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SOFTWARE Open Access

PharmDock: a pharmacophore-based docking
program
Bingjie Hu and Markus A Lill*

Abstract

Background: Protein-based pharmacophore models are enriched with the information of potential interactions
between ligands and the protein target. We have shown in a previous study that protein-based pharmacophore
models can be applied for ligand pose prediction and pose ranking. In this publication, we present a new
pharmacophore-based docking program PharmDock that combines pose sampling and ranking based on optimized
protein-based pharmacophore models with local optimization using an empirical scoring function.

Results: Tests of PharmDock on ligand pose prediction, binding affinity estimation, compound ranking and virtual
screening yielded comparable or better performance to existing and widely used docking programs. The docking
program comes with an easy-to-use GUI within PyMOL. Two features have been incorporated in the program suite that
allow for user-defined guidance of the docking process based on previous experimental data. Docking with those
features demonstrated superior performance compared to unbiased docking.

Conclusion: A protein pharmacophore-based docking program, PharmDock, has been made available with a PyMOL
plugin. PharmDock and the PyMOL plugin are freely available from http://people.pharmacy.purdue.edu/~mlill/
software/pharmdock.

Keywords: Protein pharmacophores, Docking, Scoring, Biased docking, Constraint docking, Confined docking,
GUI, PyMOL

Background
Pharmacophore models aim to comprise the features of
ligand-protein interactions that are most crucial for bind-
ing and biological activity. These models are used for vir-
tual screening (VS) to identify potential new actives or for
generating ligand alignments for subsequent QSAR simu-
lations. Pharmacophore models are typically derived from
structural features common to biologically active ligands
that are hypothesized to be important for biological activ-
ity [1-5]. Such ligand-based pharmacophore models are
dependent on the chemical features present in the known
actives. Physicochemical features that are absent in the
particular set of actives, but are important for the binding
of structurally different ligands, will likely be neglected in
the pharmacophore model. Alternatively, the binding site
of the target protein can be used to generate a protein-
based pharmacophore model without the inclusion of

ligand information. These protein-based pharmacophore
models are advantageous because a priori knowledge of
active ligands is not required and the models are not
biased by the chemical space of previously identified ac-
tives. Several approaches [6-9] have been developed to
derive protein-based pharmacophore models from ligand-
free proteins and apply the pharmacophore models in
virtual screening.
Protein-based pharmacophore models are, by definition,

enriched with the information of potential interactions be-
tween ligands and the protein target. Consequently, a direct
application of the protein-based pharmacophore models is
to use them for ligand pose prediction and pose ranking. In
a recent study, we have explored the potential of protein-
based pharmacophore models in ligand pose prediction and
ranking [10]. We carefully optimized the pharmacophore-
generation process to reproduce native contacts for a large
number of experimentally-determined protein-ligand com-
plexes. We then developed a fast pharmacophore-based
matching and scoring scheme and tested it on the PDBbind
[11] core set. When the native ligand conformations, i.e. the
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ligand conformations from the crystal structures, were
used as input, our pharmacophore-based scheme was able
to identify native-like poses (with RMSD to the X-ray
pose ≤ 2 Å) within the top-100 ranked poses for 94% of
the tested entries. When the low-energy conformations
generated by OpenEye Omega [12-14] were used as input,
we were still able to maintain a success rate of 71% for
predicting native-like binding pose within the top-100
ranked poses. These results were comparable in quality to
several widely used docking programs.
Inspired by the promising results in ligand pose predic-

tion and pose ranking using protein-based pharmacophore
models, we extended the pharmacophore-based matching
and scoring scheme into a docking program, named
PharmDock (Pharmacophore-based Docking). The docking
program further optimizes the top ranked binding poses
predicted from the pharmacophore-based scheme and re-
scores the optimized binding poses with a widely used
empirical scoring function. We report here PharmDock’s
performance in binding pose prediction and free energy
of binding estimation tested on the PDBbind core set
[11,15], as well as its performance in virtual screening on
29 targets from the dictionary of useful decoys (DUD)
dataset [16]. We also present an open-source graphical
user interface (GUI) adapted to PyMOL [17,18] that we
have developed for PharmDock for ease use of the docking
software by the scientific community. In addition, we de-
veloped two new features within the PyMOL GUI allowing
the users to guide the docking process towards specific res-
idues identified from previous experimental data.

Implementation
The docking program PharmDock
An overview of PharmDock is shown in Figure 1. It sam-
ples the ligand binding poses by enumerating all possible
multiple-points matches between pharmacophores of
an ensemble of pre-generated ligand conformations and
protein-based pharmacophores. The sampled binding poses
are then ranked using a simple pharmacophore-based scor-
ing function. A set of top ranked binding poses will be lo-
cally optimized within the protein binding site to obtain
the final ligand binding pose and binding score. The first
two parts of PharmDock are based on a pharmacophore
or functional group representation of ligand and protein
whereas the last step of pose optimization is atom-based.
The details of pharmacophore generation, ligand poses
sampling and ranking, final poses optimization will be de-
scribed below.

Generation of protein-based pharmacophores

Protein-based pharmacophores refer to the potential inter-
action sites for the ligand to favorably interact with the
protein atoms in the binding site. They can be viewed as
the negative or complementary image of the topology and

physicochemical properties of the protein binding site.
Four types of protein-based pharmacophores are defined
in our program: hydrogen-bond donor/acceptor, hydro-
phobic, aromatic and ionic pharmacophores. In addition,
the exclusive volume of the protein is also represented by
the so-called forbidden pharmacophores, representing the
binding site residues that would sterically overlap with lig-
and atoms placed at this respective position.
The detailed method in generating protein-based phar-

macophores has been described in our previous paper
[10]. Briefly, the binding site of the protein is defined
based on its known active ligand with a minimum of 3 Å
to any ligand heavy atom. A 3D grid with 0.4 Å spacing
between grid points was placed in the binding site for each
protein structure. The interaction potentials (hydrogen-
bond donor/acceptor, hydrophobic, aromatic and ionic)
between the protein atoms and probes representing hypo-
thetical ligand atoms were computed on each grid point.
The interaction potentials for hydrogen-bonding and
hydrophobic probes placed at the grid points were com-
puted using a continuous form of the ChemScore [19,20]
scoring function. The aromatic and ionic interactions
were calculated using a functional form similar to Chem-
Score. The detailed equations can be found in the previ-
ous publication [10]. The pharmacophores were generated
using the computed interaction energies with the probes
on the 3D grid points. The hydrophobic pharmacophores

Figure 1 Overview of PharmDock. The inverse triangle shows that
with progress in the overall docking process, the number of feasible
binding poses of a ligand will be reduced. The overall docking
process contains the following subsequent steps: Poses sampling:
PharmDock samples binding poses by enumerating all possible
multiple-points matches between the pre-generated ligand and
protein-based pharmacophores and subsequent alignment of common
features. Poses ranking: The sampled binding poses are then ranked
using a simple pharmacophore-based scoring function (equation 1) to
select top ranked poses for subsequent optimization. Both Poses
Sampling and Poses Ranking are based on the representation of
potential interactions as potential pharmacophores. Poses
optimization: The top ranked binding poses will be locally optimized
within the protein binding site to generate the final prediction of
ligand binding pose and binding score.
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were computed by a k-means clustering over all grid
points with favorable hydrophobic scores. For each cluster,
the hydrophobic pharmacophore element was then de-
fined as the energy-weighted geometric center of all grid
points of a particular cluster. The number of clusters, k,
was adjusted until the minimum distance between a clus-
ter center i and any other cluster center was on average
smaller than a certain distance cutoff. K-means clustering
to generate hydrogen-bond, aromatic and ionic pharmaco-
phores was performed over the grid points associated with
the same nearest functional group. For example, in gener-
ating a hydrogen-bond donor pharmacophore, the pro-
gram iterates through all protein acceptors, and groups
the grid points closest to the same acceptor into one patch.
K-means clustering was then performed within this patch.
In our previous study [10], we have investigated the influ-
ence of clustering distance cutoff of each pharmacophore
type on the ligand pose sampling accuracy and efficiency.
We found that pharmacophore models comprised by only
hydrophobic and hydrogen bond elements, which are
generated using a distance cutoff of 1.5 Å and 2.0 Å re-
spectively, provide the best compromise between pose
sampling accuracy and efficiency. These values will be
used for the pharmacophore-based pose sampling process
described below. For the pose-ranking process, a more de-
tailed pharmacophore model using a 1 Å cluster distance
cutoff for all pharmacophore types was adopted. The ra-
tionale is that the densest pharmacophore model provides
the best description of the potential protein-ligand interac-
tions and consequently should provide the largest amount
of information for scoring.

Generation of ligand conformation and pharmacophores

PharmDock uses the low-energy conformers for a ligand
generated by Openeye Omega [12-14] as docking input.
For each ligand, a maximum of 100 conformations are
generated with the calculated internal energy no more
than 15 kcal/mol above the energy of the ligand conform-
ation with the lowest internal energy. Duplicate conformers
are removed using a 0.2 Å root-mean-square deviation
(RMSD) cutoff for ligands with zero to three rotatable
bonds, a 0.3 Å cutoff for ligands with four to six rotatable
bonds, and a 0.4 Å cutoff for all ligands with more than
six rotatable bonds. The in-house program clusterconfor-

mer is then used to generate the pharmacophore elements
for each ligand conformation. Four types of pharmaco-
phores are defined for each ligand: hydrogen-bond donor/
acceptor, hydrophobic, aromatic and ionic pharmaco-
phores. Hydrogen-bond pharmacophores are placed at the
position of potential donor and acceptor groups of the lig-
and: Hydrogen-bond donors are polar hydrogen atoms
bonded to oxygen, nitrogen and sulfur atoms, acceptors
are oxygen, nitrogen and sulfur atoms with at least one
lone pair. Ligand atoms (excluding hydrogen atoms) are

defined to be hydrophobic if they were not hydrogen-
bond donors or acceptors or directly bonded to a ligand’s
donor or acceptor atoms. The hydrophobic atoms from
each ligand conformation are clustered using hierarchical
clustering with a minimum distance between cluster
centers of 2.0 Å. Clustering is performed to reduce the
number of hydrophobic ligand pharmacophores. This sig-
nificantly reduces the cost of clique detection and conse-
quently increases the efficiency of the docking process.
Aromatic pharmacophores are defined as centers of aro-
matic rings. Ionic groups included functional groups that
are formally charged positive or negative, e.g. protonated
amines or deprotonated carboxylic acids, and are placed
at the centroid of the functional group.

Pharmacophore-based pose sampling and ranking

The binding pose sampling and ranking process of
PharmDock has been described and discussed in our previ-
ous publication [10]. To provide the best compromise be-
tween accuracy and efficiency, only hydrophobic and
hydrogen bond pharmacophore elements were used for the
pose sampling process. This can be substantiated by our
observation that on average only one aromatic interaction
and less than one ionic interaction per protein − ligand
complex are present in the 190 protein − ligand complexes
we examined [10]. This is in contrast to an average of four
H-bond and ten hydrophobic interactions that were ob-
served in the same dataset. A detailed evaluation of the
pose sampling process can be found in our previous paper
[10]. Briefly, the pose sampling is based on a modified
Bron-Kerbosch clique detection algorithm [21,22] that enu-
merates all possible multi-points (> = 3) matches of ligand
and protein-based pharmacophores. First, the length of
the edge between each pair of ligand pharmacophores is
determined. The edge length is also determined for each
protein-based pharmacophore pair. All ligand pharmaco-
phore edges that match the protein-based pharmacophore
edges, based on the pharmacophore types (hydrogen bond
donor/acceptor and hydrophobic) of their vertices and edge
lengths, are identified. Throughout the matching process,
a tolerance of 0.3 Å for the edge lengths is allowed. The
matching process can be represented by a graph in which
each node represents a matching ligand-protein pharma-
cophore pair. The clique detection algorithm then identi-
fies all the completely connected subgraphs from this
graph. The Kabsch algorithm [23] is then used to spatially
align the ligand pharmacophore elements to the matching
protein-based pharmacophores in each clique, thus pla-
cing the ligand into the protein binding site. To avoid
steric clashes between ligand and protein atoms, the num-
ber of heavy atoms of the ligand that are located within
1.3 Å to any of the forbidden pharmacophores is counted
for each ligand pose. If more than 10% of the ligand’s
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heavy atoms overlapped with forbidden pharmacophores,
the pose is rejected.
The ligand poses sampled by PharmDock are initially

scored and ranked using a simple geometric function
based on the matching pharmacophore pairs formed by
each ligand pharmacophore and its closest protein-based
pharmacophore of the same type:

S ¼ ‐0:7�
X

hbond
f rð Þ‐0:4�

X

hphob
f rð Þ ‐0:6

�
X

arom
f rð Þ‐0:6�

X

ionic
f rð Þ

ð1Þ

The weights for the different types of pharmacophores
were optimized to achieve the best separation between
native-like poses (≤2 Å RMSD to the X-ray binding pose)
and decoy poses for 190 tested protein-ligand complex
structures. A detailed description of the optimization pro-
cedure can be found in our previous publication [10]. f(r)
is a distance-dependent function that measures the spatial
separation of ligand and protein-based pharmacophores of
a matching pharmacophore pair:

f rð Þ ¼
1:0 r ≤ 0:5Å

2� 1:0−rð Þ 0:5Å < r ≤ 1:0Å
0 r > 1:0Å

8

<

:

ð2Þ

r is the distance between the ligand pharmacophore and
its closest matching protein-based pharmacophore of the
same type. It is noteworthy that equation 2 calculates the
score of a pose based on all the ligand pharmacophores ra-
ther than only those involved in forming the matching cli-
ques. Also, the detailed pharmacophore models with 1 Å
clustering distance cutoff were used for the ranking process.

Local optimization of the ligand binding poses

The pharmacophore-based pose sampling and ranking
scheme was deployed to efficiently filter out ligand bind-
ing poses that are unlikely to be the native binding pose.
As shown in our previous study [10], this procedure was
indeed very effective to enrich the ranking list of binding
poses with native-like poses within the top-100 positions.
To further optimize the predicted ligand binding poses
and estimate the binding energy of the ligand to the tar-
get, we perform a local Metropolis Monte Carlo (MC)
[24] optimization for the top-100 ranked poses with the
Piecewise Linear Pairwise (PLP) scoring function [25].
PLP [25] is one of the earliest developed empirical

scoring functions. It is a sum of pairwise interactions be-
tween protein and ligand atoms based on their interac-
tions types. Only hydrogen bonding (H-bond) and steric
interactions are considered:

Etotal ¼ EH−bond þ Esteric ð3Þ

A detailed description of the PLP function can be
found in Gehlhaar et al.’s [25] original work. Briefly,
each ligand and protein atom is categorized into four
types: H-bond donor, H-bond acceptor, H-bond donor/
acceptor, nonpolar. Each pair of ligand-protein atoms is
then assigned with one and only one of the interaction
types: H-bond or steric. Both EH − bond and Esteric are
computed using similar piecewise linear functions but
with different parameters [25]. Despite the simplicity of
PLP, it was shown to be one of the best scoring func-
tions in identifying the true ligand binding poses among
decoy poses and ranking the different ligands that bind
to the same protein according to their binding affinities
[26]. Therefore, we finally settled on PLP scoring func-
tion for our local optimization and final scoring of the
ligand binding poses.
An individual MC optimization was performed for

every of the top-100 binding poses generated by clique
detection and ranked by the simple pharmacophore-
based scoring function. Throughout MC refinement for
a given ligand binding pose, a new ligand pose is gener-
ated from the previous pose by applying small perturba-
tions on its position, orientation and torsion angles. The
newly sampled pose is accepted based on several criteria:
1) If the RMSD of the current ligand pose compared to
the starting pose is larger than 3.5 Å, the current pose is
rejected and coordinates of the starting pose are reas-
signed to the ligand. 2) If the RMSD is smaller than
3.5 Å, the PLP score of the current pose (Scorecur) is
compared with the minimum PLP score of all previous
poses (Scoremin). If Scorecur is smaller than Scoremin, the
current step is accepted. Otherwise, the Scorecur is
compared with the score of the last accepted step
(Scorepre) and the current pose is accepted based on
the probability P:

P ¼ exp −

Scorecur−Scorepre

RT

� �

ð4Þ

where R is the ideal gas constant (1.986 cal/mol-K) and
T the temperature (300 K). If this factor is larger than a
random number generated from a uniform distribution
between 0 and 1, the current pose is accepted.
During the MC simulation, several strategies are im-

plemented to avoid getting trapped in a local minimum
or pose that has steric overlap with the protein. First,
the size of maximum allowed translational, rotational
and torsional changes at each MC step is adapted using
the previously observed acceptance rate. If the accept-
ance rate over the last 100 MC steps is below 0.4, the
size of maximum allowed changes is decreased, if the
rate is above 0.6, the size is increased. Second, if the pro-
gram rejects the pose from three consecutive MC steps,
the ligand is set back to its original conformation. Third,
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different maximum step sizes for central and terminal
torsions are determined based on the equation:

ratio¼ 1:0þ cos π �
Natoms

Nmax

� �� �

� 0:5� 1:0−εð Þþ ε; jNatoms < Nmax

ε; Natoms ≥ Nmaxj

(

ð5Þ

Where ε is set to 0.15 and Nmax is 8. Natoms is the total
number of heavy atoms attached to the smaller branch
of this torsion. Equation 5 determines a scaling factor
‘ratio’ with which the maximum allowed torsional change
is modified. For example, if the maximum torsional
change is set to max = 60°, this value will be scaled by ra-

tio = 0.5 + 0.5ε = 0.575 (yielding max = 34.5°) and ratio =
0.15 (max = 9°) for torsions with 4 and 8 heavy atoms
attached to the smaller branch of the torsion, respectively.

Development of the PyMOL plugin

For easy use of PharmDock, a GUI plugin of PyMOL
was built using the Python programming language. The
Python script is located in the startup folder of PyMOL
to allow for automatic load and display of the submenu
“PharmDock” (Figure 2) within the standard PyMOL
menubar. The plugin features the generation of ligand
libraries by exporting all ligand objects present in a PyMOL
session. A lexicon of exported libraries is stored and each
library of compounds can later be modified, combined with
other libraries, and imported for docking to different
target proteins. The submenu “prepare system and start
PharmDock” directs the user to select the target protein,
import the ligand library, define the protein binding site
and settings for the output of docking results (Figure 3).
Users can define the docking search volume by visually
adjusting the position and size of the box displayed in
PyMOL (Figure 4).
The docking calculations are performed in the back-

ground after submitting the job. The location of the dock-
ing results is stored in a monitoring file that allows the
user to check the progress of the docking runs and re-
import the docking results into PyMOL. All docking poses
will be automatically displayed to the user with a separate

dialog displaying the docking solutions and associated
docking scores.
In the default setting, PharmDock searches the ligand

binding poses using all protein-based pharmacophores
independent from information about known active li-
gands. In this setting, docking results are not biased to-
wards the chemical space of previously identified active
ligands. However, it is possible that researchers would
like to use previously acquired empirical knowledge about
the target and identify compounds that can form specific
interactions with certain region or specific residues of the
binding pocket. To allow for inclusion of such informa-
tion, we provide the users with the option to perform
docking with PharmDock focusing on a set of selected
pharmacophore elements (Figure 5). The GUI will allow
users to load protein-based pharmacophore files and se-
lect critical pharmacophores for protein-ligand binding.
Two options are available to guide docking towards the
selected pharmacophores: Confined docking, where the
search volume will be confined to include only the se-
lected pharmacophores; and constraint docking, where
the generated docking poses must match at least one of
the selected pharmacophores but the search volume is un-
modified compared to the original unbiased docking. Con-
fined docking is designed for the purpose of “confining”
the docking poses within certain regions of the binding
pocket and the confined region can be defined by using
the known active ligands. Constraint docking is designed
for identifying ligands or ligand poses that form interac-
tions with specific residues within the binding site. Exam-
ples for the two options will be shown in the “Results and
Discussion” section.

Tests of PharmDock’s docking performance
Cognate docking

The “core set” of the PDBbind [11,15] database (version
2007) was used to test PharmDock for its performance on
ligand binding pose prediction and binding energy estima-
tion. The PDBbind “core set” provides 210 protein-ligand
complexes non-redundantly sampled from 1,300 protein-
ligand complexes [15]. It covers 70 different proteins, each

Figure 2 Illustration of PharmDock main menu with different sub-processes. Exporting ligand libraries, performing docking calculations,
either unbiased or biased, and importing docking results into PyMOL for visual analysis were shown.
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of which contains three protein-ligand complexes with
different binding affinities. All the protein-ligand com-
plexes in the PDBbind core set were pre-processed with
hydrogen atoms added and were therefore used directly
without additional preparations. Due to various reasons,
20 protein-ligand complexes were excluded from the
pose prediction and ranking study as described in our
previous study [10].
The performance of PharmDock in ligand binding pose

prediction was evaluated by its ability to reproduce the
native-like pose for each protein-ligand complex in the
PDBbind core set at the top-1 position. The top pose
RMSD, i.e. the RMSD between the top-1 ranked pose to
the native binding pose denoted as RMSDtop, was calcu-
lated. The average RMSDtop over the studied protein-
ligand complexes was reported to assess the overall
sampling performance. In addition, the percentages of
complexes that were successfully predicted with RMSDtop

within 1 Å, 2 Å and 3 Å to the native conformation
were also used to evaluate the overall performance of
pose generation and ranking. The correlation between
PharmDock’s predicted binding energies with the ex-
perimentally measured binding affinities was used to
evaluate PharmDock’s performance in binding energy
estimation. And finally, the success rate of PharmDock
in ranking three ligands bound to the same protein ac-
cording to their binding affinities was also calculated.

Virtual screening

The dictionary of useful decoys (DUD) [16] dataset was
used to perform virtual screening (VS) studies. The DUD
dataset contains 40 protein targets and a set of active and
decoy ligands corresponding to each target. In the current

version of PharmDock, the parameters of ions and co-
factors were not included. Therefore, the four metal-
loenzymes, two folate enzymes and five other enzymes
(aldose reductase, enoyl ACP reductase, glycogen phos-
phorylase β, purine nucleoside phosphorylase and S-
adenosyl-homocysteine hydrolase) were excluded in our
VS experiment. For each protein structure in DUD, the
side-chain conformations of ASN, GLN and HIS, and
tautomers and protonation states of HIS were adjusted
using the Reduce program [27]. The hydrogens were
added to the protein using the tleap module of Amber
10 [28]. The protein-based pharmacophores and ligand
conformations and pharmacophores were generated for
each target following the methods described in “Generation
of Protein-based Pharmacophores” and “Generation of
Ligand Conformation and Pharmacophores”.
To analyze the VS results, the ligands for each protein

system were ranked based on their predicted binding
energies. The Receiver Operating Characteristic (ROC)
curve displaying the fraction of ranked actives (true
positive rate) at a given fraction of ranked decoys (false
positive rate) was plotted for each VS run. The area-
under-the-curve (AUC) was calculated for each ROC
curve and used to assess the overall enrichment quality.

Results and discussion
Prediction of binding poses
To evaluate PharmDock’s performance in predicting ligand
binding poses in close agreement with the X-ray poses,
we performed cognate docking studies on the PDBbind
[11,15] core set. In the default setting, PharmDock uses
the ligand conformations generated by OpenEye Omega
[12-14] as docking input. Our previous study [10] and

Figure 3 Illustration of docking settings. The dialog specifies the location where docking results are stored, the ligand library and protein file
used for docking, the option for binding site definition, and options for output of docking results.
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many other docking studies [29,30] have shown that the
input ligand conformations can have a significant influ-
ence on the prediction of the binding poses. To assess
the influence of the input ligand conformations on
PharmDock, we performed two docking runs for each
protein-ligand complex: one with the native conform-
ation seeded within the low energy conformations of
Omega (Native-Seeded) and one with only the low energy
conformations (Omega-Only). In our previous study, we
have presented pose prediction and ranking results using
pharmacophore models without any local optimization of
the binding poses or use of an atomistic scoring function.
To demonstrate that the optimization process is effective
in improving the docking power, we compared the pose

prediction and ranking results with and without the MC
optimization. When the native conformer was used as
docking input, the fraction of entries that have correctly
predicted poses (RMSD ≤ 2 Å to the native binding pose)
at the top-1 position was nearly doubled using MC
optimization compared to pharmacophore matching only
(Figure 6A). The fraction of entries that have correctly
predicted poses within the top-10 ranked poses was 92%.
When using Omega generated low-energy conformers as
docking input the fraction of entries with correctly pre-
dicted poses at the top-1 position increased significantly
from 10.9% without MC optimization to 39.1% with MC
optimization. A nearly three-fold increase was also ob-
served for the top-3 ranked poses. In summary, the MC

Figure 4 Illustration for the definition of search volume for PharmDock. The docking search volume can be defined by visually adjusting
(top) the position and size of the box displayed in PyMOL (bottom).
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optimization combined with PLP scoring function signifi-
cantly improves the ability of PharmDock to identify the
native binding pose of a ligand.
A detailed analysis of the distribution of the RMSD

values between the top-1 ranked binding pose and the
X-ray binding pose (RMSDtop) for PharmDock with MC
optimization is shown in Figure 6B. When the native lig-
and conformations were provided together with the low-
energy conformations, PharmDock was able to predict
binding poses with RMSDtop ≤ 1 Å for 45% of the tested
protein-ligand complexes. When the native ligand con-
formations were excluded from the docking inputs, this
number dropped to 20%. Obviously, the starting ligand
conformations are critical for obtaining the correct
docking solutions in PharmDock. As demonstrated in
our previous study [10], Omega was not always able to
sample ligand conformations within 1 Å RMSD to the

native ligand conformation. Under our current setting (see
“Generation of Ligand Conformation and Pharmacophore”
in Methods section), 67% ligands had at least one con-
former generated within 1 Å RMSD to its native conform-
ation. This lack of generating native ligand conformations
with Omega for a significant fraction of the docked ligands
was the major reason for the dramatic drop in the success
rate after excluding the native conformation from the
docking inputs.
We compared the performance of PharmDock in pre-

dicting the ligand binding poses with the results of seven
widely used docking programs evaluated by Plewczynski
et al. on the PDBbind refined set [31]. The average
RMSDtop (avg RMSDtop) and the fraction of protein-ligand
complexes that have RMSDtop ≤ 2 Å (%entries ≤ 2 Å) are
shown in Table 1. When the native conformations were
provided together with the low-energy conformations in

Figure 5 Illustration of PharmDock’s settings for confined or constraint docking. Pharmacophores can be visually selected with the PyMOL GUI.

Figure 6 Prediction of binding poses by PharmDock. (A) Comparison between the docking performance of PharmDock with and without
Monte Carlo (MC) optimization. The fraction of protein-ligand complexes that have at least one predicted pose within 2.0 Å RMSD to the native
binding pose is displayed on the y-axis. The first two columns are the docking results using native conformer as the docking input. The last two
columns are using the Omega-generated low-energy conformers as docking input. (B) Distribution of the RMSDtop. Native-Seeded: Docking was
performed with the native ligand conformation seeded within the Omega-generated low energy conformations as input. Omega-Only: Docking
was performed with only the Omega-generated low energy conformations as input.
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docking, PharmDock was able to predict a correct binding
pose (RMSD ≤ 2 Å) for 56% of the complexes with an
average RMSDtop of 2.9 Å. This result was among the
best of the compared docking programs. When the na-
tive conformation was excluded from the docking input
of PharmDock, the fraction of protein-ligand complexes
with correctly predicted binding poses was significantly
reduced (37%). But taking the average RMSDtop into
consideration, the performances of PharmDock were
still comparable to that of Glide and AutoDock, and
better than LigandFit and FlexX.
We recognized that the dataset used in our study was

not exactly the same as used by Plewczynski et al.. How-
ever the “core set” we used was a subset non-redundantly
sampled from the “refined set” used by Plewczynski et al..
To further substantiate our comparison, we compared
PharmDock with four docking programs (Glide, GOLD,
LigandFit and Surflex) evaluated by Li et al. on the
PDBbind core set [29]. As shown in Table 2, when the na-
tive ligand conformers were provided in the docking in-
puts, PharmDock was still among the best of the studied
docking programs. When only the low energy conformers
were provided, PharmDock performed comparably to Sur-
flex and LigandFit. This is consistent with the previous
comparison against Plewczynski et al.’s study.

Prediction of binding affinities
Another important evaluation of the docking program is
how well the predicted binding energies correlate with

the experimentally measured binding affinities. Experi-
mentally measured binding affinities are available for all
protein-ligand complexes provided in the PDBbind data-
base. Figure 7 shows the correlations between the experi-
mentally measured binding constants (in –log Kd units)
and the predicted binding scores by PharmDock for all
tested protein-ligand complexes. The Pearson correlation
coefficients (Rp) were 0.580 and 0.567 for the docking cal-
culations based on native-seeded and omega-only input
conformations, respectively. Previously, Cheng et al. [26]
have performed a comparative study on 16 widely-used
scoring functions using the PDBbind core set. They used
these scoring functions to estimate the binding affinities
of the protein-ligand complex structures as obtained from
the X-ray experiments; thus, no pose sampling was per-
formed removing the uncertainty typically generated in
this step of standard docking protocols. The correlations
between the predicted binding scores of individual scoring
function and the experimentally measured binding affin-
ities range from 0.644 to 0.216. The top three best corre-
lations were obtained by X-score with Rp of 0.644,
DrugScore with Rp of 0.569 and ChemScore with Rp of
0.555. Using PLP scoring function on the X-ray protein-
ligand complexes an Rp of 0.545 was obtained. It is
worth noting that the X-ray protein-ligand structures
were used in Cheng et al.’s study whereas the top-1
ranked poses from PharmDock were used in our study
for computing the binding scores. Despite the additional
uncertainty in generating native poses in our study, a
higher Rp (in both native-seeded and omega-only cases)
was obtained compared to the study from Cheng et al.’s
using the same PLP scoring function. One other signifi-
cant difference between using PharmDock generated
ligand poses and the crystal ligand poses is that in our
study PharmDock MC optimization were performed to
locally optimize the binding poses according to the PLP

Table 1 Comparison of PharmDock with docking

programs evaluated by Plewczynski et al.

Native conformation
as docking input1

Omega conformations
as docking input2

avg
RMSDtop (Å)

%entries ≤
2 Å

avg
RMSDtop (Å)

%entries≤
2 Å

Surflex 3.2 52% 3.1 51%

GOLD 2.8 55% 2.4 63%

eHiTs N/A N/A 2.6 58%

Glide SP 3.3 52% 3.7 43%

AutoDock 2.3 56% 4.0 41%

LigandFit 3.2 48% 4.4 33%

FlexX 4.2 41% 4.3 37%

PharmDock 2.9 56% 3.9 37%

Avg RMSDtop: RMSDtop averaged over all the tested complexes. %entries ≤ 2 Å:
the fraction of complexes with RMSDtop ≤ 2 Å. The results for the seven
docking programs in comparison were extracted from Plewczynski et al.’s
study [31]. 1In Plewczynski et al.’s study, only the native ligand conformation is
provided. In PharmDock simulations, the native ligand conformation is seeded
within the Omega-generated low energy conformations, because PharmDock
does not generate ligand conformations on-the-fly during pose sampling.
Conformations are further modified during pose optimization. All other
docking programs take the input ligand conformation and re-generate
multiple ligand conformations during the search process. 2Plewczynski et al.
generated ten low-energy conformers per ligand using Omega for their study.

Table 2 Comparison of PharmDock with docking

programs evaluated by Li et al.

Native conformation
as docking input1

Low energy conformations
as docking input2

Glide XP 65% 48%

GOLD/GoldScore 58% 45%

GOLD/ChemScore 58% 43%

LigandFit 54% 36%

Surflex 51% 41%

PharmDock 56% 37%

Fraction of protein-ligand complexes with RMSDtop ≤ 2 Å for PharmDock in
comparison with the four docking programs evaluated by Li et al. [29]. 1Similar
as in Table 1, the result using PharmDock is shown for omega-generated
conformations seeded with native conformation as input, whereas the results
extracted from Li et al.’s study only take the native conformation as docking
input. 2Li et al. used “CONFORT” in SYBYL to generate one low energy
conformation per ligand for the study.
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scoring function. Therefore, our results suggest that an
in situ optimization with the final scoring function may
be beneficial for reducing possible steric clashes in the
original crystal structure and optimizing the beneficiary
protein-ligand contacts.
The PDBbind “core set” contains three protein-ligand

complexes for each protein target. We studied if Pharm-
Dock is able to correctly rank the three different ligands
bound to the same protein according to their binding af-
finities. There are 70 different proteins in the original
PDBbind core set. After removal of the 20 complexes, as
described before, 55 proteins remained that still had three
different complexes available for our ranking study. For
42% of these 55 protein targets in both native-seeded and
omega-only cases PharmDock was able to correctly rank
the three ligands according to their binding affinities. Ac-
cording to the results reported by Cheng et al., when the
original crystal complex structures are used for estimating
the binding energies, the highest success rate of ranking
the ligands for the same protein target was 58.5%. Our
42% success rate ranks at the 9th position compared to the
16 scoring functions tested by Cheng et al.. However,
we need to mention again, that the top ranked docking
poses rather than the X-ray conformations were used in
our case, where the former is more complicated than
the latter approach, as additional uncertainties are in-
troduced throughout the pose sampling stage. Therefore
a firm conclusion cannot be drawn directly from this
comparison. However, combined with the comparable
high correlation coefficients between the PharmDock
predicted binding energies and the experimentally mea-
sured binding affinities, this result suggests that a good
prediction in the overall correlation does not guarantee
a good ranking power for the ligands bound with the
same protein. A scoring function specifically developed for
ranking the ligands bound to the same protein might be
necessary for improving the performance of PharmDock in
such studies.

Virtual screening experiment
The performance of PharmDock in retrieving active
compounds from a virtual compound library was evalu-
ated against 29 targets from the DUD data set. For each
target, the “own decoy” set was used, which includes
only decoys with physical properties similar to the native
ligands. The overall virtual screening performance was
evaluated by calculating the area-under-the-curve (AUC)
value of the ROC curve plotted for each target system
(Figure 8). In general, PharmDock provides an AUC above
random for 22 out of the 29 tested targets. The average
AUC among all the tested targets is 0.61. This value is com-
parable to those reported by Cross et al. [32] on the virtual
screening performance of six docking programs (Figure 9).
When breaking down our VS results into different protein
families, PharmDock provides an average AUC of 0.61, 0.69
and 0.55 for kinases, nuclear hormone receptors (NHRs)
and serine proteases respectively. PharmDock’s per-
formance on kinases and NHRs are among the best in
comparison with the other docking programs. Serine pro-
teases turned out to be a difficult system for PharmDock.
One possible reason for the rather weak performance
of PharmDock on the serine proteases could be the
neglect of solvation effects in the scoring function. Re-
cent studies [33] on serine proteases suggest that the
inclusion of explicit solvent effects is necessary to explain
the structure-activity relationships of serine protease in-
hibitors. Therefore, a more sophisticated scoring function
might be required to improve the performance of Pharm-
Dock on serine protease targets.

Confined and constraint docking with PharmDock
To guarantee easy use of PharmDock, a PyMOL GUI
was developed as described in the “Implementation” sec-
tion. Besides the basic docking settings, the plugin also
provides the user with the option to restrict docking to
selections of the protein-based pharmacophores in order
to concentrate the docking search volume to certain

Figure 7 Correlations between the experimentally measured binding constants of the protein-ligand complexes and the PharmDock-
predicted binding scores. The experimentally measured binding constants were shown in –log Kd units. Left. Correlations between the binding
constants and the predicted binding scores when native conformers were provided together with low-energy conformers as input for docking.
Right. Correlations between the binding constants and the predicted binding scores when using only low-energy conformers as docking input.
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regions of the binding site. We termed this docking
protocol as “confined docking”. Alternatively, the user can
choose to utilize the “constraint docking” option, where at
least one ligand pharmacophore of an accepted docking
pose has to match with the user-selected pharmacophore
elements. This option allows to enforce certain interac-
tions that are critical for ligand binding to the target

protein of interest. Typically, all pharmacophore elements
of a property such as hydrogen-bonding are treated
equally in the scoring function. The physicochemical en-
vironment of the hydrogen-bonding group or desolvation
effects, however, can significantly alter the strength of a
hydrogen bond [34]. Pharmacophores derived from an
analysis of existing protein–ligand structures or previously
identified active compounds can be used to differentiate
between important and weak hydrogen bonds. The phar-
macophores can be incorporated as constraints into dock-
ing, thus binding modes that do not match any of the
selected pharmacophores will be discarded. To demon-
strate how these two novel docking features can benefit
the docking performance, examples of using the confined
and constraint docking are shown in this section.
To demonstrate the potential of confined docking, we

chose the inhibitor 3-chloro-N-[4-chloro-2-[[(5-chloro-
2-pyridinyl)amino]carbonyl]-6-methoxyphenyl]-4-[[(4,
5-dihydro-2-oxazolyl)methylamino]methyl]-2-thiophe-
necarboxamide complexed with human factor Xa (PDB-
code: 1MQ6) as an example. Unbiased docking to all
protein-based pharmacophores identified for factor Xa

Figure 8 ROC plots for 29 tested targets from the DUD dataset. Diagonal line on each figure indicates the random performance. Enzyme
abbreviations: AChE, acetylcholinesterase; AmpC, AmpC β-lactamase; AR, androgen receptor; CDK2, cyclindependent kinase 2; COX-1, cyclooxygenase-1;
COX-2, cyclooxygenase-2; DHFR, dihydrofolate reductase; EGFr, epidermal growth factor receptor; ER, estrogen receptor; FGFr1, fibroblast growth factor
receptor kinase; FXa, factor Xa; GR, glucocorticoid receptor; HIVPR, HIV protease; HIVRT, HIV reverse transcriptase; HMGR, hydroxymethylglutaryl-CoA
reductase; HSP90, human heat shock protein 90; MR, mineralocorticoid receptor; NA, neuraminidase; P38 MAP, P38 mitogen activated protein; PARP,
poly(ADP-ribose) polymerase; PDGFrb, platelet derived growth factor receptor kinase; PPARg, peroxisome proliferator activated receptor γ; PR, progesterone
receptor; RXRa, retinoic X receptor α; SRC, tyrosine kinase SRC; TK, thymidine kinase; VEGFr2, vascular endothelial growth factor receptor.

Figure 9 Virtual screening performance of PharmDock in
comparison with six other docking programs evaluated by
Cross et al.
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(fXa) (Figure 10A) resulted in the predicted docking pose
which significantly deviates (RMSD= 7.7 Å) from the na-
tive pose. When several known factor Xa inhibitors were
overlaid within the protein binding site, we found that
they all bind within the groove formed by the S1 and S4
sub-pocket of fXa (Figure 10B). Based on this observation,
only the pharmacophores within such groove were se-
lected for confined docking simulation (Figure 10B). Using
omega-generated conformers as input for confined dock-
ing the ligand of the 1MQ6 X-ray structure was accurately
reproducing the native pose of this ligand with a 1.8 Å
RMSD to the X-ray pose (Figure 10C).
In the virtual screening experiment, serine proteases

turned out to be a difficult protein family for PharmDock
with lower AUC values compared to the other docking
programs (Figure 9). Among the serine proteases, trypsin
only achieved an AUC value of 0.43. The aspartate residue
(Asp189 in Figure 11) located in the active site of trypsin
forms a specificity pocket that is responsible for attracting
and stabilizing positively charged lysine or arginine side-
chains in endogenous substrates. Non-covalent trypsin
inhibitors with amidinophenyl moiety are also found
to form stable hydrogen bonds with Asp189 [35,36]
(Figure 11). Therefore, we hypothesized that a constraint
docking simulation that requires interactions with residue
Asp189 will lead to improved virtual screening results. To
test this idea, we selected the six hydrogen bonding phar-
macophores identified around the carboxylic acid group
of Asp189. The selected pharmacophores represent the fa-
vorable locations for potential ligands to form hydrogen
bonds with Asp189 (Figure 11). Re-running PharmDock
using the constraint docking setting resulted in a signifi-
cant increase in enrichment compared to the unbiased
docking simulation, supported by an increase of the AUC
from 0.43 for unbiased to 0.54 for constraint virtual
screening.

Conclusions
Starting from pre-generated ligand and protein-based
pharmacophores, we extended our pharmacophore-based
pose sampling and ranking into a docking program, named
PharmDock. PharmDock’s performance in ligand binding
pose prediction and binding energy estimation was tested
using the PDBbind core set. We found that the presence of
the native ligand conformation greatly influenced Pharm-
Dock’s performance in pose prediction: when native ligand
conformation was provided together with the low energy

Figure 10 Example of results obtained by confined docking protocol. (A) All protein-based pharmacophores identified based on protein
structure of factor Xa (PDB: 1MQ6) without inclusion of information about known active ligands. The protein surface is colored as grey. Protein-based
pharmacophores are shown as lines for hydrogen bond donor/acceptor and small green spheres for hydrophobic elements. (B) A subset of the
protein-based pharmacophores selected from (A) with the consideration of three known active ligands. The X-ray binding poses of known ligands are
shown in stick representation. (C) Ligand binding poses predicted by PharmDock for co-crystallized ligand in PDB structure 1MQ6. Orange: Ligand
binding pose predicted in the unbiased docking setting with all identified protein-based pharmacophores. Green: Ligand binding pose predicted with
the selected pharmacophores showing excellent agreement (1.8 Å RMSD) with the X-ray pose (yellow ligand in B).

Figure 11 Example of critical protein-ligand contact used as
constraint in docking. The aspartate residue 189 of the specificity
pocket in the trypsin active site forms strong hydrogen bonds with
the amidinophenyl moiety of trypsin inhibitors (PDBID: 1BJU). An
example inhibitor co-crystallized with trypsin is shown in green. Yellow
dashes represent the hydrogen bonds. Red-white lines represent the
favorable locations (subset of protein-based pharmacophores) where a
hydrogen bond donor groups from the ligands can interact with the
hydrogen bond acceptor groups of the Asp residue.
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conformations in docking, PharmDock was able to repro-
duce the native binding pose within an RMSDtop ≤ 2 Å for
56% of the protein-ligand complexes. This success rate
dropped to 37% when the native ligand conformation is ex-
cluded from the docking inputs. Interestingly, the influence
of the native ligand conformation was not that dramatic
for binding energy estimation. Linear correlations between
the predicted binding scores and the experimentally mea-
sured binding affinities were observed. The Pearson correl-
ation coefficient of 0.580 and 0.567 were reached with and
without the presence of native ligand conformations in the
docking input.
We also measured PharmDock’s ability in ranking dif-

ferent ligands bound to the same protein according to
their binding affinities. This test is directly related to the
virtual screening study where the rankings rather than
the absolute binding energies are critical to distinguish
potentially active ligands from decoys. PharmDock was
able to correctly rank the ligands bound to the same
protein according to their binding affinities for 42% of
the tested proteins. Subsequent test of PharmDock in
virtual screening on 29 targets of DUD dataset yielded
an average AUC of 0.61. Dependent on the size of protein
binding site and ligand molecule, the required computa-
tion time needed to dock one ligand using PharmDock
varies between 0.5 and 7 min for the DUD dataset on a
single core of a 2.5 GHz Quad Core AMD2380 computer.
The average time required for docking was about 2.7 min
per ligand.
Many docking programs have been developed since the

establishment of the computer-aided molecular design field.
While we understand that due to many influencing factors
a fair comparison between different docking programs
is quite difficult [37], we chose to compare PharmDock
with several widely used docking programs evaluated by
other studies so we can better understand PharmDock’s
weaknesses and strengths. Using a simple empirical
scoring function, PLP, PharmDock’s performances in
binding pose prediction and binding energy estimation
were comparable to or better than many widely used
docking programs. Whereas PharmDock provided a high
Pearson correlation coefficient between the estimated
binding energy and experimentally measured binding af-
finities compared to other programs, the overall binding
affinity prediction is still not accurate enough for drug
optimization purposes. This difficulty in predicting bind-
ing affinities is also reflected in its mediocre performances
in ranking ligands bound to the same protein and of vir-
tual screening experiments, although comparable to other
available docking methods. A more sophisticated scoring
function is still necessary for improving PharmDock’s
performance for separating physically similar ligands
with distinct biological affinity. Furthermore, the com-
parison between the Native-Seeded and Omega-Only

results also indicates that a better sampling of the ligand
conformations, in particular for large, flexible ligands
would improve PharmDock’s performance for this class
of compounds. Last but not least, it has also been shown
that the inclusion of protein flexibility and dynamics using
the “ligand model concept” recently developed in our group
can significantly improve the enrichment of virtual screen-
ing experiment [38]. Future version of PharmDock will be
combined with this “ligand model concept” to take protein
flexibility and dynamics into consideration.
To make PharmDock accessible to any researcher in

the field of biological and medicinal chemistry, we devel-
oped an open access PyMOl GUI for PharmDock. Both
PharmDock and the PyMOl GUI can be downloaded
from http://people.pharmacy.purdue.edu/~mlill/software/
pharmdock. Two new features, confined docking and con-
straint docking, were built into the GUI. The idea is to
provide users with the flexibility to include their expert
knowledge about the target protein into the docking simu-
lations. Two examples of these features demonstrated
their usefulness in binding pose prediction and virtual
screening.
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