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Abstract
Pharmacophore search is a key component of many drug discovery efforts. Pharmer is a new
computational approach to pharmacophore search that scales with the breadth and complexity of
the query, not the size of the compound library being screened. Two novel methods for organizing
pharmacophore data, the Pharmer KDB-tree and Bloom fingerprints, enable Pharmer to perform
an exact pharmacophore search of almost two million structures in less than a minute. In general,
Pharmer is more than an order of magnitude faster than existing technologies. The complete
source code is available under an open-source license at http://pharmer.sourceforge.net.

Introduction
The identification of novel leads is a major challenge in modern drug discovery. High-
throughput screening (HTS), the physical screening of a large chemical compound library
against a biological target, is an established technology for lead identification, but is limited
by its expense and the quality and diversity of the screened compound library.1 Virtual
screening, the computational identification of possible lead compounds, is a complementary
technology to HTS.2 Virtual screening improves hit rates and reduces costs by generating
small, highly-enriched subsets of compound libraries that are then physically screened.3

Pharmacophore search is an established and effective mechanism of virtual screening4-8 (for
an excellent recent review see Leach et al.9). A pharmacophore describes the structural
arrangement of the essential features of an interaction. Common pharmacophore features
include hydrophobic, charged, or hydrogen bond features and may include additional
information, such as the direction of hydrogen bonds. A pharmacophore query is defined by
the spatial arrangement of features and a search radius around each feature. Automated tools
can derive a pharmacophore query either from a known structure or a set of known ligands.9
Once an interaction pharmacophore has been elucidated, it is used to search a database of
compounds for matches.

Most pharmacophore search technologies either use a fingerprint-based or an alignment-
based approach. Fingerprint-based approaches are often used as a similarity metric10 and
discretize the search space by assigning distances between sets of three or four11,12

pharmacophore features to a limited number of bins. Each bin is represented by a bit in a
binary fingerprint. Once pharmacophore fingerprints have been computed for a compound
database, querying a single compound for the presence of a specific pharmacophore is an
efficient bitwise comparison. However, the discretization of the search space reduces the
accuracy of the search, and queries do not automatically result in an alignment to the query
pharmacophore. Alternatively, FLAP fingerprints13 represent the rounded distances of a four
point pharmacophore directly, resulting in a less discretized representation that is less
efficient to query.
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Alignment-based approaches align each database compound against the pharmacophore
query resulting in more accurate and structurally meaningful results, but at the cost of more
computation.5,14,15 If the compound database does not contain explicit conformations, a
flexible pharmacophore alignment must be performed for an additional computational
cost.16 The resulting pharmacophore alignment should exactly match the specifications of
the query and the resulting poses can serve as starting points for docking and scoring.

Most pharmacophore search implementations must query all compounds in the database
and, as a result, their computational performance is directly proportional to the size of the
database. Two noteworthy exceptions are inverted-key fingerprint screening17 and Recore.18

Inverted-key search requires a highly reduced and discretized search space so that search
features can be represented by a small set of keys. Recore is limited to the scaffold hopping
domain and stores pharmacophore features relative to the exit vectors of potential scaffolds
in a spatial index, a data structure that supports the efficient storage and retrieval of data
indexed by spatial coordinates.

In this paper we describe Pharmer, a new computational approach to pharmacophore search
that scales with the breadth and complexity of the query, not the size of the database, and
returns all matching compounds aligned to the query pharmacophore. Pharmer is inspired
by, but distinct from, two object recognition methods from computer vision: geometric
hashing19 and the generalized Hough transform.20 By adapting these methods to
pharmacophore search and through the use of the novel Pharmer KDB-tree data structure,
Pharmer is capable of searching a library of millions of structures for a specific
pharmacophore in seconds, unlocking new applications for pharmacophore search.

Methods
Pharmer stores the pharmacophore features of virtual library compounds using a novel
database organization that supports efficient queries. A compound pharmacophore is
decomposed into coordinate-frame independent triangles that are stored as exact coordinates
in a spatial index. A query pharmacophore is similarly decomposed into triangles and the
results of range queries on the spatial index are reconstructed into an alignment of virtual
compounds to the query pharmacophore. A novel Bloom filter21 approach for representing
molecular fingerprints is used to improve the scalability of the search.

Database Construction
Pharmacophore Feature Perception—Pharmacophore features are identified using
user-configurable SMARTS22 expressions. The coordinates of a feature are determined by
averaging the coordinates of all atoms matched by the SMARTS expression. Optionally,
features of the same type may be clustered in order to combine spatially close features. More
complex pharmacophore identification routines can easily be implemented
programmatically.

A default set of pharmacophore features includes expressions to match hydrogen bond
donors and acceptors, positive and negative ions, aromatic rings, and hydrophobic regions.
Hydrophobic features contained within a distance of 2Å are combined into a single feature.
This clustering greatly simplifies the formulation of SMARTS expressions for certain
hydrophobic nonplanar polycyclic functional groups: simple SMARTS expressions
recognize the sub-cycles of the group and then the resulting features are combined into a
single feature representing the entire functional group.

Pharmacophore Representation—After identifying the pharmacophore features of a
library compound, as shown in Figure 1, all possible triangles between these features are

Koes and Camacho Page 2

J Chem Inf Model. Author manuscript; available in PMC 2012 June 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



enumerated. Together with the point correspondence, these triangles define the spatial
relationship between the pharmacophore features independent of a coordinate-frame. The
three lengths of each triangle, once sorted into a canonical order, define a unique point in 3-
space. In Pharmer, these exact values are used to store meta-data associated with this
triangle and molecule in a spatial index. The meta-data includes the length values, the point
correspondences for each vertex, the original Cartesian coordinates of each vertex,
molecular data such as molecular weight and the number of rotatable bonds, and a Bloom
fingerprint that represents the complete pharmacophore. All of this data can be stored in a
single 64 byte Triplet-Data structure, the layout of which is shown in Table 1. Coordinates
and lengths are rounded to fit within 16 bits. Since the lengths between points are stored,
two feature coordinates can be stored as spherical coordinates relative to the first coordinate,
requiring the storage of only two values, θ and ϕ angles, for these features. A few bits are
reserved for feature-specific meta-data. These may be used to store the size, charge, or
directionality of a feature.

Spatial Index—A spatial index is a data structure that supports the efficient storage and
retrieval of data indexed by spatial coordinates. The spatial index used by Pharmer is a
variant of a balanced KDB-tree.23 This choice of data structure is particularly well suited for
performing efficient range searches over point data that is stored on disk (a necessity with
large virtual libraries). Each node in the KDB-tree represents a bounding box and is an
ancestor to all points, in this case coordinates derived from triangle lengths, within the box.
The immediate children of a node are determined by finding a cutting plane across the
largest dimension of the bounding box that equally splits the points, resulting in a balanced
structure with a guaranteed logarithmic depth. The tree structure is mapped onto sequential
8KB pages to maximize disk access performance. As a result, even in an index that contains
billions of points, a single-point query incurs only a handful of input/output operations.

The Pharmer KDB-tree, an example of which is shown in Figure 2, is designed to efficiently
support range queries, which search for all points within a specified bounding box or more
complex spatial volume. In contrast to a traditional KDB-tree, in Pharmer, each node stores
an explicit bounding box to support accurate checking of range overlaps. The bounding box
of each node is shrunk to exactly fit the underlying points, as shown in Figure 2(a). This is
an adaption of the sliding-midpoint rule24 that results in a balanced tree with good range-
query properties. For example, despite intersecting several cutting planes, the range query
around point q in Figure 2 only traverses a single branch of the search tree since the
embedded bounding boxes of the other branches do not overlap the query.

Additionally, the TripletData structures, the leaves of the tree, are laid out in a separate file
that matches the hierarchy of the KDB-tree. This allows every node in the KDB-tree to
contain a reference to the TripletDatas contained in its bounding box. Consequently, when
performing range queries, when the bounding box of the tree node is contained within the
query range, traversal of the KDB-tree can be short-circuited by a single sequential read of
all the matching TripletDatas. For example, in Figure 2, the query would stop early at node
c-d. In practice, we find that the performance of range queries is essentially proportional to
the number of points returned, not to the size of the index.

Pharmer generates a separate spatial index for every possible triplet of pharmacophore
features. For example, a triangle containing one hydrogen acceptor and two hydrophobic
features (such as triangle ABC in Figure 1) would be stored in a separate index from a
triangle containing one hydrogen donor and two hydrophobic features (such as triangle
ABD).
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Bloom Fingerprints—A Pharmer pharmacophore search decomposes a query into a set of
triangles, performs range queries around these triangles according to the query tolerances,
and assembles the results to find compounds that match all the triangles of the query. Since
most queries are expected to have more than three points, it is desirable to quickly screen out
any TripletDatas that belong to compounds with no hope of matching the remaining points
of the query. To achieve this we developed Bloom fingerprints: a tetrahedral pharmacophore
fingerprint stored in a multi-resolution Bloom filter.

A Bloom filter21 is a space-efficient probabilistic data structure for performing set
membership testing. A set of k hash functions is used to set bits in a bit vector of size m.
When testing membership, all k bits must be set in the bit vector. False negatives are never
returned while false positives are returned with a probability that depends on k, m, and n, the
number of elements stored in the filter. In Pharmer, every TripletData has a Bloom filter that
stores the locations and and feature types of all the remaining pharmacophore features of the
molecule. Very little space is required to store typical numbers of features with a high
accuracy. For example, every TripletData of a molecule with 25 features will store 22
features in the Bloom fingerprint (omitting the three contained in the triangle itself). Using
eight hash functions (each feature sets 8 bits) and a bit vector of 256 bits (32 bytes), the
probability of a single query of the filter returning a false positive is approximately 0.43%.

As shown in Figure 3, each feature position is computed relative to the triangle of the
Triplet-Data using the distances to the triangle vertices and a chirality bit. Only three
distances are necessary to fully specify the geometry of the tetrahedron defined by the
triangle of the TripletData and an additional point. Distances are discretized into bins to
support querying with a search radius around a point. When searching, all sets of distances
and chiralities that are feasible for the specified search radius of a point must be checked in
the Bloom filter. A finer discretization more precisely stores locations, but results in a larger
set of distances that must be checked against the filter. To reduce the overhead of querying
the fingerprint, our Bloom fingerprints store points at multiple resolutions using different
numbers of hash functions. For example, six hash functions may be used to store a point at a
4Å resolution (at lower resolutions there are fewer unique distances reducing the need for
more hash functions) and eight hash functions to store the same point at a 1Å resolution. The
Bloom fingerprint is first queried at the lowest resolution, and only if a positive is returned
are the appropriate high resolution points checked.

Bloom fingerprints allow Pharmer to perform a spatial query of a single triplet of features
while taking the entire context of a many-point pharmacophore query into account. The
more features in a query, the more TripletDatas can be eliminated, improving the scalability
of the search as the size of the query increases.

Database Search
A pharmacophore query is specified by a spatial arrangement of pharmacophore features
each with a specified tolerance in the form of a search radius. An example pharmacophore
query derived from a kinase inhibitor is shown in Figure 4(a). Pharmer decomposes a
pharmacophore query into triplets of features, performs a range query in the appropriate
spatial database for all triangles that can match a each triplet, assembles the results to
generate all possible correspondences between the query and database compounds, and then
uses these correspondences to produce compound poses that are aligned to the query.

A query with n features has  triplets of features. However, only n − 1 connected triplets
are necessary to fully define a rigid mesh between these features. Pharmer uses a histogram
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generated during database creation to heuristically select a triplet that is expected to match
the fewest number of compounds, and than greedily selects connecting triplets. A
connecting triplet shares exactly two vertices with the previously selected triplet while the
third vertex must be a feature that has not already been covered by a triplet. The final
connecting triplet connects back to the first triplet. For example, in Figure 4(a), if the triplet
ABC is chosen first, then Pharmer would select from (BCD,ACD,ABD) the triplet that, based
on the database histogram, is expected to most aggressively filter the results. A final triplet
connects back to the ABC to form a tetrahedron that fully defines the spatial relationship
between the points.

Next, Pharmer performs a range query around each triplet to identify database compounds
with matching three-feature pharmacophores. The triangle lengths of each triplet of features
correspond to coordinates in the Pharmer spatial index. Due to the tolerance radius, the
range of the query is constrained by a bounding box proportional to the tolerance radii. For
example, the query of Figure 4(a) has a 1Å tolerance for each feature, resulting in a 4Å
cubed bounding box that is centered around these coordinates. Since tolerances are specified
as spheres around Cartesian coordinates, the actual shape, as shown in Figure 4(b), is more
complex than a simple bounding box. Pharmer uses trigonometric identities to search within
an easily computed approximation of this smaller shape, reducing the search overhead.

The range query identifies TripletDatas that match the geometric and feature constraints of a
single query triplet. TripletDatas are further screened based on molecular metadata, such as
molecular weight and rotatable bonds, and the Bloom fingerprint. Matches are stored in an
active compound table. After the first query triplet has populated this table, all subsequent
matches must correspond to an active compound. If no TripletDatas match an active
compound, it is set to inactive. Successive TripletDatas must be compatible with a
previously matched TripletData. Triplets are compatible if the connecting features of the
query triplets match and the distance between the non-connected features is compatible with
the query. For example, if the query triplet ABC matches a TripletData corresponding to
features xyz of a database compound, then a successive TripletData matching query triplet
DBC is compatible if it corresponds to features wyz of the same database compound and the
distance between w and x is within the range specified by the query features A and D. As
each of the n − 1 query triplets is processed, the number of active compounds is reduced.

After all query triplets are matched to the spatial index, the active compound table is
populated with compounds that have one or more matched and compatible TripletDatas for
each query triplet. Pharmer then recursively enumerates all possible legal correspondences
between query features and compound features for each active compound. Each
correspondence is then used to compute the pose that minimizes a radius-weighted root
mean squared deviation (rwRMSD) between the database compound and the query:

where d(ci,qi) is the distance between the corresponding compound feature, ci, and query
feature, qi, with tolerance radius ri. Each feature is weighted by the inverse of the tolerance
radius. This weighted alignment prevents features with tight tolerances from shifting far
from the desired location. Dual-number quaternions25 are used to efficiently compute the
optimal pose. Only compound poses where all features remain within the query tolerances
are retained.
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Comparison to General Object Recognition—The Pharmer search method is related
to, but distinct from, two object recognition methods in computer vision: geometric
hashing19 and the generalized Hough transform.20 Geometric hashing represents a set of
points in a coordinate-frame independent format by computing the orientation of the point
set with respect to the coordinate systems defined by every possible triangulation of points.

This requires the storage of  items within the spatial index for every set of n points, a
substantial increase relative to Pharmer. The generalized Hough transform decomposes a

query object into all possible  sets of triangles, performs a range query for each
triangle, and uses a voting scheme to identify similar objects stored in the database. Since
Pharmer identifies exact, as opposed to similar, matches, only n − 1 queries are necessary.
Additionally, Pharmer utilizes pharmacophore-specific filtering mechanisms such as the
Bloom fingerprint to accelerate the search performance.

Extensions
Pharmer efficiently and exactly matches a pharmacophore query specified as a spatial
arrangement of features with tolerance spheres. The technology can be further extended to
perform more sophisticated queries.

Optional Features—Optional feature matching is useful when implementing Boolean or
counting query constraints or when using the number of pharmacophore matches as a
scoring metric. A database compound does not need to match an optional feature to be
returned as a hit. One approach to handling optional features is to simply enumerate all
possible combinations of matched/unmatched optional features and run each combination as
a separate query. For example, a query where at least two of three hydrogen bond features

should match can be decomposed into  separate queries.

An alternative, possibly more efficient, method for handling such optional features is to
change the algorithm for constructing the rigid mesh of search triplets. First, a rigid mesh of
the required features is constructed as before. Then any optional features are included in the
mesh using two distinct triplets connected to the mesh of required features. These two
triplets fully define the spatial relationship of the optional feature relative to the required
features and independent of other optional features. Compounds that match both triplets are
marked as potentially matching the optional feature and a failure to match either of the
triplets does not remove a compound from the active compound table. Although this
approach requires two range queries to the spatial index for each optional feature, there is no
repetitive screening of required features.

Optional features can also be used to exclude specific features in a query. These features are
treated just as optional features, but if an active compound matches such a feature, it is
filtered out.

Directional Features—Some pharmacophore features, such as hydrogen bonds and
aromatics, are directional. One method for incorporating directional features is to compute a
projected point, which in itself is a new kind of feature. Since projected points are never
searched for independently of the originating feature, only TripletDatas containing both the
projected and originating points need be stored in the spatial index. For a compound with n

features, this is the difference between storing n − 2 and  TripletDatas.
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An alternative to the projected points approach is to store a discretized vector representing
the directionality of a feature as metadata within the TripletData. The vector is computed
using the coordinate frame defined by the three points of the TripletData and then reduced to
a small number representing a region of space. For instance, a 3-bit number could represent
the eight Cartesian quadrants. This approach has the advantages of being more space and
time efficient, but is less accurate. However, the calculated directionality is often itself an
approximation. For example, the directionality of hydrogen bond features depends both on
the nature of the ligand and the receptor, but during database construction must be computed
using only information from the ligand. As a result, pharmacophore searches must specify a
large tolerance on the directionality constraint, reducing the value of highly accurate
directionality matching.

Volume Inclusion/Exclusion—Steric volume inclusion/exclusion constraints can be
applied to the result poses as a post-processing step. Such constraints can also be integrated
into the search algorithm. One approach is to include all heavy atom centers as their own
pharmacophore feature type. Without modification, this may not scale well since the number
of TripletDatas stored for each compound grows with the cube of the number of features. A
more scalable, but approximate, approach is to generate only a few steric features per a
compound that define a sketch of the molecular shape. These are then used as preliminary
filters to eliminate some, but not all, of the undesirable compounds.

Results
The key contributions of Pharmer are novel computational methods for organizing
pharmacophore data to support extremely efficient pharmacophore queries. In this section
we evaluate the performance of Pharmer relative to Chemical Computing Group’s MOE.26

Benchmark
For our evaluation we reproduce the evaluation of Spitzer et al.27 and derive pharmacophore
queries from the crystal structures of heat shock protein 90 (HSP90, PDB:2CDD) and the
activated form of Factor XI (FXIa, PDB:2FDA). We used MOE (version 2010.10) and
Pharmer to recreate the ‘unmodified’ pharmacophore queries of Spitzer et al. These
pharmacophore queries are shown in Figure 5. Pharmer is capable of reading a variety of
pharmacophore input formats, including the ph4 format of MOE, but we generate the
Pharmer query directly from the structure to compensate for different pharmacophore
recognition rules. Each query has two hydrogen bond acceptors, one hydrogen bond donor,
and one hydrophobic feature which is slightly displaced between the Pharmer and MOE
queries. No direction vectors were applied to the hydrogen bond features. No volume
exclusion spheres were computed.

Two separate screening libraries for HSP90 and FXIa were created using the MUV data
sets28 (access date: February 1, 2011). Each library includes 30 known active compounds
and 15000 decoy compounds for a baseline enrichment of 0.2%. A multiconformer library
was generated using Omega from OpenEye Software29 (version 2.4.1) with the option –
strict 0 and the default settings (up to 200 conformers per a compound). The resulting
libraries have 1,892,172 and 1,796,125 conformations for HSP90 and FXIa respectively.
The function ‘wash’ was applied in MOE to determine the protonation states of library
compounds. Pharmer uses the default settings of the OpenBabel library30 (version 2.3) to
determine protonation.

Performance measurements were performed on a 3.33Ghz Intel Core i7 975 processor with
8GB of RAM running Ubuntu 10.04. All data was stored on a software RAID 0 (striped)
disk array of two 500GB SATA-II 7200RPM disks. Both MOE and Pharmer were
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configured to find only the first hit against a conformation. Both were configured to run
single-threaded. Reported execution times are an average of three identical runs. As the
variance between runs was found to be negligible, error bars are not shown.

Enrichment
Differences in feature recognition and alignment algorithms result in large discrepancies
between the hit lists of different pharmacophore search technologies.27 Pharmer and MOE
are no exception. For HSP90, MOE identified 101,933 and Pharmer identified 98,878
matching conformations. For FXIa, MOE identified 52,692 and Pharmer 54,136 matches.
The recovery of active compounds and the corresponding enrichment are shown in Table 2.
Pharmer recovered the exact same set of active compounds as MOE for both HSP90 and
FXIa. This result, and the similar number of matches returned between MOE and Pharmer,
demonstrates that any performance improvement of Pharmer relative to MOE is not an
artifact of a reduced or inappropriate set of recognized pharmacophore features in the
compound library.

Performance
The search performance of MOE and Pharmer is shown in Figure 6. We have decomposed
the execution time into the time spent performing disk operations while searching (Disk),
the time spent computing while searching (Compute), and the time spent writing out the
results (Output). Pharmer generates results in a plain-text sdf file while MOE generates a
compact proprietary mdb file. Converting this mdb file into an sdf is an additional step that
is not included in the performance measurements. The Disk time is computed by contrasting
the execution time of a search performed after clearing the disk cache with a search
performed after priming the disk cache with the identical search. The Output time is
computed by comparing with the execution time of the search performed in no output mode.
Taken together, these three measurements represent a worse-case scenario for search
performance. By itself, the Compute time is a best-case scenario, for example, as part of an
iterative pharmacophore refinement process where many similar queries are performed in
succession and the full molecular data of the hit list is not needed.

Pharmer is more than ten times faster than MOE for both searches. For HSP90, the worst-
case performance of Pharmer is 31.3s, of which 11.3s is spent in the Compute stage,
compared to the worst-case performance of MOE at 388.9s, of which 119.2s is spent in
Compute. The FXIa query has smaller search radii, returns fewer results, and searches a
smaller library. Consequently, FXIa takes less time than HSP90 for both Pharmer and MOE.
The worst-case performance is 22.1s for Pharmer, of which 8.2s is spent in Compute, and
299.7s for MOE, of which 110.5s is spent in Compute.

The effect of disk activity can be eliminated if the working set of the search is already in the
filesystem cache, for instance if a user has already performed highly similar searches on the
same library. Since MOE scans through the entire library, the size of its working set is
directly proportional to the size of the library. The HSP90 and FXIa libraries are small
enough to fit in main memory (4.4GB and 3.7GB respectively), but if a larger library is used
or there is less memory available, MOE will always exhibit worst case behavior. In Pharmer,
the working set depends on the size and complexity of the query, potentially allowing much
larger libraries to be searched with zero penalty to access the disk once the cache has been
primed. This is despite the fact that, due to the enumeration of all pharmacophore feature
triplets, the Pharmer databases are much larger (34GB for HSP90 and 32GB for FXIa).

The relationship between query complexity and worst-case search performance is shown in
Figure 6(b). For both HSP90 and FXIa we generated ten pharmacophore queries by
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multiplying the tolerance sphere radii of the original queries shown in Figure 5 by a multiple
ranging from 0.1 to 1.0. The smallest query, with a 0.1 multiple, returned no results while all
other queries found at least one match. The peak enrichment using Pharmer is found at a
scale factor of 0.5 for HSP90 (3 actives out of 554 hits) and a scale factor of 0.8 for FXIa (5
actives out of 952 hits). Using MOE, the scale factor with the peak enrichment for HSP90 is
0.6 (5 actives out of 996 hits) and for FXIa is 0.7 (3 actives out of 581 hits). At the peak
enrichment, Pharmer is 38 times faster than MOE for HSP90 and 24 times faster for FXIa in
the worst-case.

As expected, the performance of MOE is largely unrelated to query complexity. What
difference there is between the full, 1.0 multiple, query and the small, 0.1 multiple, query is
less than 50 seconds and is mostly due to the cost of writing out the results file. With
Pharmer, there is clearly a relationship between search performance and query complexity,
as highlighted by the log-scale of Figure 6(b). In fact, the performance ratio between
Pharmer and MOE ranges from 10 times faster to more than 1000 times faster.

Discussion
Pharmer is a new, enabling technology for pharmacophore search. Most existing
technologies sequentially scan through the target library and their performance scales with
the size of the library. In Pharmer, the performance of the search depends on both the query
and the library. Precise queries with only a few matches can search a library of hundreds of
millions of conformations in just seconds.

By accelerating pharmacophore search by at least an order of magnitude, Pharmer enables
new applications and uses of pharmacophore search. Current pharmacophore elucidation
algorithms elucidate a consensus pharmacophore from a set of active ligands. With Pharmer
as a building block, it is now tractable for elucidation to incorporate properties of a large
target library, for example, as part of a semi-supervised learning approach. Additionally, the
ultra-fast performance of Pharmer when performing highly precise queries (queries with
small tolerance spheres) suggests an alternative representation for a consensus
pharmacophore: instead of merging pharmacophore features into a single query with large
tolerances, an ensemble of ligand-based pharmacophores can be readily screened.
Alternatively, large ensembles of structure-based pharmacophores taken from a flexible
receptor model can be easily screened and consensus scored.

We have described two novel methods for organizing molecular data: the Pharmer KDB-tree
and Bloom fingerprints. Together they enable pharmacophore screening of large databases
on an interactive time-scale. The complete source code to Pharmer is available under the
GNU Public License at http://pharmer.sourceforge.net.
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Figure 1.
Pharmacophore features (spheres) are identified in library compounds using user-
configurable SMARTs expressions. The collection of compound features is decomposed
into coordinate-frame independent triangles. These triangles, along with associated
molecular data including a Bloom fingerprint, are stored in a spatial index using a canonical
ordering of the three lengths of the triangle.
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Figure 2.
A simple 2D example of the Pharmer KDB-tree. (a) The area surrounding the point set is
divided with cutting planes (solid lines) and bounding boxes (dashed lines) to form (b) a
search tree. Because of the explicit bounding boxes, a range query around q (white point),
despite intersecting several cutting planes, only need traverse a single branch of the tree,
shown as thick-lined nodes in (b), and the search terminates early when it is determined that
the points of node c-d are completely contained within the query range.
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Figure 3.
The generation of a Bloom fingerprint. (a) The position of pharmacophore features relative
to a given triangle l1l2l3 are exactly represented using the distances to the triangle vertices
(i.e., d1d2d3) and a chirality bit, which specifies which side of the plane defined by the
triangle the point is in. (b) This positional information and the feature type of the point are
provided to a set of k hash functions, in this case three, that set k bits in a bitvector, the
Bloom filter.
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Figure 4.
(a) A pharmacophore query derived from the kinase inhibitor of PDB 3K5U. A hydrogen
acceptor (A, orange), two hydrophobic (B/C, green) and a hydrogen donor (D, white) feature
were extracted by analyzing the crystal structure. Each feature is given a tolerance radius of
1.0Å. (b) The convex hull of the set of possible lengths for triangle ABC inscribed in its
bounding box (lengths ± 2.0Å).
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Figure 5.
The pharmacophores for HSP90 (left) and FXIa (right) generated using MOE (top) and
Pharmer (bottom). Hydrogen acceptor features are cyan in MOE and orange in Pharmer.
Hydrogen donor features are magenta in MOE and white and Pharmer. Hydrophobic
features are green and MOE and Pharmer position these features slightly differently. The
hydrogen donor feature of HSP90 has a radius of 1.25Å, the hydrophobic feature of HSP90
has a radius of 2Å, the hydrophobic feature of FXIa has a radius of 1.5Å, and all other
features have a radius of 1Å.
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Figure 6.
The pharmacophore search performance of Pharmer relative to MOE on the HSP90 and
FXIa queries of Figure 5. (a) Pharmer is more than an order of magnitude faster and (b) its
performance scales with the query complexity, resulting in a three order of magnitude speed
up for very precise queries.
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Table 1

The layout of the TripletData structure.

Data Size (bits) Description

molPtr 40 location of full molecule

i1 8 index of first feature

i2 8 index of second feature

i3 8 index of third feature

l1 16 length of first triangle side

l2 16 length of second triangle side

l3 16 length of third triangle side

x 16 x-coordinate of first feature

y 16 y-coordinate of first feature

z 16 z-coordinate of first feature

theta2 16 θ angle of spherical coordinate of second feature

phi2 16 ϕ angle of spherical coordinate of second feature

theta3 16 θ angle of spherical coordinate of third feature

phi3 16 ϕ angle of spherical coordinate of third feature

extra1 6 meta-data for first feature

extra2 6 meta-data for second feature

extra3 6 meta-data for third feature

Weight 10 molecular weight (rounded)

nrot 4 number of rotatable bonds

fingerprint 256 Bloom fingerprint

Total 512 64 bytes
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Table 2

Actives Decoys Enrichment

HSP90
MOE 11 3479 0.32%

Pharmer 11 3242 0.34%

FXIa
MOE 5 2767 0.18%

Pharmer 5 2729 0.18%
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