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ABSTRACT

The PharmMapper online tool is a web server for po-
tential drug target identification by reversed pharma-
cophore matching the query compound against an
in-house pharmacophore model database. The origi-
nal version of PharmMapper includes more than 7000
target pharmacophores derived from complex crys-
tal structures with corresponding protein target an-
notations. In this article, we present a new version
of the PharmMapper web server, of which the back-
end pharmacophore database is six times larger than
the earlier one, with a total of 23 236 proteins cov-
ering 16 159 druggable pharmacophore models and
51 431 ligandable pharmacophore models. The ex-
panded target data cover 450 indications and 4800
molecular functions compared to 110 indications and
349 molecular functions in our last update. In ad-
dition, the new web server is united with the sta-
tistically meaningful ranking of the identified drug
targets, which is achieved through the use of stan-
dard scores. It also features an improved user inter-
face. The proposed web server is freely available at
http://lilab.ecust.edu.cn/pharmmapper/.

INTRODUCTION

Identification and confirmation of bioactive small-molecule
targets is a crucial, often decisive step both in academic
and pharmaceutical research (1). Through the development
and availability of a variety of new experimental and com-
putational techniques, the ‘one gene, one drug, one dis-
ease’ paradigm is, in principle, feasible and the number

of successful examples steadily grows. As yet that era has
not eventuated. However, what has become apparent is
that compound promiscuity plays a key role in the efficacy
of a significant number of approved drugs, which empha-
sizes the need to employ a new paradigm of polypharma-
cology. Polypharmacology focuses on searching for multi-
target drugs to perturb disease-associated networks rather
than designing selective ligands to target individual pro-
teins (2,3). Web servers that allow the polypharmacology
effects prediction have been developed and there is an in-
creasing number of approaches that deal with targets pre-
diction from different perspectives (4–7).

Pharmacophore modeling is a broadly used ligand-
based method in drug target identification. It refers to a
protein−ligand interaction pattern corresponding to a de-
sired pharmacological effect and can be considered as the
largest common denominator shared by a set of active
molecules. PharmaGist (8) is a free web server that can
identify a consensus pharmacophore of a set of ligands in
a few minutes. Alternatively, structure-based methods re-
quire a ligand-binding structure and generate the corre-
sponding pharmacophore model by analyzing the interac-
tion site. ZINCPharmer (9) provides a mechanism for deriv-
ing a pharmacophore model directly from structures within
the Protein Database Bank (PDB) and also supports search-
ing the ZINC database using the Pharmer (10) pharma-
cophore search technology. Launched on the web in 2010,
an open-source platform called PharmMapper has been de-
signed to identify potential target candidates for the given
small molecules using reverse pharmacophore mapping ap-
proach (11). Benefiting from the highly efficient and robust
pharmacophore mapping approach, PharmMapper bears
high-throughput ability and can identify the potential tar-
get candidates from the database within hours. Further-
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more, a statistically meaningful score of the identified pro-
teins has been proposed to improve the hits enrichment and
enhance the liability of PharmMapper method (12). Collec-
tively, PharmMapper is popular and has been widely used
for targeting fishing. PharmMapper is backed up by a large,
internal collection of pharmacophore database, namely
PharmTargetDB annotated from all the targets informa-
tion in BindingDB, TargetBank, DrugBank and PDTD.
Over 7000 receptor-based pharmacophore models (cover-
ing 1627 drug target information, 459 of which are human
protein targets) are stored and accessed by PharmMapper.
However, the number of structures deposited in PDB (13)
grows linearly yearly. As of December 2016, over 125 000
structures had already been deposited into PDB, which is
much more than the number of target pharmacophore mod-
els in PharmTargetDB, indicating the inadequate coverage
of target pharmacophores in PharmMapper.

In this update, we describe the new features and exten-
sions of the PharmMapper web server. In the next section,
we describe how we have substantially extended our collec-
tion of the targets pharmacophore databases. The following
section reports on updates to the ranking of the identified
target pharmacophores by utilizing a statistically meaning-
ful score. Finally, we describe the updates to our user in-
terface, in which we have improved the user experience, re-
moved our dependency on Java applets in favor of embed-
ded JavaScript components.

MATERIALS AND METHODS

Binding sites detection

A well-defined binding pocket is critical for ligand de-
sign and target identification. CAVITY is a newer method,
which adopts a structural geometry-based ligand-binding
sites detection and analysis strategy with the capability
of predicting both the druggabilities and ligandabilities of
the detected binding sites (14,15). This software uses Cavi-
tyScore and CavityDrugScore to make quantitative predic-
tions for the ligandability and druggability of a binding site,
respectively. Druggability is defined as the possibility of be-
ing a good target for drug discovery, while ligandability is
the possibility of finding a small molecule that binds to a
certain target.

The value of CavityScore is related to the depth of the
pocket, the size of the pocket lip, the physicochemical
properties of hydrophobicity and the presence of hydrogen
bonds. By using the training sets from PDBbind (16), the
average experimental binding affinity pKd (Ave) showed lin-
ear relationship with CavityScore. Therefore, CavityScore is
used to predict the average pKd of the binding site by a lin-
ear equation.

pKd (Ave) = 0.62 × CavityScore + 3.6

Protein druggability is a more complicated property that
is related to higher level properties of ligands (ADME/T)
as well as the role of the macromolecules acting in cel-
lular pathways. Considering the complexity of druggabil-
ity, many researchers have applied machine learning al-
gorithms to make a qualitative prediction. CAVITY used
the NRDLD dataset (17) to train and validate Cavity-

DrugScore. It turned out that druggable and undrug-
gable proteins were successfully separated by using Cavity-
DrugScore.

Receptor-based pharmacophore modeling

We have also developed a standalone program, Pocket ver-
sion 4.0, a new update of Pocket program (18,19), which
is a software tool that allows rapid derivation of pharma-
cophores from the three-dimensional (3D) structure of a
protein receptor. In Pocket version 4.0, five primary types of
pharmacophore features were adopted in this process: hy-
drophobic center, positive-charged center, negative-charged
center, hydrogen bond acceptor vector and hydrogen bond
donor vector. Each cavity was automatically analyzed by
scored-grids and the crucial features in the pharmacophore
model were reduced to a reasonable number. Moreover, the
shapes and boundaries of cavities were characterized by a
number of excluded volumes centered at the grid clusters.

Enhanced pharmacophore-based target prediction method

In PharmMapper, target proteins with highest fit scores
between corresponding pharmacophore models and query
compound were predicted as potential targets, regardless
of the distribution of fit scores for the given targets across
different ligands, which could bias the prediction accu-
racy toward the protein targets with more pharmacophore
features. Therefore, we have developed a novel method to
improve the accuracy and discriminative ability of Phar-
mMapper (12). A ligand–target pairwise fit score matrix
reflecting the fit score distribution was generated by profil-
ing all the pharmacophore models in PharmMapper target
database with the corresponding ligands from the original
protein–ligand complex structures. Based on the matrix, the
probability of finding a given target pharmacophore by ran-
dom can be estimated from the corresponding fit value with
the query ligand. Two retrospective tests were carried out
on DrugBank (20) and ChEMBL (21) databases. For the
DrugBank dataset, about half of the targets were identified
at 10% false positive rate (FPR) by both fit score and Z’-
score, while 36.78% of targets were identified by Z’-score at
5% FPR versus 32.48% by fit score; while for the ChEMBL
dataset, Z’-score achieves 15% more performance than fit
score at top 1% rank stages and increases to 30% more
at top 0.1% predictions. Those results demonstrated that
the probability-based ranking score could enhance the hit
rate or enrichment based on the previous pharmacophore
database.

NEW FEATURES IN THE 2017 PharmMapper WEB
SERVER

Pharmacophore databases extension

Originally, PharmMapper included PDB structures with
co-crystallized ligand and extracted the pharmacophore
models describing the binding modes at the ligand-binding
sites (11). Thus, some potential targets of the query ligand
could be missed due to the limited coverage of the database.
Moreover, the presence of druggable, topographically dis-
tinct allosteric sites has offered new paradigm for small
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Table 1. A comparison of current and the previous version of PharmMapper

Category Version 2010 Version 2017

Entries in PDB 7302 23 236
Number of pharmacophore models 7302 53 184
Number of unique indications 110 450
Number of unique molecular functions 349 4800

molecules. Ligands that target allosteric sites offer signifi-
cant advantages over the corresponding orthosteric ligands
in terms of selectivity (22).

To conduct an update, the non-redundant set of protein
chains achieved with the BLASTClust (23) algorithm were
downloaded from the RCSB PDB server (ftp://resources.
rcsb.org/sequence/clusters/; January 1, 2016 snapshot), with
the sequence similarity threshold set to 90%. The PDB
structures with the best resolution in each cluster were cho-
sen, leading to a total of 38 088 chains with 35 161 unique
PDBs. We then used CAVITY to detect all the potential-
binding sites for the above structures and finally a com-
prehensive, non-redundant dataset containing crystal struc-
tures of 23 236 PDBs with 16 159 druggable cavities and 51
431 ligandable cavities (a predicted pKd value higher than
6.0) was retained. This dataset was subsequently used to ex-
tract pharmacophore models using Pocket version 4.0. As
a result, we generated 53 184 unique pharmacophore mod-
els, which is currently the largest collection of this kind. Ta-
ble 1 gives a summary of the basic information of the two
versions. One can see that the pharmacophore databases in
PharmMapper have increased more than six times. Com-
pared with version 2010, the number of proteins in the cur-
rent release (version 2017) has almost tripled.

The target annotations were extracted from UniProt (24)
and were categorized as follows: UniProt ID, target name,
target function and disease involved. The entire 640 indi-
cations were collected from KEGG (25) and DrugBank
(20), and then the indication annotation was done automat-
ically by running a string-match script between the indica-
tion term and the publication abstracts related to the target.
Finally, the significantly expanded target data cover 450 in-
dications and 4800 target functions, which are compared to
110 indications and 349 molecular functions in the initial
version.

PharmMapper web services

Input. PharmMapper accepts a file with single drug-like
molecule or natural product stored in MOL2 or SDF for-
mat. If the uploaded molecule does not have 3D structural
information, the server will automatically convert it into
a single 3D conformer. After uploading the file, the user
is allowed to search either the target sets in version 2010
or the updated pharmacophore database (Figure 1A). Fur-
thermore, the estimated time consumed by the complete
screening and scoring protocol for each target set is also pre-
sented. Since PharmMapper adopts a semi-flexible align-
ment strategy, a conformer ensemble has to be generated
prior to pharmacophore mapping. For the single 3D con-
former, an in-house program Cyndi (26) is used by default
to generate multiple conformations and the computational
cost is proportional to the number of conformers.

Figure 1. PharmMapper interface. (A) The target sets provided by Phar-
mMapper. (B) The ranked list of hit target pharmacophore models from
the newly updated database (Druggable pharmacophore database), which
are sorted by fit score in descending order. The pharmacophore model can-
didate and the aligned pose of molecule are shown in the JavaScript 3D
structure viewer JSmol.

Output. A typical run of PharmMapper task for the old
version database takes 1–2 h, while it costs 4–6 h for the
druggable target pharmacophore database and 20–24 h for
the ligandable target pharmacophore database. Upon com-
pletion of the computations, the results of the hit target
pharmacophore models are demonstrated in the form of
a ranked list. Since a protein may have many PDB struc-
tures presenting identical or distinct pharmacophores in the
binding site, we have regrouped those PDB structures and
adjusted to list only the PDB file with the highest score.

An important aspect of the results table renovation was
to replace the Java applets that were in use with appro-
priate JavaScript components and libraries. Due to the
heavily publicized security failures, the Java install base is
shrinking. Even when Java is installed, users are presented
with multiple security prompts that must be correctly nav-
igated before a Java applet can run. To address this con-
cern, we have utilized a JavaScript-based JSmol web applet
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Table 2. Pharmacophore candidates of kanamycin identified by PharmMapper from the 16 159 druggable pharmacophore models

Rank PDB ID Target name

26 3SG9 Aminoglycoside-2′-phosphotransferase type IVa
32 4DFU Aminoglycoside phosphotransferase APH (2′)-ID/APH (2′)-IVa
39 4H05 Aminoglycoside-3′-phosphotransferase of type VIII
42 3AOC Multidrug exporter AcrB
80 4GKI Aminoglycoside phosphotransferase APH (3′)-Ia
122 4WQL Aminoglycoside nucleotidylyltransferase ANT (2′)-Ia

Table 3. Performance comparison of the target identification for 4H-tamoxifen against the two pharmacophore databases extracted using Pocket 4.0 and
LigandScout, respectively

Rank

PDB ID Target Name
Old database

version
New database

version

1YA4 Liver carboxylesterase 130 2
2GPU Estrogen-related receptor gamma 1 5
1XA5 Calmodulin 297 30
1HJ1 Microsomal antiestrogen binding site (AEBS) >1000 69
1I5R Estradiol 17-�-dehydrogenase 18 188
1GSF Glutathione S-transferase 49 451
1XJD Protein kinase C, theta type 222 471
1HDC 3-�, 20 �-hydroxysteriod dehydrogenase 168 672
1PXX Prostaglandin G/H synthase 2 124 957
1DG7 Dihydrofolate reductase 29 >1000
3I7I Collagenase 3 136 >1000

for the interactive ligand-pharmacophore alignment poses
analysis and visualization (27). In addition, Z’-scores de-
scribed in the Enhanced pharmacophore-based target predic-
tion method section are added to the output of a specific
PharmMapper run. Users can also re-rank the result list by
Z’-scores in descending order via clicking the arrow icon in
the corresponding column (Figure 1B). The above function
currently only supported the old version database of Phar-
mMapper.

TEST CASE

Identified targets ranking

Here we show a test case using kanamycin as the query
structure to find its potential target proteins via a Phar-
mMapper search. In this case the 16 159 druggable phar-
macophore models were used as the searching database.
Kanamycin is an antibiotic used to treat bacterial infections
and tuberculosis. The top 1% (top 162) pharmacophore
candidates identified are listed in Supplementary Table S1
and those corresponding to the proteins with experimen-
tal evidence are shown in Table 2. Two kinds of impor-
tant protein targets of kanamycin, namely aminoglycoside
phosphotransferases (Rank 26, 32, 39 and 80) (Figure 2)
and nucleotidyltransferase (Rank 122) as validated in the
DrugBank database (20) are identified by PharmMapper.
Interestingly, the bacterial multidrug exporter AcrB (PDB
ID: 3AOC, Rank 42) was also revealed by PharmMap-
per as a potential target of kanamycin. Only the structures
of multidrug exporter AcrB bound to ifampicin and ery-
thromycin were solved but AcrB was indeed reported to ex-
port kanamycin (28). In practice, users usually will only fo-
cus on the top 50–200 candidates for further experimental
testing. In this test case six potential kanamycin targets were

Figure 2. Kanamycin targeted on Aminoglycoside 2′-phosphotransferase
IVa (PDB ID: 3SG9). (A) Kanamycin (sticks), pharmacophores (balls) and
surface (gray space) of the cavity kanamycin occupies, are presented. (B)
Kanamycin, which is shown as sticks, as well as pharmacophores around
the molecule, are presented. Among pharmacophores, purple balls indicate
hydrogen bond acceptor centers, green balls indicate hydrogen bond donor
centers and light blue balls indicate hydrophobic centers.

ranked in the top list, indicating the reliability of this server
tool.

Performance comparison of old database version versus new
database

The 7302 proteins in the initial version were used to ex-
tract pharmacophore models using Pocket 4.0. Tamoxifen
was then used as a proof-of-concept compound to test
the target identification accuracy between the newly con-
structed pharmacophore database and the old database ver-
sion which was built up by using the macromolecule–ligand
complexes-based 3D pharmacophore extraction tool Lig-
andScout (29). The rankings of 11 known targets of 4H-
tamoxifen from two databases retrieved by PharmMapper
are shown in Table 3. Four known targets of tamoxifen
were identified among the top 100 candidates for both two
databases, while nine tamoxifen targets were covered for the
new database in the top 1000 pharmacophore models ver-
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sus 10 for the old version, indicating the reliability of the
new version web server.

DISCUSSION

PharmMapper is an open-source web server that identi-
fies potential drug targets via large-scale reverse pharma-
cophore mapping strategy. Our previous platform provides
pharmacophore databases for over 7000 protein–ligand
complexes in PDB. The updated system included 23 236
proteins covering 16 159 druggable pharmacophore mod-
els and 51 431 ligandable pharmacophore models, which is
six times larger than the previous version. The new phar-
macophore database enables a more comprehensive tar-
get identification compared to the previous version. We
have also reported new features and interface enhancements
which have been added to PharmMapper. To our knowl-
edge, there is no such freely available web server that would
include such a large collection of target pharmacophore
models. PharmMapper can provide useful insights for fur-
ther bioassay in drug–target interaction research in phar-
maceutical applications.
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