two normal vectors nb1 and nb2.

fring(R1, R2) )

wring · Iplanar(R1, R2) · (1 -
|Rnonpolar,1 - Rnonpolar,2|

max(Rsize,1, Rsize,2) ) (3)
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In this equation, dr12
and Vr12

represent the actual distances
between two pharmacophoric points (1 and 2) or between
two ring centers, respectively. Similarly, dr12,opt

and Vr12,opt

define the upper distances, up to which the maximum weights
dw12

and fring(VR1
, VR2

) contribute to the total score. Both
parameters, dr12,opt

and Vr12,opt
, are set to 0.25 Å here. In the

case of directional features V, the distance-based similarity
score as returned by fdist is further scaled with the third power
of the dot product between the two normal vectors Vnb1

and
Vnb2

. An illustration of scoring two ring systems as well as
the effect of distance and angular deviation on the actual
scoring function value can be found in Figure 2b.

Parametrization of the Alignment Scoring Function. Due
to the nonphysical nature of the similarity-based scoring
function, a parametrization was derived on the basis of
alignment experiments using experimentally determined
protein-ligand complexes. An exhaustive search in a discrete
parameter space was performed to identify reasonable
weights for the different pharmacophoric features. The
weights for the pharmacophoric feature classes donor,
acceptor, donor_acceptor, and nonpolar_no_ring, the ring
weight wring, and the torsional potential wtors were optimized
with respect to the values given in Table 1. A weight
whb-ideal is introduced for pharmacophoric classes accounting
for hydrogen bonding. This parameter is used if pharma-
cophoric features of class donor, acceptor, or donor_acceptor

are aligned onto their own class, for example, donor onto
donor. If a donor or acceptor feature is aligned onto a
donor_acceptor feature, a second weight whb is applied. This
parameter is set to have half the contribution of whb-ideal,
favoring the superimposition of identical pharmacophoric
features. Finally, parameter wnonpolar is used if atoms part of
class nonpolar_no_ring are superimposed. The training set
consists of four protein targets from different protein families
with up to eight ligands, which were extracted from the
Protein Data Bank (PDB).29 The four test sets used are
cyclin-dependent kinase 2 (CDK2), cyclooxygenase-2 (COX-
2), factor Xa (fXa), and peroxisome proliferator-actiVated

receptor γ (PPARγ). All PDB codes used for the individual
targets can be found in Table 2. A reference alignment of
the ligands was obtained with Relibase30 from the structural
superimposition of the corresponding protein. The resulting
ligand coordinates were used as the reference for the rmsd
calculations. For the alignment, all ligand structures have
been recreated with the 3D structure generator Corina31 to
obtain an unbiased ligand structure. Care has been taken for
correct chirality and protonation states.

Pairwise alignment experiments were carried out for the
four test sets using all 108 parameter settings resulting from
all possible parameter value combinations as given in Table
1 in a grid search. The crystal structure conformation was
used as the fixed template while all other Corina-generated
ligand structures were subsequently aligned flexibly onto the
template. This was carried out for all ligands of the
corresponding data set. The quality of the resulting align-
ments was assessed by a rmsd (root-mean-square deViation)
measure similar to the one used in protein-ligand docking

calculations. The rmsd was calculated between the heavy
atom coordinates of the predicted and the experimentally
determined ligand structure. We used a rmsd bound of 2.5
Å for the assessment of a successful prediction to take
account for differences in the protein structures and for the
resulting shifting of the experimental ligands produced by
the overlay of active-site residues of the crystal structures.
This success criterion is comparable to rmsd bounds used
in cross-docking studies,32 where ligand conformations are
predicted in non-native protein structures. There is some
criticism on using rmsd values to judge ligand poses since
it was shown in docking studies33 that even poses with a
wrong binding motif can fulfill this criterion. Manual
comparison of many generated poses fulfilling the 2.5 Å rmsd
criterion indicated that such wrong binding motifs are not
observable in the complexes investigated in this publication.
We will show some examples later in which, although the
criterion of 2.5 Å is not fulfilled, the binding motif is actually
identified correctly in the alignment (see Results and Discus-
sion). Additionally, results are much easier to compare
between different studies when using rmsd values compared
to other proposed criteria.4,34

Search Algorithm Parameter Optimization. Alignment
sampling efficiency is influenced by parameters like σ, which
is scaling the number of iterations of the ACO algorithm,
the evaporation factor F, the number of nonimproving
iterations until an update with solution sdb is forced, as well
as the simplex tolerance values for the local search (nmstol)
and the refinement local search (ref-nmstol) (see ref 26 for
details). The search algorithm parameters were optimized
for the problem of pairwise alignment based on protein-based
reference ligand superimpositions of the four targets shown
in Table 2. The goal was to identify parameter settings
capable of yielding correct alignments of test sets from
different targets. Besides the following changes, the same
experimental setup as described for the search parameter
optimization of PLANTS26 was used. Only 10 instead of 25
validation runs have been performed due to the extended
number of test set entries used for the training set. It consisted
of 29 pairs constituted of selected entries from the training

fsim ) ∑
d∈D

fdist(dr12
, dw12

, dr12,opt
) +

∑
V∈V

fdist(Vr12
, fring(VR1

, VR2
), Vr12,opt

) · 〈Vnb1
|Vnb2

〉3 (4)

Table 1. Parameter Values Used for the Scoring Function
Optimization Processa

parameter values pharmacophoric pair

whb-ideal {-2, -4, -6}
donor-donor

acceptor-acceptor

donor_acceptor-donor_acceptor

whb 0.5whb-ideal
donor_acceptor-donor

donor_acceptor-acceptor

wnonpolar {0, -0.1, -0.25, -0.5} nonpolar_no_ring-nonpolar_no_ring

wring {-5, -10, -15}
wtors {1, 2, 3}

a For parameters representing the optimum interaction weight of
pharmacophoric classes, X-Y denotes the interaction of classes X

and Y.

Table 2. PDB Codes for the Targets Used in the Scoring Function
Parameterization Process

target PDB codes

CDK2 1dm2, 1e9h, 1fvt, 1fvv, 1g5s, 1h1q, 1h1s
COX-2 1cx2, 3pgh, 4cox
fXa 1ezq, 1f0r, 1f0s, 1ksn, 1nfu, 1nfw, 1nfx, 1nfy
PPARγ 1fm6, 1i7i, 1k74, 1knu, 1nyx, 1rdt, 2ath, 2gtk
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set used for the scoring function parametrization. For CDK2,
one template structure, the ligand of Protein Data Bank
(PDB) code 1fvv, was used, while ligands of PDB codes
1fvt, 1fvv (self-alignment), 1h1q, 1h1s, 1e9h, and 1jsv were
aligned onto it. In the case of fXa, 16 alignment pairs were
considered consisting of all possible combinations of ligands
of PDB codes 1nfx, 1ezq, 1nfw, and 1nfy. Finally, for
PPARγ, template structure 1rdt was used to align the seven
ligands of PDB codes 2gtk, 2ath, 1k74, 1rdt (self-alignment),
1i7i, 1fm6, and 1knu. Three parameter settings corresponding
to different average search times were identified to scale
between speed and accuracy. The standard search setting
speed 1 was selected to perform approximately 500 000
scoring function evaluations on average. For speed 2 and
speed 4, approximately 250 000 and 125 000 scoring function
evaluations are carried out, respectively. The optimized
search algorithm parameters for these settings can be found
in the Supporting Information (Table S1).

Pairwise Alignment Test Set. The comprehensive FlexS

data set4 was used to assess the alignment performance of
pharmACOphore. This test set consists of 14 different targets,
for which 2 to 12 ligands have been superimposed. The
superimposed crystal structures were used as reference for
the rmsd calculations and also as the template structure. The
minimized ligand structures, also available in this test set,
were then aligned flexibly onto one of these template
structures. Due to the stochastic nature of pharmACOphore,
all pairwise alignment experiments were carried out 25 times
with standard alignment settings (speed 1). A prediction was
assessed as correct if the rmsd between the predicted and
the experimentally observed ligand conformation was lower
than 2.5 Å. The reported success rate for each experiment is
the average over the 25 runs. Thus, it evaluates not only the
predictive power of the scoring function but also the sampling
reliability of the optimization procedure and is thus a
performance measure for the overall method. Alignment
timings were measured on an Intel Xeon X5365 CPU
processor with 3 GHz.

Multiple Flexible Alignment Test Sets. For multiple
flexible alignment experiments, the target trypsin from the
FlexS data set was used. The trypsin set consists of PDB
codes 1pph, 1tnh, 1tni, 1tnj, 1tnk, 1tnl, and 3ptb. Addition-
ally, five complexes of poly (ADP-ribose) polymerase

(PARP) were selected from PDB (codes 1efy, 1pax, 2pax,
3pax, and 4pax). The reference alignment of the ligands was
generated by superimposition of the ligand binding pockets
of the protein structures using Relibase.30 Prior to the
alignment with pharmACOphore, unbiased ligand conforma-
tions were generated with Corina31 using the standard
settings. Alignment results were assessed by visual inspection
as well as rmsd calculations between the predicted and the
experimentally observed conformations.

RESULTS AND DISCUSSION

As described above, the pharmACOphore approach is
capable of producing pairwise, as well as multiple, flexible
ligand alignments. While the pairwise mode is quite fast and
thus suited for ligand-based virtual screening, the more time-
consuming multiple flexible alignment mode is aimed at the
generation of consistent superimpositions, to be subsequently

used for example in the field of QSAR applications. In the
following sections, results for both alignment modes will be
discussed.

Parameter Optimization. The parameter optimization
process revealed two parameter settings (out of the 108
possible combinations of parameters) capable of reproducing
100 of 201 alignment pairs within 2.5 Å, which corresponds
to a success rate of 50%. While this pose prediction result
is clearly suboptimal, especially when compared to average
success rates obtained in the case of protein-ligand docking,
it should be noted again that in the ligand-based case no
information about the protein environment is available and
only one ligand structure was used as the template for the
prediction of all other ligand poses belonging to the corre-
sponding protein. From the two best-performing scoring
models, the one with the better average pose prediction rmsd
of 3.59 Å, that is, the average rmsd over all performed
pairwise alignments, was selected as the standard setting for
pharmACOphore. The weights used in this model are
whb-ideal ) -6, whb ) -3, wnonpolar ) -0.25, wring ) -10,
and wtors ) 2.

All cross-alignment results obtained for this standard
setting on the training set can be found in Tables S2 and S3
of the Supporting Information. From these tables two general
conclusions can be drawn. First, as expected, all ligands can
be aligned onto themselves with rmsd values lower than 1
Å. Note that all rmsd values are calculated between the
crystal structure conformation and the predicted conformation
derived from a Corina-generated input structure. Thus, the
observation of rmsd values around zero is unlikely because
of potentially subtle differences in bond lengths and angles

Table 3. Average Success Rates, Alignment Times, and Number of
Scoring Function Evaluations Obtained for the Pairwise Alignments
of the FlexS Seta

success rates [%]

target nat only best worst avg time [s] eval [106]

carboxypept. A 100 99 50 69 6.9 0.79
concanavalin 100 100 100 100 1.0 0.37
DHFR 100 64 12 38 7.7 0.86
elastase 98 33 0 14 11.0 1.07
endothiapepsin 77 42 0 14 106.4 3.22
fructose 100 100 100 100 2.5 0.47
glyc. phosphorylase 100 67 0 50 1.8 0.44
HIV-protease 72 12 0 4 71.8 2.79
immunoglobulin 100 50 25 40 1.3 0.31
rhinovirus 100 43 43 43 4.3 0.69
streptavidin 100 100 97 99 1.4 0.39
thermolysin 99 28 0 13 6.5 0.81
thrombin 100 90 64 75 6.9 0.81
trypsin 100 79 0 54 0.8 0.24
average 96 65 35 51 16.5 0.95
average (reduced set) 100 71 41 58 4.3 0.60

a For each target, average values over 25 independent
experiments are presented. A success was obtained if the top-ranked
prediction of the flexible ligand had an rmsd lower than 2.5 Å.
Column nat only refers to the success rates for the self-alignments
only, that is, superimposing the in vacuo minimized ligand onto its
native crystallographic template structure. Average success rates for
the best, the worst and over all template structures are reported
excluding the self-alignments. The last rows report average values
over the whole test set, as well as for a reduced set excluding
targets endothiapepsin and HIV-protease. Average alignment times
were measured on an Intel Xeon X5365 CPU processor with 3
GHz.
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Figure 3. Pairwise alignment results for immunoglobulin and streptaVidin. Cones represent pharmacophoric ring features, yellow spheres
represent nonpolar atoms, which are not part of a ring system (class nonpolar_no_ring), blue spheres represent acceptors (class acceptor),
magenta spheres represent donors (class donor,) and green spheres represent donor/acceptor atoms like OH-groups (class donor_acceptor).
(a) StreptaVidin. Superimposition of all pairwise alignment results generated for template structure 1srf (blue). Note that all ligand structures
could be superimposed correctly. (b) Immunoglobulin. Incorrect alignment of ligand 1dbm (red) onto template 1dbj (blue). The experimentally
observed conformation of 1dbm is shown in green. The failure can be attributed to the alignment of the ring systems which are not perfectly
aligned in the experimentally observed structure.

Table 4. Pairwise Alignment Results for the Three Targets Immunoglobulin, StreptaVidin, and Carboxypeptidase Aa

a A superimposition was assessed as correct if the rmsd of the top-ranked solution was lower than 2.5 Å. All success rates are averaged over
25 independent experiments. Additionally, for each template structure the average success rate is presented.
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in the two conformations. Second, some ligands are better
suited as template than others, which can be explained not
only by different interaction patterns but also by different
sizes of the ligands (see below for a more in-depth discus-
sion).

Pairwise Alignment. We use pairwise alignments as a
first step in validating the pharmACOphore parameter setting
where one ligand is kept rigid and fixed to keep a defined
reference frame and the other ligand is aligned flexibly onto
the reference ligand. Such an alignment mode is also often
used in ligand-based virtual screening applications. The FlexS

data set was used because it consists of different protein
targets and covers a broad range of chemically diverse
ligands. In all cases, the protein-derived superimposition
formed the reference state. An overview of the results can
be found in Table 3. For each target, the success rates for
the self-alignment (aligning the Corina-generated conforma-
tion of a ligand onto its experimentally determined reference
structure), for the best and the worst template structure as
well as the average success rate over all template structures
is reported (for the latter three, the self-alignment results are
not considered). Additionally the average alignment times
and the average number of scoring function evaluations
needed are presented. Looking at the self-alignment perfor-
mance only, an average success rate of 96% is observed.
Most of the ligand poses are perfectly reproduced but some
targets, like HIV-protease or endothiapepsin, only reach
average success rates around 70-80%, which can be
explained by the large size of the ligands and sampling
problems arising from this size even if the search time is
already increased by an order of magnitude compared to the
other targets. As these two cases represent exceptions

compared to the rest of the targets, they will be excluded
from the following discussion.

Although the success rates are lower, we have excluded
the self-alignment experiments from the analysis of the best,
worst, and average success rates, since they are not really
relevant for alignment studies aiming at identifying new
actives (the corresponding results including self-alignment
are given in the Supporting Information). On average, an
encouraging success rate of 71% can be obtained if the best
template structure is used. However, for the individual
complexes, a wide range of success rates ranging from 28%
(thermolysin) to 100% (concanaValin, fructose, and strepta-

Vidin) can be observed. Additionally, a considerable drop in
the performance is visible when looking at the average or
worst success rates for each target over the template
structures. For example, for trypsin, the success rate decreases
by almost 80% (79% and 0% for the best and the worst
template structure, respectively). The latter result emphasizes
that the choice of the template structure is extremely
important. A general trend is that larger ligands are better
suited as a template than smaller ones. If a large ligand is
aligned onto a small ligand, those parts of a large ligand
that do not have corresponding features in the small template
are orientated arbitrarily and are not forced into the correct
orientation. In contrast, if large templates are used, the partial
alignment is already sufficient to get the correct pose of the
small ligands. However, if substructures of the ligands
occupy different cavities of the active site, not all necessary
feature information may be available in a single ligand that
may be solved by using multiple template structures. Overall,
these observations are in line with alignment results published
in other studies.34

Figure 4. Pairwise alignment results for carboxypeptidase A. Cones represent pharmacophoric ring features, yellow spheres represent
nonpolar atoms, which are not part of a ring system (class nonpolar_no_ring), blue spheres represent acceptors (class acceptor), magenta
spheres represent donors (class donor), and green spheres represent donor/acceptor atoms like OH-groups (class donor_acceptor). (a) Incorrect
alignment of ligand structure 6cpa (red) onto template structure 3cpa (blue). The experimentally observed conformation of 6cpa is shown
in green. (b) Correct alignment of ligand structure 3cpa (red) onto template structure 6cpa (blue). The experimentally observed conformation
of 3cpa is shown in green.
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The results of all individual pairwise alignments are
presented in the Supporting Information. Here, we will
highlight only four examples representing different categories
of alignment results: (i) alignments in agreement with
experimental superimposition, (ii) alignments with separation
into two different superimposition clusters, (iii) failing
alignments due to size effects, where the reference ligand is

significantly smaller than the ligand to be aligned, and (iv)
failing alignments because of unexpected changes in the
experimentally observed binding modes. It should be noted
that the latter two cases are general limitations of purely
ligand-based methods.

Case i: A quite striking performance across all template
structures can be observed for target streptaVidin (see Table
4). All template structures are able to reproduce all ligand
structures correctly at excellent average success rates between
88% and 100%. The visualization of the alignment for
template structure 1srf is presented in Figure 3a, which shows
a perfectly overlaid common scaffold.

Case ii: For immunoglobulin (see Table 4), two indepen-
dent subsets can be identified, for which all entries can be
aligned correctly onto each other. The first set is constituted
of ligands of PDB codes 1dbb, 1dbm, and 2dbl, while the
second set consists of ligands of PDB codes 1dbj and 1dbk.
Thus, the best-performing template structures for this target
are all ligands part of set 1 capable of reproducing the
structures of 3 ligands correctly at success rates of 100%.
Figure 3b illustrates the reason of failure for the alignment
of structure 1dbm onto 1dbj. The ring systems of the template
structure 1dbj (shown in blue) and the experimentally
observed structure of 1dbm (shown in green) do not coincide,
while pharmACOphore generates a perfect match of the ring
systems (shown in red).

Figure 5. Two examples depicting reasons for the failure of pharmACOphore. (a) Relative orientation of elastase ligands in 1ela (gray) and
1elb (green) resulting from the superimposition of the active site residues of the crystal structures. The two ligands, although highly similar,
show quite different binding modes as discussed in detail in the original publication of PDB code 1ela.35 (b) pharmACOphore alignment
of ligand of 1elb (yellow) onto the ligand template of 1ela (gray). The binding mode of the ligand of 1elb cannot be reproduced by the
ligand-based approach. (c) Thermolysin ligands 1tlp (gray) and 4tmn (green) in their crystal structure conformation, as well as (d) the
pairwise alignment result of 4tmn (yellow) with 1tlp (gray) as template. According to the success criterion, this superimposition is a failure
because of a heavy atom rmsd of 3.73 Å. Nevertheless, the main interactions are predicted correctly, and only the large substituents cannot
be placed properly. This can be attributed to missing corresponding features in the template.

Table 5. Pairwise Alignment Results for Elastasea

a A superimposition was assessed as correct if the rmsd of the
top-ranked solution was lower than 2.5 Å. All success rates are
averaged over 25 independent experiments. Additionally, for each
template structure the average success rate per template structure is
presented.
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Case iii: In the case of carboxypeptidase A (see Table 4),
at least two template molecules (PDB codes 6cpa and 7cpa)
are able to reproduce all ligands correctly. Figure 4a and b
shows the alignment results obtained with pharmACOphore.
While the larger ligand structure of PDB code 6cpa cannot
be aligned correctly onto the smaller template ligand structure
of PDB code 3cpa (Figure 4a), a correct alignment of 3cpa
onto 6cpa (Figure 4b) can be obtained. The dependence of
the alignment performance on the template size is a com-
monly observed problem. If a large molecule is aligned onto
a smaller one, all parts with no corresponding features in
the small molecule will be placed arbitrarily, very likely
resulting in a conformation exhibiting a large rmsd compared
to the crystal structure.

Case iV: For elastase and thermolysin, pharmACOphore
showed only a poor prediction performance. In most cases,
each ligand could only be aligned correctly onto itself (see
Table 5 for elastase results; thermolysin results can be found
in the Supporting Information). Some reasons for failure are
shown in Figure 5. Figure 5a shows the superimposition of
two structurally similar elastase ligands in their quite
dissimilar experimentally observed conformations. This
remarkable observation is discussed in great detail in the
original publication.35 In this case, ligand-based approaches
in general are expected to predict the wrong conformation
for any of both ligands taking the other one as the template.
A second reason for failure is presented in Figure 5c and d

(target thermolysin). Here, only parts of the ligands are
aligned correctly due to missing corresponding interactions
resulting in an overall large rmsd value.

Multiple Flexible Alignment. Trypsin. The pharmA-
COphore approach has been tested additionally for the
problem of multiple flexible alignment using all seven trypsin

ligand structures of the FlexS data set (PDB codes 1pph,
1tnh, 1tni, 1tnj, 1tnk, 1tnl, and 3ptb). As the multiple flexible
alignment mode is usually not time-critical, parameter σ

scaling the number of iterations carried out by the ACO
algorithm was significantly increased compared to the default
setting. It was set to σ ) 7 corresponding to the number of
ligands superimposed in parallel. To allow for the assessment
of the pose prediction accuracy, the protein structure
reference frame was kept by fixing the translational and
rotational degrees of freedom for one of the smallest ligands
(benzamidine, PDB code 3ptb) to its crystallographic con-
formation. Only one torsional degree of freedom in this
ligand (rotation of amidino group) was freely optimized
during the search. All degrees of freedom of the other ligands
were optimized so that a fully flexible alignment of the
ligands in the reference frame of the protein structure was
obtained. The experiment was repeated 25 times. The
alignment time for this data set was around 11 min on an
Intel Xeon E5420 CPU processor with 2.5 GHz.

Five of seven ligand structures could be reproduced within
a rmsd of 2.5 Å in all 25 runs. Only the ligands of PDB

Figure 6. Superimposition of 7 trypsin structures. The ligand structures of PDB code 1tni and 1pph are highlighted in red and yellow,
respectively. Ligand 3ptb defining the reference frame is shown in a green ball-and-stick representation in both figures. (a) Predicted
superimposition. The alignment with the best overall score over the 25 runs is visualized. All ligands except 1tni (red) and 1pph (yellow)
are reproduced within a rmsd of 2.5 Å. (b) Crystal structure superimposition.
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code 1tni and 1pph deviate significantly from the experi-
mental alignment and do not pass the rmsd criterion. The
predicted and experimentally observed alignment can be
found in Figure 6a and b, respectively. For most ligands,
the predicted overlay of the ring systems and the charged
donor groups is consistent with the experiment. From the
crystal structure superimposition, it is obvious that 1tni has
a slightly different binding mode compared to the other
ligands. Therefore, the failure to reproduce the correct pose
has to be attributed to the ligand-based technique and not to
the scoring function or the optimization procedure. The large
ligand of PDB code 1pph exhibits the problem already
described in the pairwise alignment section. Since there are
no corresponding features for the large flexible substituents,
they are placed arbitrarily resulting in a large rmsd value
compared to the experimental structure. This becomes
evident if one compares the rmsd values in the individual
alignment runs. 1pph shows rmsd values between 4 and 8
Å. But at the same time, all these structures have almost the
same score (standard deviation of only 1.8 scoring function
units). Thus, these large differences in the position of the
substituent are not a sampling problem but result from
the fact, that the location of this group has no influence
on the score. Nevertheless, in all runs the main binding motif,
the benzamidine substructure, is aligned correctly. Conclud-
ing this part, multiple alignments are useful to identify
common binding motifs but they do not necessarily represent
the protein-bound conformations of the ligands especially
for parts, which are only present in a small number of ligands.

Poly (ADP-Ribose) Polymerase. Our second test case is
the multiple flexible alignment of five poly (ADP-ribose)

polymerase (PARP) ligands from the PDB. PARP is involved
in the repair of DNA strand breaks and, in this way, in the

resistance of cancer cells to certain DNA-damaging agents.
For this target, a scaling factor of σ ) 5 proportional to the
number of ligands to align was used. All five ligands show
almost exactly the same conformation and relative orientation
as in the superimposition of the crystal structures (see Figures
7a and 7b). This can also be quantified by the low rmsd
values of all predicted ligand conformations compared to
their experimentally observed conformations, which are all
below 1 Å (1efy, 0.44 Å; 1pax, 0.16 Å; 2pax, 0.19 Å; 3pax,
0.27 Å; 4pax, 0.34 Å; for the PARP experiments no fixed
template was used and, thus, because of the missing reference
frame in the multiple flexible alignment, rmsds were
calculated after rigid superposition of the predicted and
experimental ligand alignments taking the atoms of all
ligands into account). In contrast, if the ligands are aligned
pairwise on a reference structure, alignments are found, that
differ from the protein-based alignment. For example, if
ligand 3-methoxybenzamide (ligand of PDB code 3pax) is
matched onto ligand 2-(3′-methoxyphenyl) benzimidazole-
4-carboxamide (ligand of PDB code 1efy), the methoxyphe-
nyl substructures of the two molecules are overlaid, resulting
in a plausible but nevertheless wrong alignment (rmsd )

5.75 Å, see Figure 7c).

The better performance of the multiple flexible alignment
can be explained by the fact that due to the inclusion of other
ligand structures the second phenyl system (benzamide) in
the ligand of PDB code 1efy is correctly identified as an
important pharmacophoric feature. The three remaining
ligands (PDB codes 1pax, 2pax, and 4pax) get more favor-
able scores according to the alignment scoring function if
their aromatic system is paired with the benzoidic ring of

Figure 7. Alignment of 5 PARP ligands (1efy, gray; 1pax, yellow; 2pax, light blue; 3pax, green; 4pax, magenta). (a) Superimposition of
the crystallographic complex structures. (b) Multiple flexible alignment produced by pharmACOphore. (c) Incorrect pairwise alignment of
3pax onto template structure 1efy. (d) Correct superimposition of 3pax and 1efy taken from the multiple flexible alignment.
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benzimidazol in the ligand of PDB code 1efy. Thus, because
of the additional interactions with these three ligands when
performing multiple alignment, the correct binding mode for
the benzamide substructure of PDB code 3pax can be
identified (see Figure 7d). This multiple alignment generated
by pharmACOphore could be used to create a pharmacophore
model using other programs to allow for ligand-based virtual
screening to identify new active ligands.

CONCLUSIONS

In this paper, a new approach for the flexible alignment
of two or more small molecules is introduced. The hybrid
ant colony optimization algorithm previously applied to the
protein-ligand docking problem27 is combined with a new
similarity-based scoring function tuned for ligand-based pose
prediction. The pairwise alignment results obtained for the
comprehensive FlexS data set2 show that alignments can be
found that are in agreement with the protein-structure-based
alignment. Nevertheless, since details of the protein structure
are not known to the approach, unexpected dissimilar binding
modes for similar ligands can not be predicted. Failures can
be attributed not only to the scoring function but also to the
ligand-based approach per se and the rmsd-based criterion
used for the assessment of a correct prediction. For some of
the results assessed as incorrect according to the rmsd-based
criterion actually the correct pharmacophoric pattern could
be identified. In the pharmacologically relevant study of five
poly (ADP-ribose) polymerase (PARP) ligands, a good
agreement between the superimposition of the crystal
structures and the one generated by pharmACOphore could
be obtained.

These results show that the problems mentioned in the
introduction have been, at least in parts, addressed by our
new method. Our scoring function uses distance-dependent
potentials for matching the pharmacophoric features in
combination with an intraligand potential. It was param-
etrized to reproduce experimentally observed complex
geometries, which requires a balance between the influence
of ligand conformational energies and the similarity-based
alignment score. As shown, the derived values are probably
not optimal for all applications. Therefore, user-defined
pharmacophoric features can be defined and the weights of
the scoring function can be adapted to obtain target-specific
scoring functions. Additionally, application of penalty terms
for pharmacophoric mismatches like placement of a donor

onto an acceptor or placement of a polar feature into a
hydrophobic region could be an option to enhance alignment
results. To further improve the approach, methods will be
developed to generate pharmacophore models out of the
produced alignments, which could be used in ligand-based
virtual screening campaigns.
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