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Abstract: Differential phase shift keying (DPSK) modulation and multi-aperture receiving are effec-
tive means for suppressing flickering, deviation, and fragmentation of the light spot by atmospheric
turbulence. What is challenging in coherent beam combination of such an array receiver system is
to detect and compensate for phase deviation of sub-apertures. In this paper, a method of phase
alignment of an array optical telescope system using balanced detection was proposed and demon-
strated. The improved Mach Zehnder Interferometer (MZI) can demodulate the digital signal and
recover the phase difference at the same time. It also brings a 3 dB gain to the receiver and improves
the detection sensitivity of the system. Adequate simulations with OptiSystem and MATLAB were
carried out to show that the power value remains near the ideal state of 2.75 mW, and the bit error
rate is less than 10−9 after phase compensation, which indicates the effectiveness and accuracy of
the proposed method. Furthermore, taking the communication interruption difference of ninety
degrees as an example, the system bit error rate was reduced from 1 to 10−35, and communication
was established again.

Keywords: phase alignment; balanced detector; an array optical telescope system; differential phase
shift keying; the improved Mach Zehnder Interferometer

1. Introduction

Satellite-to-ground laser communication is the central link connecting the satellite laser
communication network and the ground-based laser network. Wavefront distortion and
intensity flicker appear on optical signals because the atmospheric turbulence constantly
changes in near-earth space, which reduce the optical power of signals and the reliability
of communication links [1,2]. Therefore, it has long been an urgent issue to overcome
the effects of atmospheric turbulence in the field of free-space optical communication. In
research, effective solutions have been proposed from two aspects of signal modulation
and ground-based receiving.

To be more specific, for modulation detection technology. Gregory et al. proposed a
method to suppress intrinsic noise by using symmetric double detectors. The experimental
data show that the signal-to-noise ratio approaches the quantum limit with the common-
mode noise suppressed [3]. Xiaoping Ma et al. proposed that the turbulence effect can be
well suppressed in binary phase shift keying (BPSK) and differential phase shift keying
(DPSK) modulation [4,5]. DPSK stores the phase information in the relative phase of
adjacent symbols. Phase fluctuation of neighboring symbols is determined by the same
atmospheric turbulence, and the change between them is consistent. Therefore, the bit
error rate (BER) caused by inter-symbol interference is reduced, and the transmission
performance is better. Moreover, DPSK demodulation does not need local oscillator light
and frequency locking, it only needs to delay part of the signal and recover the digital signal
through delay interference. Therefore, it also has a simpler detection structure. In 2019, the
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laser communication relay demonstration (LCRD) and verification test finally proved to be
a success in the USA. It adopted DPSK and pulse position modulation (PPM)-compatible
communication systems for the first time and achieved long-distance satellite-to-ground
laser communication with a communication rate of 2.88 Gps and a communication distance
of 45,000 km [6–8]. It goes a step further in NASA’s Integrated LCRD Low-Earth Orbit User
Modem and Amplifier Terminal (ILLUMA-T) project [8]. Furthermore, the High-speed
Communication with Advanced Laser Instrument(HICALI) project has been initiated by
the National Institute of Information and Communications Technology (NICT), aiming for a
10 Gbps-class laser link using DPSK [9]. For the receiving system, large aperture telescopes
are restricted by high cost and complex structures, such as the Shack–Hartman sensor,
variant mirror, fast mirror, and other devices [10,11]. Reducing the receiving aperture of
the telescope is the simplest way to overcome atmospheric turbulence. The United States
completed the lunar laser communication demonstration system (LLCD) test in 2013 [12].
The test verified the equivalent relationship between multi-aperture and large aperture [13].
Compared with a large aperture, the multi-aperture receiving system has the advantages of
lower cost, improved diffraction limit performance, smaller gravitational effect, scalability,
and so on [14,15].

In this work, DPSK modulation and multi-aperture receiving technology were adopted
to improve the performance of the communication system. However, the tilt of optical
axes brings uncertain phase deviation. Studying the phase deviation of sub-apertures is a
breakthrough direction to ensure the quality of high-resolution imaging and space optical
communication. The novelty of this paper is the innovated Mach Zehnder Interferometer
(MZI) and the establishment of the autodyne detection mode, which replaced one optical
signal and one zero position light with two optical signals. It brought a 3 dB gain to the
demodulation input so that the sensitivity of the system was improved, and the trans-
mission performance was optimized. Further, differently from existing methods, which
implemented DPSK demodulation and optical signal phase difference detection separately
using different technologies [16–18], this study combined the two. Specifically, we finished
the identification by using the voltage signal from the differential output port of the bal-
ance detector after we had connected the demodulator and the balance detector. The sign
was used to demodulate the digital signal and the value was used to calculate the phase
difference. This paper is organized as follows. The design and the algorithm principle of
phase compensation for an array optical communication telescope is presented in Section 2.
The simulation experiment process of digital signal recovery and phase difference detection
is exhibited in Section 3. The results and results are described in Section 4. Additionally,
Section 5 summarizes this paper.

2. Theories and Design
2.1. The Structure of Phase Compensation

To solve the phase deviation caused by the tilt of the optical axis of the multi-aperture
receiving system, the structure of MZI was innovated, which is a high-precision detection
method with a simple structure proposed. An array optical communication system based
on balanced coherent detection was designed to evaluate the communication quality before
and after phase compensation. It is shown in Figure 1.

The transmitter generates CSRZ-DPSK optical signal by LiNbO3 MZM. The signal
was transmitted to atmospheric space through a collimator with a diameter of 80 cm
and received by a multi-aperture system. The diameter of both receiving sub-apertures
were 40 cm, and the spatial optical signal was coupled into two single-mode fibers. Then,
the signal was transferred to the balance detector, and the phase error was compensated
by a phase shifter, to reduce the error rate and ensure the accurate demodulation of the
digital signal. The key technology of the system is to integrate the phase deviation of the
sub-aperture into the adjacent symbols of the DPSK demodulation, and to improve the
sensitivity of the system by using the autodyne balance detection. The difficulty lies in
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the construction of innovative MZI to meet the input condition of the balanced detector,
wherein the phase difference of the input optical signal from the same source is π.
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Figure 1. The array optical communication telescope system.

2.2. Theories of the Structural Innovation

Mach Zehnder Interferometer (MZI) is a key device of DPSK demodulation. Figure 2
shows the schematic structure diagram of an MZI, which includes two cross-couplers
and two optical fibers. As the inputs of MZI, the signal light and zero value light are
equally split into two optical signals by the first cross-coupler. Then, the information flow
of adjacent bits is obtained by setting a delay of one bit on the upper arm. Additionally,
the phase information of the light is converted into the intensity information of the light
with interference occurring at the output port of the second cross coupler. The interference
output of MZI and the input of the balance detector are connected by optical fibers. Finally,
the demodulation of the DPSK optical signal is completed by using the electrical signal.
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Figure 2. Schematic structure diagram of MZI.

This study improved the MZI and combined it with the balance detector to establish
the structure of DPSK demodulation and phase detection. The difference is that the
structure reduced the use of the front-end cross-coupler. Therefore, this design of the
demodulator combines digital signal demodulation and phase difference detection. The
structure diagram is shown in Figure 3.
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Figure 3. External beam splitting structure diagram of DPSK demodulation and phase detection.

Differently from direct detection, heterodyne detection is to input a channel of signal
light and a channel of eigen light, and autodyne detection refers to the coherent detection
of two optical signals from the same laser source [19]. Compared with Figures 2 and 3, the
innovative method used a phase shifter to replace the first coupler of MZI in the structure.
In terms of input limit, the innovative structure directly inputs two channels of signal
light, but MZI inputs one channel of the optical signal and one channel of the zero-value
optical signal.

As shown in Figure 3, two optical signals were input to the one-bit delayer to complete
the detection process of autodyne detection. Two forms of optical signals were obtained at
the input port of the balanced detector. One was the interferometric phase length signal and
the other was the interferometric phase extinction signal. E11In and E12In are the input ports
of the receiver structure and E11In = E0, E12In = E0, and the signals obtained by the phase
adjustment of the quadrature phase shifter are E11Out and E12Out, which are described as
Equation (1). (

E11Out
E12Out

)
=

(
1 0
0 −j

)(
E11In
E12In

)
=

(
E0
−jE0

)
(1)

The duration of the delayer is strictly controlled to one bit period. The input optical
signals of the coupler are obtained as E21In = E0, E22In = −jE0, when adjacent symbols
have the same phase.

For the optical coupler, the input ports are E21In and E22In, and the output ports are
Econ and Edes. The transmission matrix for the cross is described in Equation (2) [20,21].(

E1Out
E2Out

)
= α

(√
1− c pj

√
c

pj
√

c
√

1− c

)(
E1In
E2In

)
(2)

where p is the case of conjugate with the value of +1 or −1; α is the additional loss with the
ideal value of 0 on a logarithmic scale; and c is the coupling coefficient, and the value is 0.5
with the splitting rate of 50:50. Equation (3) describes the output signals of the cross couple
in this case. (

Econ
Edes

)
=

( √
2

2 j
√

2
2

j
√

2
2

√
2

2

)(
E21In
E22In

)
=

(√
2E0
0

)
(3)

Similarly, the input optical signals of the coupler are obtained as E21In = E0, E22In = jE0,
when the phase difference between adjacent symbols is π. In this case, the output signals of
the cross couple are written as Equation (4).(

Econ
Edes

)
=

( √
2

2 j
√

2
2

j
√

2
2

√
2

2

)(
E21In
E22In

)
=

(
0

j
√

2E0

)
(4)

The amplitudes of the constructive interference and the destructive interference are
given in Equations (5) and (6), respectively.

Econ = A
(

ejϕn−1 + ejϕn
)

(5)
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Edes = A
(

ejϕn−1 − ejϕn
)

(6)

According to the mathematical analysis formula, the function of the external beam
splitting structure of DPSK demodulation and phase detection is the same as the MZI, while
the input optical signal at the receiving end is uniformly generated by the same light source.
The voltage output of the balance detector can be expressed as Equations (5) and (6).

The first photodetector output is shown in Equation (7).

u1 = i1R = RBEcon
2 = A2RB

(
ejϕn−1 + ejϕn

)2
(7)

The second photodetector output is shown in Equation (8).

u2 = i2R = RBEdes
2 = A2RB

(
ejϕn−1 − ejϕn

)2
(8)

where A is the amplitude; R is the resistance value; B is equal to ηe/hν, which represents
for the responsivity of the photodiode; η is the quantum efficiency of the photodiode;
e is the amount of electron charge; h is the Planck constant; and ν is the frequency of light.
Ideally, the value of B is 1 A/W.

As shown in Figure 3, the balanced detector is composed of two photodiodes with
the same parameters. They work in the reverse voltage region, which converts electrical
signals into optical signals and outputs them differentially. This output structure can well
suppress common-mode noise and is conducive to coherent optical communication. The
resulting differential voltage is described as Equation (9).

u = A2RB
(

ejϕn−1+ϕmiss + ejϕn
)2
− A2RB

(
ejϕn−1+ϕmiss − ejϕn

)2
= 2A2RB cos(ϕmiss + ∆ϕ) (9)

where ∆ϕ = ϕn−1 − ϕn represents the phase difference of adjacent symbols when there
is no disturbance, and the value can only be 0 or π; and ϕmiss is the phase difference
of two optical signals when considering disturbance. Equation (9) includes the relative
phase required by DPSK demodulation and the phase error of the sub-aperture. A detailed
derivation process will be demonstrated in the third section by utilizing the phase difference
through electrical signal.

2.3. Design of the Algorithm

The derivation and calculation process of phase error and the demodulation of the
optical signal is shown in Figure 4, which is the theoretical basis for phase detection in
this paper.

As shown in Figure 4, E11In and E12In are, respectively, input to the external split
DPSK demodulation and phase detection structure by two optical fibers to carry out high-
precision detection of optical signal phase difference and digital signal recovery. The phase
difference meets ϕ12In − ϕ11In = ϕmiss.

Adding a fixed phase difference of +π/2 to the optical fiber arm where E12In is located.
The two optical signals are represented as E11Out and E12Out after this stage, and there
is ϕ12Out − ϕ12In = +π/2, which equals ϕ12Out − ϕ11Out = π/2 + ϕmiss. The outputs
are E21In and E22In by adding the one-bit delayer to the optical fiber arm where E11Out is
located. Bringing the phase difference of adjacent symbols, expressed as ∆ϕ, and the value
of ∆ϕ can only be “0” or “π”, which is used to demodulate to get the binary “0” code or “1”
code. The phase difference is obtained as ϕ22In − ϕ21In = π/2 + ∆ϕ + ϕmiss.
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Finally, we obtain Econ and Edes through a 3 dB coupler. The conjugation of the coupler
used in this paper is p = 1, The phase difference is obtained as ϕcon− ϕdes = π +∆ϕ+ ϕmiss.
Therefore, the electrical signal of the differential output port of the balance detector is
i = 2A2B cos(∆ϕ + ϕmiss); that is, u = 2A2BR cos(∆ϕ + ϕmiss).

The voltage signal displayed by the oscilloscope is the maximum value. Thus, the
value of amplitude can be obtained when the phase difference is zero. The power value
collected by the power meter is used as the compensation factor. The relationship is
P = U2/2R between the power and voltage of the pure resistance circuit, and R takes
1 in the simulation. Therefore, the mathematical relationship with P is established as
ϕmiss =

1
2 arccos

(
P

2A4 − 1
)

.

3. Simulation Experiment Process

OptiSystem 15 (Ottawa, ON, Canada) is a practical optical simulation software with
various optical component libraries and reasonable system classification, which is produced
by Optiwave. The software has complete simulation functions for optical communication
and a rich component library. Simulation data such as eye diagrams, waveform and power
spectrum can be directly reflected in the corresponding test and analysis devices. It has
been widely used in the field of optical communication. This work is shown in Figure 5.
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MZ Operating Points 
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3.1. Transmitter

Mach Zehnder Modulator (MZM) excels at modulating light intensity and phase
because of a characteristic of wavelength independence. It is capable of high-data-rate
modulation above 40 Gbps, which has become the basis for many advanced optical modu-
lation formats [4]. Half-bit-rate NRZ-DPSK wave pattern was generated through the first
modulator. The NRZ code enters the second modulator to obtain full-bit-rate RZ-DPSK by
adding half-bit-rate clock signal (5 GHz). The process is shown in Figure 6.
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According to the value of bias voltage Vbias1 and Vbias2, MZM usually works at three
bias points: peak, zero and quadrature. Signals with different duty cycles are generated at
different bias points [22,23]. This is shown in Table 1.

Table 1. Generation of RZ signals with different duty cycles.

MZ Operating Points Vbias1−Vbias2 Different Duty Cycles of RZ Signals

Peak 0 33%
Quadrature 0.5Vπ or 1.5Vπ 50%

Null Vπ 67%
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Compared with NRZ-DPSK and other RZ-DPSK modulation patterns, CSRZ-DPSK
modulation pattern at the transmitting end, as RZ-DPSK signal with 67% duty cycle, has
lower requirements on system signal-to-noise ratio(SNR) and better suppression effect
on nonlinear effects [24,25]. Therefore, the CSRZ-DPSK signal is generated by cascading
LiNbO3 MZM in this simulation. Finally, the output signal of the transmitter is observed
by the observation instrument, and the basis is provided for the comparison and analysis
of the receiver. Table 2 shows the parameter values.

Table 2. Parameters design of a transmitter.

Component Parameter Value

Bit Sequence Generator Bit rate 10 Gbit/s

NRZ Pulse Generator_3
Maximum 1 a.u.
Minimum 0 a.u.

NRZ Pulse Generator_2
Maximum −4 a.u.
Minimum 0 a.u.

Sine Generator_1
Frequency 5 GHz
Amplitude 2 a.u.

Bias 0 a.u.

CW Laser_1
Frequency 193.1 THz

Power −20 dBm
Linewidth 10 MHz

LiNb MZ Modulator 1_1

Extinction ratio 100 dB
Switching bias voltage 4 V
Switching RF voltage 4 V

Bias voltage1 0 V
Bias voltage2 0 V

LiNb MZ Modulator 2_1

Extinction ratio 50 dB
Switching bias voltage 4 V
Switching RF voltage 4 V

Bias voltage1 −2 V
Bias voltage2 2 V

Figure 5 and Table 2 show that the center wavelength was 1550 nm, which is widely
used in Satellite-ground coherent communication systems. Furthermore, the optical fiber
loss is the lowest to integrate with the ground optical fiber communication network simply
when the working wavelength is 1550 nm [26]. Xiaoping Ma et al. verified that the
turbulence tolerance is widened and the detection efficiency of the deviation exceeds 95%
when the communication rate reaches 2.5 Gbps and 10 Gbps [18]. Additionally, Gang Wu
proposed that when the transmission rate is 40 Gbps, the signal will be distorted due to the
fiber characteristics such as nonlinear effect, dispersion and polarization mode effect [27].
Therefore, the bit rate was defined as 10 Gbps. The input terminal uses a pseudo-random
binary sequence (PRBS) as a code containing user information. It was copied into three
channels through the cross-module, and the first channel was kept in the format of binary
sequence; the second channel was input to the NRZ pulse generator and was maintained
in a rectangular pulse format; the third channel was used for DPSK modulation. The
extraction process is carried on as follows:

Step 1. The binary sequence is inputted into the differential precoding system com-
posed of a not gate, a delay and an exclusive OR gate. The conversion process of analytic
code type is shown in Table 3.
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Table 3. Modulation pattern conversion process of DPSK signal.

PRBS 1 1 0 0 1 0 1 0

A not gate 0 0 1 1 0 1 0 1
A delay

gate 0 0 1 1 0 1 0 1

An OR
gate 0 1 0 1 1 1 1

Step 2. The modulated data is transmitted to the NRZ pulse generator to output the
NRZ signal with digital information. The output optical power of the laser is set to 10 dBm.
The NRZ signal and the laser carrier signal are sent to the first stage LiNbO3 MZM to
generate the NRZ-DPSK signal. The NRZ-DPSK signal and the sinusoidal voltage signal
are input to the two-stage MZM, and the frequency of the driving voltage is set to be one
half of the data bit rate. CSRZ-DPSK signal is obtained corresponding to the null offset
point of the LiNbO3 MZ transfer function, when the carrier frequency is 0.

Step 3. Observing the power spectrum and the waveform of the CSRZ-DPSK modula-
tion signal. The energy of the CSRZ-DPSK modulated signal at the transmitting end was
recorded as −21.857 dBm.

3.2. Receiver

The receiving end combines digital signal demodulation and phase difference detec-
tion in the same receiving module, and uses the output value of the detector as a feedback
factor to compensate for the phase difference.

In order to simulate the phase difference caused by the tilt of the optical axis of
the factor aperture, we add a phase error element in one arm. The phase shifter in the
OptiSystem component library can only provide one input port and one output port.
However, the phase shifter with single port input cannot be directly used. It needs to rely
on MATLAB to complete the joint simulation, and MATLAB expands the electric input port
for feedback adjustment [28]. Set phase error to generate phase error; set phase correct to
correct the phase error. The binary sequence and NRZ pulse waveform are used as the DC
signal generator, and the amplitude is set to one. The feedback signal is directly received
from the low-pass filter at the receiving end. The parameter values are displayed in Table 4.

Table 4. Parameter design of the receiver.

Component Parameter Value

Optical Fiber
Reference wavelength 1550 nm

Length 0.01 km
Attenuation 0.2 dB/km

Phase Shift Phase −π/2 rad
Time Delay Delay 0.1 ns

X Couper Coupling coefficient 0.5
Additional loss 1 dB

PIN Responsivity 1 A/W
TIA Magnification 104

Low-Pass Bessel Filter Cutoff frequency 8 GHz

As shown in Table 4, the delay time of one bit is set in the time delay module, which is
equivalent to 0.1 ns in this system. It is shown in Equation (10)

Delay =
1

Bit rate
= 0.1 ns (10)
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Then, 1 dB noise is added to the second coupler, and the amplitude is found to be
0.161 v with OptiSystem. The final received differential mode signal is electrically filtered,
and the cutoff frequency of the low-pass filter is set to 8 Gbps. It is shown in Equation (11).

Cuto f f f requency = 0.8 ∗ Bit rate = 8Gbps (11)

The signal output by the low-pass filter is input to the third port of the bit error
analyzer as the signal wave at the receiving end. A pseudo-random binary sequence (PRBS)
of the first port receiving end of the bit error analyzer; the second port of the bit error
analyzer receives the NRZ pulse sequence at the sending end.

3.3. Signal-to-Noise Ratio

In practice, the spectral ratio of the coupler inaccuracy, the shot noise and thermal noise
are existed in the system. Additionally, two diodes of the balance detector are not exactly
the same in the reality [29,30]. From Equations (7) and (8), the SNR of this communication
system was derived in Equation (12).

SNR =

( e
hv
)2
(S1η1 + S2η2)

2 A4ε(1− ε)R
e2 A2

hv [S1η1(1− ε)− S2η2ε]∆ f R + Var(nex1 − nex2) + 4kbT∆ f R
(12)

where S is the photosensitive area of a diode; η represents the quantum efficiency of a
diode; ε is the spectral ratio of the coupler; and ∆ f is the measured bandwidth. Thermal
noise is PT, which is equal to 4kbT∆ f R, and kb = 1.38 × 10−23J/K, which is the Boltz-
mann’s constant. Shot noise is expressed as 2eIDC∆ f R + Var(nex1 − nex2), and IDC =

e
2hv
[
S1η1(1− ε)A2 − S2η2εA2], nex is excess noise.
Quantum efficiency has a significant impact on the SNR. SNR can be simplified into

Equation (13) under the condition of the excess noise, and thermal noise can be ignored.
The value of ε is 0.5. S1 = S2 and η1 = Kη2(0 < K < 1).

SNR =
η2(K + 1)2 A2

2hv(K− 1)∆ f
(13)

Equation (13) shows that the SNR increases with the increases in the quantum effi-
ciency, if the proportional coefficient of the quantum efficiency of η2 remains the same. The
SNR varies with K, while the conversion coefficient of η2 is determined, which is shown in
Figure 7, which indicates that the normalized signal-to-noise ratio is better than 94.8%, if
K > 0.97 holds.
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4. Results and Discussion

On the basis of the above discussion on the subject scheme and simulation theory, we
will analyze and interpret the simulation experimental results, including the power size,
demodulation signal, and the result feedback of the eye diagram.

In the first step, the two optical signals received at the receiving end were kept free of
other relative phases except for the one-bit phase difference generated by modulation and
the π phase difference generated by detection. That is when the transmission process does
not affect the two optical signals.

In the second step, phase interference was added to the transmission section to sim-
ulate the phase difference caused by the optical axis tilt. Additionally, the results of the
simulation were recorded and analyzed.

Thirdly, according to the relationship between the voltage signal received by the
oscilloscope and the phase difference between the two optical signals, the electrical signal
feedback module was designed to correct the phase difference.

In this simulation, the bit error analyzer was used as a visual tool to evaluate the
communication quality of the system. We obtained Q factors and eye diagrams as follows.

As shown in Figures 8 and 9, ideally, the eye pattern was symmetrical and wide open
with the upper and lower eyelids both thin. Therefore, there was a high noise capacity limit,
small jitter, a bit error rate of 0, and a large Q factor reaching 369.391 to obtain excellent
signal quality. When there was a phase difference of π/2, the eye-opening was significantly
smaller, even zero, the upper and lower eyelids were wider, the jitter was increased, the
bit error rate was one, the Q factor was zero, the communication quality was significantly
decreased, and the communication could not be completed. After the phase compensation,
the eye-opening was significantly larger, the upper and lower eyelids were thinner, the jitter
was reduced, and the bit error rate was 3.42 × 10−35, which was 1029 orders of magnitude
less than that when it was not adjusted. It can communicate normally, the Q factor was
increased to 12.66, and the communication quality was significantly improved.
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The power values of the three cases were recorded. Under ideal conditions, the
power was 2.75 mW. Additionally, the power decreased to 3.30 × 10−6 W, when the phase
difference of π/2 was added. It increased to 2.62 mW after phase correction, and the power
was significantly increased.
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Figure 9. Communication quality with the phase difference in the transmission of two optical signals:
(a) Q factors with the phase difference; (b) BER with the phase difference.

The waveforms of the three cases and the waveforms of the modulation end are
recorded as follows:

As shown in Figures 10 and 11, when there was no phase difference, the demodulation
waveform and modulation waveform was consistent. When the phase difference reached
π/2, the waveform was very messy. The waveform shape was improved when the phase
was corrected.
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The analysis of various phase perturbations was carried out as follow, and the obtained
power values were used to solve the relative phase error values. Feedback compensation
was then carried out to meet the requirements of phase consistency, leaving the combined
signal’s power values essentially unchanged and the BER optimized.

Power comparison diagrams before and after phase difference correction are shown in
Figure 12. It is intuitively obvious that, before the phase difference correction, the power
size gradually shrunk as the phase difference increased. The power size had a tendency to
be stable following the phase difference correction, and its value was stable at the power
value without the phase difference.
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Figure 13 depicts the BER before and after phase difference correction. Because the
BER varied widely, we used the exponential power for statistical analysis, and we could
see that the BER values were larger before the phase difference correction, and the BER
decreased after the phase difference correction, and their powers were all less than −9,
indicating that the BER was better than 10−9, ensuring normal communication.
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The comparison of the Q parameter before and after the phase difference correction
is shown in Figure 14. When the phase difference was zero, the value of the Q parameter
was greater. The Q parameter decreases gradually as the phase difference value increased,
eventually reaching 0 rad when the phase difference reached 1.57 rad or −1.57 rad. How-
ever, the figure shows that the Q parameters were all increased after the phase difference
correction of this scheme, indicating that the communication quality was improved.
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5. Conclusions

In conclusion, this study proposed and demonstrated a method of phase alignment
of an array optical telescope system using balanced detection. In this paper, the phase
difference of the signal optical path was combined with the DPSK demodulation module.
The electrical signal information of the differential output port of the balance detector
was used to highly accurately solve the phase difference between the two optical signals.
Specifically, the sign was used to demodulate the digital signal, and the value was used to
calculate the phase difference.

The simulation results showed that the calculated phase difference information of
the optical signal was compensated by feedback, so the corrected power value remained
around 2.75 mW, the bit error rate was less than 10−9, and the Q parameter was improved.
It is demonstrated that the scheme proposed in this paper can support signal combination,
coupled signal power stability, and communication link reliability. As a result, the influence
of the balance detector asymmetry can be ignored, if K > 0.97 holds. Thus, a more reliable
performance of the communication system can be achieved by utilizing the SNR data in
engineering applications.

In addition, this paper verifies the detection of phase differences between two aper-
tures, which can be extended to more aperture experiments using similar principles. Fur-
thermore, atmospheric turbulence data can be used to improve the system.
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