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ABSTRACT

In silico drug target identification, which includes

many distinct algorithms for finding disease genes

and proteins, is the first step in the drug discovery

pipeline. When the 3D structures of the targets are

available, the problem of target identification is

usually converted to finding the best interaction

mode between the potential target candidates and

small molecule probes. Pharmacophore, which is

the spatial arrangement of features essential for a

molecule to interact with a specific target receptor,

is an alternative method for achieving this goal apart

from molecular docking method. PharmMapper

server is a freely accessed web server designed to

identify potential target candidates for the given

small molecules (drugs, natural products or other

newly discovered compounds with unidentified

binding targets) using pharmacophore mapping

approach. PharmMapper hosts a large, in-house

repertoire of pharmacophore database (namely

PharmTargetDB) annotated from all the targets in-

formation in TargetBank, BindingDB, DrugBank and

potential drug target database, including over 7000

receptor-based pharmacophore models (covering

over 1500 drug targets information). PharmMapper

automatically finds the best mapping poses of the

query molecule against all the pharmacophore

models in PharmTargetDB and lists the top N

best-fitted hits with appropriate target annotations,

as well as respective molecule’s aligned poses are

presented. Benefited from the highly efficient and

robust triangle hashing mapping method,

PharmMapper bears high throughput ability and

only costs 1h averagely to screen the whole

PharmTargetDB. The protocol was successful in

finding the proper targets among the top 300

pharmacophore candidates in the retrospective

benchmarking test of tamoxifen. PharmMapper is

available at http://59.78.96.61/pharmmapper.

INTRODUCTION

Recent advances in genomics have triggered a shift in drug
discovery from the paradigm of focusing on strong
single-target interaction to more global and comparative
analysis of multi-targets network (1–3). In this context, it
has become an urgent need to develop fast, robust and
efficient methods to identify and validate new druggable
targets and, concomitantly, to map the ligand-target
profiling space globally. A proteomic approach in iden-
tifying potential binding proteins for a given small
molecule involves comparison of the protein expression
profiles for a given cell or tissue in the presence or
absence of the given molecule. This method has not
proved very successful in target discovery because it is
laborious and time-consuming (4). Within this new
scenario, in silico target profiling methods are emerging
as efficient alternatives to the currently unaffordable
high-throughput in vitro target profiling of compounds
as well as to find new therapeutic indications for old
drugs, an activity often referred to as drug repurposing
(3,5–7). On the other hand, chemogenomics approach
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has emerged as a new discipline in target prediction via
data mining in target-annotated databases (8–15).
However, the success of chemogenomics depends on the
availability of bioactivity data for the targets and their
associated ligands. For new ligands, such data are either
approximate or unavailable in lack of corresponding
target information. Moreover, the adverse drug reaction
may involve targets that are not well-characterized (16).
Recently, we have developed an in silico target prediction
method for a given small molecule by ‘probing’ the poten-
tial ligand binding sites stored in potential drug target
database (PDTD) via ligand–protein reverse docking
strategy (17,18). As a complementary modeling method
to 3D structures at atomic level, pharmacophore is the
spatial arrangement of features that enables a molecule
to interact with a target receptor in a specific binding
mode. Recent developments as well as applications of
pharmacophore model derived from protein-ligand 3D
complex structures (19,20) have triggered the establish-
ment of an in-house repository, PharmTargetDB (unpub-
lished results), which hosts pharmacophore models
extracted from potential targets (co-complexed with cor-
responding small compounds) with available 3D struc-
tures. One of the purposes of this pharmacophore
database initiative is to provide a pool of potential
targets information for ‘target fishing’ with pharmaco-
phore mapping method.
Herein, we present the first web-based tool

PharmMapper for potential drug target prediction
against any given small molecules via a ‘reverse’ pharma-
cophore mapping approach. The small molecule might be
a biologically active compound detected in a cell- or
animal-based bioassay screen, a natural product or an
existing drug whose molecular target(s) is (are) unidenti-
fied. Benefited from the highly efficient and robust
mapping method, PharmMapper bears high-throughput
ability and can identify the potential target candidates
from the database with a runtime of a few hours.
Backed up by a large, in-house repertoire of pharmaco-
phore database (PharmTargetDB) annotated with target
information, PharmMapper may serve as a valuable tool
for identifying targets for a novel synthetic compound, a
newly isolated natural product, a compound with known
biological activity or an existing drug whose mechanism of
action is unknown.

METHODS

Construction of potential targets
pharmacophore databases

PharmMapper requires a sufficient number of available
pharmacophore models describing the binding modes
of known ligands at the binding sites of protein
targets. The target protein structures co-complexed with
small molecules were carefully selected from DrugBank
(21), BindingDB (22), PDBBind (23) and our PDTD
(18) databases. DrugBank hosts a complete list of
known targets with appropriate annotations, while
BindingDB and PDBBind provide public, web-accessible
databases of measured binding affinities, focusing chiefly

on the interactions of those proteins considered to be
drug targets with small or drug-like molecules.
Only those proteins with available 3D crystal structures
were selected and used for pharmacophore model
extraction.

LigandScout, which is a software tool that allows rapid
extraction of 3D pharmacophores from structural data of
macromolecule–ligand complexes in a fully automated
and convenient way (19), was used in the process of
pharmacophore model derivation. Six primary types of
pharmacophore features were adopted in this process:
hydrophobic center (H), positive-charged center (P),
negative-charged center (N), hydrogen bond acceptor
vector (HBA), hydrogen bond donor vector (HBD) and
aromatic plane (AR) and one optional feature [metal
interaction center (M)]. Each ligand binding site was
manually analyzed after generation of corresponding
pharmacophore model and the corresponding shape was
characterized by several excluded volumes centered at
each residue of the binding pocket. All the small ligands
with molecular weight lower than 100, such as solvents,
buffers and metal cations, and all the cofactors with mo-
lecular weight over 600, such as CoAs, polypeptides and
nucleic acids were regarded as ‘environment atoms’
instead of binding ligands. In this context, the correspond-
ing pharmacophore models were not generated. For the
proteins existing as homopolymers, only one monomer
was reserved for analysis. For the proteins determined
by NMR with multiple structure models, only the first
model was selected for pharmacophore generation. As
a result, we generated 7302 pharmacophore models
(2241 entries are annotated as ‘Human protein targets’)
and deposited them in PharmTargetDB. The target anno-
tations were extracted from DrugBank, PDBSum (24),
UniProt (25) and in-house TargetBank (our unpublished
data) and were categorized as follows: UniProt access ID,
target name, target function and indication/disease
involved.

Reverse pharmacophore mapping procedure
using PharmMapper

PharmMapper consists of two parts: a front-end web
interface written in both PHP and HTML, with MySQL
as database system, and a back-end tool for reverse
pharmacophore mapping. The reverse pharmacophore
mapping procedure is as follows: (i) PharmMapper
flexibly aligns the given small molecule onto each pharma-
cophore model of proteins in the target list, and the fit
values between the small molecule and the pharmaco-
phores are calculated and recorded; (ii) PharmMapper
presents the aligned pose with the corresponding pharma-
cophore model and prioritizes candidate targets based on
the fit values to analyze the reverse mapping result. In
general, PharmMapper outputs the top N hits of the
ranking list, from which the user may select protein can-
didates for further bioassay validation.

Generally, the algorithm suggests to solve the molecule
pharmacophore best fitting task in a strategy of sequential
combination of triangle hashing (TriHash) and genetic al-
gorithm (GA) optimization, which consists of following
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major steps: (i) ligand initialization and preparation;
(ii) ligand as well as target pharmacophore model
features triangulation; (iii) pairwise alignment and GA
post optimization; and (iv) solution filtering, ranking
and output. The readers can refer to the Supplementary
Data for more details about the pharmacophore mapping
algorithm used by PharmMapper.

WEB SERVER

PharmMapper server is open-accessed and free of charge.
Users are expected to upload the mol2 file of the test
molecule, customize the mapping parameters and submit
a job. A job identity number, namely the JOB ID, is
assigned to each job by the web server, and the number
is appended to a job queue in the back-end server. The
user may use the JOB ID to check the status of the
submitted job.

Input

PharmMapper’s interface is very simple. Its input form
has only one mandatory field: a file with single drug-like
molecule or natural product stored in Mol2 format. The
user must make sure the uploaded molecule has appropri-
ate 3D structural information. Multiple commercial or
open source toolkits are recommended to complete this
task, including CORINA (26), CONCORD (27) and
ChemAxon’s Standardizer (www.chemaxon.com). The
user can choose or not to leave an email address in
order to receive a notification when the job is finished.
After uploading the file, the user is encouraged to set
some optional parameters in the following pop-up form
instead of accepting corresponding default values to
reduce the computational cost or achieve more accurate
result. Since PharmMapper uses semi-flexible alignment
strategy, a conformer ensemble has to be generated prior
to mapping. For single 3D conformer provided by the
user, an in-house program Cyndi is used by default to
generate multiple conformations. Of course, the user can
skip this step by uploading pre-generated conformation
ensemble with other programs, such as CAESAR (www
.accelrys.com), MacroModel (www.schrodinger.com) and
Omega (www.eyesopen.com). Additionally, the user can
specify the minimum number of each pharmacophore
feature type to skip those target pharmacophore models,
of which the number of corresponding pharmacophore
features are less than the threshold values. Moreover,
the scoring weights assigned to each type of pharmaco-
phore feature can be adjusted according to the user’s
judgment towards the structural, physicochemical
features presented by the molecule (e.g. if the molecule
bears dominantly hydrophobic features, the scoring
weight assigned to the Hydrophobic Score can be moder-
ately increased to favor the hydrophobic interaction with
the pharmacophore models). Detailed explanations for
each field can be displayed in the pop-up windows when
the mouse is lifted on the corresponding field and are also
available in the Help page.

Output

A typical run of PharmMapper task takes 1–2 h, depend-
ing on the flexibility of the input molecule and filter par-
ameters assigned by the user. To ensure successful job
submission, the user is prompted to activate a
self-refreshed alert page to monitor the job status. The
user can bookmark this alert page so as to check the status
of corresponding job at any time in the feature. Once the
job completes, the user is automatically redirected to the
computational results via the self-refreshed page or
expected to input the JOB ID in the ‘Get Result’ page
to access the computational results. The hyperlink to the
result page is also contained in the notification after the
job is finished, if the users have left their email address
during job submission. The result will be kept on the
server for up to 3 months so that the user may access
the result at any time later via the same JOB ID.
The output of a PharmMapper run is demonstrated in

the form of a ranked list of hit target pharmacophore
models that are sorted by fit score in descending order
(Figure 1A). User can also re-rank the result list by
normalized fit score or number of pharmacophore
features in descending order via clicking the arrow icons
in the corresponding columns. The 3D structural informa-
tion can be accessed via the hyperlinks in the ‘PDB ID’
column to the Protein Database Bank (PDB) website (28).
The hotlink to UniProt database as well as functional and
therapeutic annotations of each target will be presented in
the pop-up window by mouse lifting over the correspond-
ing PDB IDs. As Figure 1B shows, a pull-down window
will appear by clicking the ‘+’ mark at the starting of each
line of the result table, which illustrates the details of
each pharmacophore model candidate, including the
numbers of each pharmacophore feature (rendered in
different colors scheme), a 3D interactive visualization of
molecule-pharmacophore alignment poses displayed via a
modified version of Jmol applet (http://www.jmol.org),
and the download links of the aligned pose of molecule
as well as the corresponding pharmacophore model (in
hypoedit format). The radio buttons in the pull-down
window allow the users to show/hide either the pharma-
cophore model, query molecular conformation or the
features from the query molecule in display, which may
provide better visual assessment for the matching quality
between the input probe molecule and the identified po-
tential target pharmacophore models. All the text-based
targets information is downloadable in comma separated
values (CSV) format via the hotlink at the bottom of the
result page.

TEST CASES

To test the reliability of the PharmMapper server, the po-
tential drug target proteins for tamoxifen were searched
via PharmMapper server. The result and its comparison
with the published experimental data are described below.
Another test case to identify the potential targets of
methotrexate is presented in the Supplementary Table S3.
Tamoxifen is used as an adjuvant therapy in the treat-

ment of breast cancer (29). It has been proved as a
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multiple target drug. So far, 14 proteins have been
identified as interaction targets for tamoxifen or
4H-tamoxifen, which is the active metabolite of tamoxifen
(30–41; Supplementary Data Table S1). The top 1000
(actually 912 hits) pharmacophore candidates identified
via PharmMapper are listed in Supplementary Table S2
and those corresponding to the proteins identified by ex-
perimental data are shown in Table 1. Four among the top
100 candidates are annotated as known targets of

tamoxifen, namely estrogen receptor (Rank 1),
17b-hydroxysteroid dehydrogenase (Rank 18), dihydro-
folate reductase (Rank 29) and glutathione transferase
(Rank 49). The top 300 candidates include six additional
targets identified experimentally, i.e. prostaglandin
synthase (124), collagenase (Rank 136), carboxylesterase
1 (Rank 130), 3a-hydroxysteroid dehydrogenase (Rank
168), protein kinase C (Rank 222) and calmodulin
(Rank 297). Another tamoxifen target (alcohol

Figure 1. An example of the output of PharmMapper. (A) The ranked list of hit target pharmacophore models, which are sorted by fit score in
descending order. (B) The pull-down window that illustrates the details of each pharmacophore model candidate and the molecule pharmacophore
alignment.
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dehydrogenase) is ranked 817. Of experimentally con-
firmed targets for tamoxifen, 29% and 71% appear
among the top 100 and 300 of the PharmMapper pre-
dicted candidates, respectively, and 11 of the 14 experi-
mentally confirmed tamoxifen targets are covered in the
top 1000 pharmacophore models, indicating the reliability
of this server tool.

A receiver operating characteristic (ROC) depicts the
fraction of true positives versus the fraction of false posi-
tives found in a classification experiment. The area under
the ROC curve (AUC) equals the probability of ranking a
randomly selected true target higher than a randomly
selected decoy target. Ideal distributions of true targets
and decoys result in an AUC value approaching 1.0,
whereas random distributions result in a value of 0.5.
The ROC enrichment (ROCE) expresses the percentage
of true targets observed as a proportion of the percentage
of the decoy targets observed, and ROCE values of >1.0
signify enrichment with respect to random distributions.
The AUC and ROCE at four decoy levels were used as the
performance metric of PharmMapper in the benchmark
test for tamoxifen target identification. Since there is no
other available pharmacophore-based drug identification
method using the same drug target database as we used,
only PharmMapper’s result is presented in Table 2. The
AUC value is 0.7 and the ROCE value at 0.5% decoy
achieves 28.7, which is promising and reliable for a retro-
spective target identification case.

SUMMARY

We presented here the first web server for potential drug
targets identification via large-scale reverse pharmaco-
phore mapping strategy. The abundant potential target
entries represented by pharmacophore models in the re-
pository of PharmTargetDB, and moreover, the efficient

pharmacophore mapping algorithm behind the server
allow the fast and reliable identification of the pharmaco-
phore target candidates for small molecules such as drugs,
lead compounds and natural products. The user interface
is very simple and the algorithm is fully automated,
because the user is only required to upload one Mol2
file containing the 3D information of the query
molecule. In addition, for experienced users, more
optional parameters for speedy and accurate control as
well as the candidate target subset to be searched can be
freely customized. The intuitive and interactive mode for
results display allows in situ manual validation of the pre-
dicted aligned poses between the query molecule and cor-
responding pharmacophore model hits. The validation
example of multiple potential targets identification for
tamoxifen illustrated that PharmMapper can provide
useful clues for further bioassay in drug–target interaction
research.
As a similar and complementary server of TarfisDock,

PharmMapper can also be used in mapping the regulation
genomic network for an existing drug or a drug candidate,
as well as in profiling the potential secondary or side
effects for a drug molecule in a different viewpoint from
the regular chemogenetic method. These are useful clues
for further experimental test in evaluating the efficacy and
toxicity of the drug. On the other hand, the target infor-
mation produced by PharmMapper is also significant for
functional genomic study within the chemical biology
paradigm. Currently, a web-based screening platform to
find lead compounds with PharmMapper, allowing
customized and selected pharmacophore from the
PharmTargetDB, is underway.
To some extent, PharmMapper still has some limita-

tions: the pharmacophore database only includes drug
targets that have PDB structures with co-crystallized
ligand. Thus, some potential targets of the query ligand
could be missed due to the limited coverage of the
database. However, as the number of structures deposited
in PDB grows exponentially yearly, the PharmTargetDB
we used is updated periodically and new targets whose
complex structures are released can be added to extend
the database coverage. We are also collecting the
ligand-based pharmacophore models built in-house or
reported by other group for the important drug targets
without crystal structures like G protein-coupled receptors
and ion channels to cover more targets information in
PharmTargetDB.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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