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Abstract—A phase representation of a two dimensional nonlinear
autonomous oscillator is presented. The validity of this representation
is argued from the point of view of continuity and a global model
is then obtained for a set of coupled oscillators. A brief review of
a biological motivated 2 dimensional model for Calcium oscillations
within a cell is presented as an example of this concepts. A discussion
on the results obtained concludes the present work.

I. INTRODUCTION.

The presence of coupled oscillatory activity is a wide spread

phenomenon that can be found, to name just two examples,

in biological processes and in power systems. In some cases

oscillation is a desired behaviour, in others it is something

that should be avoided, nonetheless it is frequently important

to understand oscillatory dynamics. The behaviour of coupled

oscillators is of particular interest in examples such as populations

of Dictyostelium discoideum, living cells that display a coordinate
behaviour through synchronism in order to ensure the continuity

of their life cycle [14], or the beating of the human heart. In this

latter example a lack of synchronism from the muscle cells can

trigger fibrillation and cause death [13]. A third example is the

load balance between power generators within an electric power

grid, at the core of the United States East Coast huge blackout

during 2003, [1].

Because of the common dynamics behind these examples many

researchers have made fundamental contributions to the study of

coupled oscillators. [11], [12], [2] or [8] consider the case of a

family of oscillators governed by a phase model defined as:

φ̇i=ωi+
K
N

∑N
j=1 sin(φj−φi) (1)

where φi is the natural frequency of the i-oscillator, K is the
coupling strength and N the number of oscillators involved. Note
that the Kuramoto model, see [11] (as equation (1) is often called),

by definition, assumes a global coupling in which the dynamics

of each oscillator are affected equally by all the other oscillators.

This is a quite strong assumption and in many cases we will

face specific geometric dependencies in the coupling, also know

as lattices, that are at odds with the globality assumed in the

Kuramoto model.

The analysis in this paper explores this issue focusing on 2-

D oscillatory systems with a couple of features: (a) ’Strongly

attractive’ stable limit cycles and (b) ’Weak’ non-global couplings.

The Poincaré map is used later in sections II and III to define these

features. A similar exercise, but with different mathematical tools

can also be found in [9].

Section II present the phase model given a state space descrip-

tion and the authors definition for ¨attractiveness¨. Section III
includes the perturbation effect of a coupling function (also stated

in terms of the state space variables) plus a useful definition for
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¨weak coupling¨ based on the concept of ¨attractiveness. Section
IV presents the main result of this paper, by which a continuum

of oscillator can be described by a global dynamic. Section V

presents, as an illustrative example, the model developed in [5]

for cellular Calcium oscillations. Section VI concludes this work

and list future developments on the present ideas.

II. PHASE REPRESENTATION AND DISCRETE DESCRIPTION.

Consider the following two dimensional autonomous oscillators:

v̇=f(v,µ) (2)

Where v ∈ �2 and µ ∈ � is the bifurcation parameter. Without
loss of generality it is therefore assumed that each oscillator

undergoes a supercritical Hopf bifurcations at µ = µ1 and µ = µ2.

Outside this region there are no oscillations in the system. For a

complete review on nonlinear oscillations, dynamical systems and

bifurcation concepts the reader is referred to [6] or [7]. For this

type of oscillators the presence of a stable limit cycle is at the

base of the phase representation. If the limit cycle translated to

contain the origin, then the limit cycle itself can be considered

as a rotating vector. In a polar coordinate description, the angular

component may be taken as a representation of the phase of the

oscillator. To realize the translation itself, a useful point to consider

is the equilibrium point veq , obtained from solving equation (2)

when its RHS is set to zero. If the equilibrium is non-unique this

procedure can be difficult, for this reason the discussion is limited

to a two dimensional oscillator with only one equilibrium point.

In this case this point will always lay inside the limit cycle and

the shifting will be readily achieved subtracting it from v(t). The
equivalent phase description on the limit cycle would become:

φ̇=g(φ(t),µ) (3)

This continuous representation in equation (3) will not be able

to represent the whole behaviour described by (2). It will only

be equivalent to the original model for trajectories close to the

stable limit cycle subjected to small perturbations. Let introduce

the following definition for the limit cycle (from [10]):

γ={v∈�2|v=u(t),0≤t≤T} (4)

In which the periodic orbit γ is the image of u(t) in the state space.
A suitable measure of distance from the limit cycle becomes then:

dist(v,γ)=infy∈γ ‖v−y‖ (5)

And a neighbourhood, Uξ, of the limit cycle will be a region of

the state space defined as:

Uξ={v∈�2|dist(v,γ)<ξ} (6)

Equation (3) is equivalent to (2) for all trajectories that, under the

effect of small perturbations, remain inside Uξ.

We assume, then, from the stability of the limit cycle that we

can decompose the time varying linear system that describes this

dynamics about γ into a portion along the limit cycle, and a part
orthogonal to the limit cycle. Furthermore, we also assume that

the orthogonal portions are an exponentially stable time varying
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system attractive to the origin, with time scale much faster than

that of the oscillations themselves.

In order to formalise a condition for such attractiveness, we will

make use of the Poincaré map, see [10] for more details. This is

a useful tool to tests stability of limit cycles. It does so by means

of mapping after a cycle the points of a section transversal to γ
(i.e any line through y ∈ γ that is not tangent to γ at y), close
to γ. Given a point yo ∈ γ, the mapping of a starting point p
in such subset can be defined in terms of a scalar λ mapping its
position on the transversal section after a cycle in terms of its

present position:

p(to+T )=λ(to)·p(to) (7)

For p(to) in the vicinity of the limit cycle, T period of time
for the trajectory that started at p to hit the transversal section
after a cycle and to an arbitrary time (that is implicitly defined

by yo ∈ γ, the chosen point over the limit cycle for which the
Poincaré Map is obtained). The value of λ will be different for
different positions over the limit cycle, but nonetheless a proper

study over a complete period will give us a complete picture of it

as a periodic time function.

The following definition of attractiveness make use of the
results from the Poincaré map:

Definition 1: (Attractiveness) Given the Poincaré map for the
limit cycle under study and choosing the transversal region to

be perpendicular at each point yo, (i.e. given a λ(to) for the i-
oscillator), attractiveness is defined as:

λ=max{λ(to)}, to∈[0,Ti] (8)

Strong attractiveness is obtained whenever λ � 1.
For a more complete exposition on the topic of stability for

periodic orbits the reader is referred to [10].

For computational reasons we use an Euler method to obtain

an approximation of (3). This is important for developments in

section (3) and will prove to be quite accurate in the presence of

the suggested condition of attractiveness and small perturbations.

φ(kh+h)−φ(kh)
h

=g(φ(kh),µ)

φ(kh+h)=φ(kh)+hg(φ(kh),µ)︸ ︷︷ ︸
g̃(φ(kh),µ)

φ[k+1]=φ[k]+g̃(φ[k],µ)

(9)

If we arbitrarily define an initial discrete time as the constant value

ko, then the phase value at k + 1 can be written as:

φ[k+1]=φ[ko]+
∑k−ko

j=0 g̃(φ[k−j],µ) (10)

III. COUPLING AS A PHASE PERTURBATION.

Suppose we take the dynamical model presented in equations

(2) for an individual oscillator and in the case of a linear ring

of oscillators coupled together with their nearest neighbours only.

Label the oscillators in sequence, one of them with subindex i
and likewise the two neighbours with sub-indexes i+1 and i−1,
with i = 1, · · ·N and v−1 � vN , vN+1 � v1. The coupling

under study, without loss of generality, will appear as an extra

term added to the first state variable, as:

v̇1
i =fi(vi,µi)+Ii(t) (11)

Ii (·) is the coupling function for the ith-oscillator. If this
coupling term is set to zero then the phase behaviour falls back to

N independent oscillators of the form (10). On the other hand, if
this term is not zero it will introduce a variation in the phase

trajectory in what can be exploited to perform a perturbation

analysis, see also on this topic for example [3], [4]. This situation

can be better described by assuming a function g̃H , much like g̃,
but also a function of H , where H is the strength of the coupling
Ii(t), for each time interval h (therefore becoming a quantised
version of the continuous time coupling function).

φi[k+1]=φi[k]+g̃Hi
(φi[k],µi,Ii[k])

=φi[k]+g̃i(φi[k],µi)+

+∆g̃i(φi[k],µi,Ii[k])

(12)

where:

∆g̃i(φi[k],µi,Ii[k])=

g̃Hi
(φi[k],µi,Ii[k])−g̃i(φi[k],µi)

(13)

Note 1: by definition g̃Hi = g̃i, whenever H = 0 (no coupling
present), or, in a similar way, ∆g̃ = 0 if Ii(·) = 0, i.e. an height
of zero for the coupling function.

Again (13) can be iterated to obtain:

φi[k+1]=φi[ko]+

+
∑k−ko

j=0 g̃Hi
(φi[k−j],µi,Ii[k])

=φi[ko]+
∑k−ko

j=0 g̃i(φi[k−j],µi)+

+
∑k−ko

j=0 ∆g̃i(φi[k−j],µi,Ii[k])

(14)

This description was inspired by the work from [8], in which a

more broad discussion of pulse-coupled biological inspired oscil-

lators is presented. The potential of such a description is to isolate

the effect of the coupling, described in equation (13), considering it

directly as an added term in equation (10). Finally, for this section,

a definition to quantify the ¨weakness¨ of the coupling strength
is required in order to maintain valid the equivalence between

models (2) and (3) under the perturbation effect introduced by the

coupling. Weak coupling is therefore defined as:
Definition 2: (Weak Coupling) given a function I(t) as the cou-
pling for the i-oscillator. Consider it as a collection of pulses with
variable strength H , as suggested in equation (12). Define also,
Uξi as the neighbourhood of γi, the stable limit cycle for the ith-
oscillator. Given yo ∈ γi the point in which a coupling of strength

H is applied and (·)⊥ the projection over the perpendicular (to the
limit cycle) section at point yo, weak coupling will be achieved if

the trajectory perturbed in an amount H is still inside Uξi after a

cycle.

λi·dist(yo+(H,0),yo)⊥<ξi

=λi·
(√

(y1
o+H−y1

o)
2
+(y2

o−y2
o)

2
)

⊥
<ξi

=λi·|H|⊥<ξi

(15)

Where λi is the scalar that quantifies the attractiveness of γi. The

worst case scenario would be the maximum possible value for

|H|⊥. The obtained definition is then restated as:
λi·max{|H|⊥}<ξi (16)

Weak coupling will be obtained then, only if the maximum
perpendicular component (with respect to the limit cycle) of the

perturbed trajectory due to the coupling does not exceed the

capacity of a given system to attract the same back onto the limit

cycle in less than a period.

The main effect on an oscillator with properties of attractiveness
and weak coupling is that the uncoupled features of γ and
equilibrium point location will still be valid even after the coupling

takes place. For a more complete view on the concepts involved in
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the definition of attractiveness and weak coupling, as for example
the Poincaré map, the reader is referred to [10].

IV. GLOBAL MODEL

In order to deduce an explicit model for the phase dynamic

that lies behind (2) the nonlinear transformation C suggested in
section (2) is applied, switching the original description to a polar

coordinates description.

ri=Cr(vi)=
√

(v1
i )

2
+(v2

i )
2

φi=Cφ(vi)=atan2(v1
i ,v2

i )
(17)

where vi =
(
v1

i , v2
i

) ∈ �2 and atan2 (·, ·) is the four quadrant
arc-tangent.

Since we are only interested in the phase component, for

any generic system like in (2) we will have a net reduction in

dimensionality of the problem (from a set of two ODEs, one for

each component of vi, to a single expression for φi(t)). However
when we consider coupling, we can claim this reduction in

dimensionality if and only if the coupling term can be satisfactorily

describe by the phases of the oscillators alone that is, for example:

Ii(t)
C⇒I(φi+1(t),φi(t),φi−1(t)) (18)

If, on the other hand, the resulting dependency for I , due to its
original definition in the state space, is both on the radius and the

phase, then after the transformation we will have that for example:

Ii(t)
C⇒I((ri+1(t),φi+1(t)),(ri(t),φi(t)),(ri−1(t),φi−1(t))) (19)

This does not preclude the synthesis of a model for φi, but in

the presence of coupling, it will require also the simultaneous

synthesis of a model for ri, in order to compute at each instant

of time the example term described in (19). It follows then that

if the coupling term I cannot be alternatively described only by
the phase of the involved oscillators, then we will not always

experience a reduction in the dimensionality of the problem, on

the other hand, we will still be able to obtain expressions for

each oscillator phases. In an approach that involves N countable
oscillators, we will have that v−1 � vN , vN+1 � v1, as seen in

section III. On the other hand, since each oscillator can be now

located in space, the original index i can be reinterpreted as xi,

position in space, with x1 = 0 ≡ i = 1 and xN = 1 ≡ i = N ,
resulting in a ring of length one. Under the assumption that the

oscillators are evenly distributed on a ring, the information about

the actual length of the ring is implicitly contained in the domain

range for the natural frequencies distribution ω (xi). Without loss
of generality, we can always scale the linear dimensions so that

the domain of xi is [0, 1].

Theorem 1: Given a population of N evenly distributed identi-
cal weakly coupled oscillators with strongly attractive limit cycles,

as in equation (12). Given also a general coupling term I(t, xi)
for the i-oscillator (with v0 = vN and vN+1 = v1). The resulting

average phase behaviour, when the population number N tends to
infinity, will be determined by the following global dynamic:

˙̄φ(t) =
∫ 1

0
g (φ (t, x) , ω (x)) dx+

+
∫ 1

0
∆g (φ (t, x) , ω (x) , I (t, x)) dx

Where φ̄(t) is:

φ̄(t) =

∫ 1

0

φ (t, x) dx

ω(x) is the continuous space distribution of natural frequencies
for the uncoupled oscillators, and I(t, x) is the limit:

I(t, x) = lim
N→∞

I(t, xi)

The continuous space distribution for the coupling at each

instant t.

Proof : Consider a description such as (12) for an oscillator at
location xi :

φ[k+1,xi]=φ[k,xi]+g̃(φ[k,xi],µ[xi])+

+∆g̃(φ[k,xi],µ[xi],I[k,xi])

Define the average:

φ̄N [k]= 1
N

∑N
i=1 φ[k,xi]

We will have:

φ̄N [k+1]=φ̄N [k]+ 1
N

∑N
i=1 g̃(φ[k,xi],µ[xi])+

+ 1
N

∑N
i=1 ∆g̃(φ[k,xi],µ[xi],I[k,xi])

The frequency of the oscillator is determined by the bifurcation

parameter, therefore a proper map exists and it is invertible.

s(µ[xi])=
ω[xi]
2π

, µ[xi]=s−1
(

ω[xi]
2π

)

This replaced in the main expression permits to change the

dependency on µ[xi] for a dependency on ω[xi] (switching from
an implicit dependency on frequency to an explicit dependency

on frequency). Taking now ∆x = 1/N and letting the number of
oscillators N tends to infinity, an integral definition come in place
as the limit of a Riemann sum:

φ̄[k]=̂limN→∞ φ̄N [k]

=limN→∞ 1
N

∑N
i=1 φ[k,xi]

≡lim∆x→0
∑1/∆x

i=1 φ[k,xi]∆x=
∫ 1
0 φ[k,x]dx

Therefore:

φ̄[k+1]=φ̄[k]+
∫ 1
0 g̃(φ[k,x],ω(x))dx+

+
∫ 1
0 ∆g̃(φ[k,x],ω(x),I[k,x])dx

If we divide the obtained expression for φ̄ [k + 1] by h (the
sampling time), h ∈ �+, h �= 0, we have:

φ̄(kh+h)−φ̄(kh)
h

= 1
h

∫ 1
0 g̃(φ(kh,x),ω(x))dx+

+ 1
h

∫ 1
0 ∆g̃(φ(kh,x),ω(x),I(kh,x))dx

Recalling, from equation (9), the approximation involved in the

term g̃:

g̃(φ(kh,x),ω(x))=h·g(φ(kh,x),ω(x))

And claiming for ∆g̃, by a similar reasoning to that in (9), that:

∆g̃(φ(kh,x),ω(x))=h·∆g(φ(kh,x),ω(x))

We obtain the following expression:

φ̄(kh+h)−φ̄(kh)
h

=
∫ 1
0 g(φ(kh,x),ω(x))dx+

+
∫ 1
0 ∆g(φ(kh,x),ω(x),I(kh,x))dx

Finally, taking the limit when h → 0 on this last expression will
give us the result of the theorem. �
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Fig. 1. Tsync versus T1 and T2.

V. EXAMPLE.

We begin by reviewing a state space model presented in [5]

for Calcium concentration oscillations within a cell. The cytosolic

Calcium is labelled as the variable Z, similarly, Y corresponds
to the concentration of Calcium inside the special store within

the cell (sometimes also called ¨pool¨). The system of nonlinear

ordinary differential equations (nonlinear ODEs) that describes the

relationship between this two variables is presented next:

Ż=Vin−Va+Vb+kf Y −kZ

Ẏ =Va−Vb−kf Y
(20)

Where

Vin=νo+ν1β

Va=VM2
Zn

(Kn
2 +Zn)

Vb=VM3β Zw

(Kw
a +Zw)

Y m

(Km
r +Y m)

(21)

Unless otherwise stated, the values for the different parameters

in (20) and (21) are kept constant throughout the analysis, with

exception of β (the degree of saturation of the inositol 1, 4, 5
trisphosphate, IP3, receptor located on the surface of the cell.

These values are presented in the appendix section.

Numerically, it can be shown that the system exhibits a stable

limit cycle whenever the parameter β is increased from 0.2368
[µMmin−1], until a second critical value of 0.7743 [µMmin−1]
is reached, at which point the stable limit cycle vanishes into a

stable equilibrium.

The case of a pair of cells, under the same settings for all

constant parameters with exception of their β values is here
studied. First of all one of them is labelled as oscillator 1 and

its parameter β1 is fixed at 0.373 [µMmin−1]. Meanwhile the
other one, similarly denoted oscillator 2, is allowed to vary its

value of β (that is a variable β2 within a range in which phase-

lock is maintained) . The coupling function for the case of a pair

of oscillators is a reduced version of the more general definition

presented in (11):

I=I1=Z2−Z1=−I2, (22)

Where I1 is the coupling function for the first oscillator and I2 is

the coupling function has seen by the second oscillator. In general

by the term coupling function Iz we will be referring to the cou-

pling function defined for the first oscillator. The set of values for

β2 in which the coupled system shows a common period for all its

signals range between
[
0.332[µMmin−1], 0.417[µMmin−1]

]
.

In this range the period of the coupled system itself (Tsync)

does not necessarily correspond to the period of either of the two

individual oscillators. Nonetheless simulations for this case show

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time [min]

I z

simulated coupling
quantization (40 levels)
quantization (8 levels)

Fig. 2. Iz and its quantised approximations.

that roughly Tsync is close to the period of the first uncoupled

cell (T1) for β2 < 0.373, and vice-versa it is close to the period
of the second uncoupled cell, for β2 ≥ 0.373. To reduce the
effect that Iz has on the overall period a proper selection of

β2 = 0.35[µMmin−1] is performed guaranteeing a value of
Tsync = 1[min]. This achieves the double objective of testing the
accuracy of phase prediction in a more ideal setting (centred only

on the phase repercussions of I and discarding its period change
influence) and to keep the resulting visualisation simple, since the

period will correspond to one minute. Under this conditions the

coupled system is simulated and the time evolution of the coupling

function Iz is observed (one period presented in Figure 2). It

can be seen that most of the signal is located in a time window

of 0.4 [min] length (starting from 0.4 [min] until 0.8 [min]). A

first simplification calls to neglect its value outside this window,

and since we know that the effects of Iz(t) are related with its
height a quantisation is also required. Figure 2 shows the cases

of eight levels and forty levels superimposed with the simulated

coupling signal. The following phase prediction is going to be

based on the eight level quantisation, since the 40 level would only

demand more calculations but would not add to the discussion.

Considering the selection of the eight level quantisation, the proper

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

time [min]

I
z
 = −0.5716

I
z
 = 0.4735

I
z
 = 0.3842

I
z
 = 0.1576

I
z
 = −0.0899

I
z
 = −0.1941

I
z
 = −0.4226

I
z
 = −0.7016

Fig. 3. First cell ∆g term for each level of the eight levels approximation
of Iz .

∆g̃ (φ1 [k] , ω(1), I1[k]) function will be a composed version of
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its continuous counterpart ∆g (φ1 (t) , ω(1), I1(t)) , much like
equation (9) is to equation (3). To obtain prior knowledge on the

response of the first cell, the first oscillator has been tested, for

each of the eight possible heights of Iz , with pulses in Iz of width

h = 0.01 [min]. In Figure (3) the results is presented for all the
levels.

Next, the phase of the uncoupled oscillator one has been

subjected to three of the quantised version of Iz located at absolute

times 6 [min], 7 [min] and 8 [min] respectively. The effect can be

appreciated in Figure 4 in which solid line is the simulated result

under the coupling perturbation and the circled line is the predicted

behaviour using the ∆g̃ (φ1 [k] , ω(1), I1[k]) description. To test
the accuracy of the prediction presented in Figure 4 a suitable

error definition can be introduced:

0 0.5 1 1.5 2 2.5 3
−4

−3

−2

−1

0

1

2

3

4

time [min]

φ

6 [min] − 9 [min]
pred.

Fig. 4. Simulated (solid line) and predicted (circled line) phase response
under coupling effect.

e[k]=
|φ1[k]−φ̂1[k]|

2π
∗100 (23)

where φ1[k] is the simulated behaviour, φ̂1[k] is the predicted
phase and the 2π factor weight the error against the modulo 2π
condition of the phase. The result obtained is presented in Figure 5.

The resulting peaks in error are mostly located in the steepest part

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

time [min]

er
ro

r

Fig. 5. Phase percentage error (mod 2π) estimate.

of the phase time evolution, but still well under 3% of the full 2π
available range. Therefore the predicted phase behaviour proves

to be quite accurate and its accuracy does not seem to deteriorate

as time passes. This results assure us that indeed the phase of

the proposed example behaves accordingly to equation (10), when

not coupled, and to equation (14), when coupled. As a second

step into the analysis of this example an experimental set of thirty

oscillators was tested,with the same value of h = 0.01 [min],
at first uncoupled. The β(i) distribution was taken as a uniform
probability distribution in

[
0.36[µMmin−1], 0.41[µMmin−1]

]
.

Without entering in much details, this proposed uniform probabil-

ity distribution translates into a uniform probability distribution for

ω(i) in [5.934[rad/min], 7.2564[rad/min]]. The standard ran-
dom number function provided by Matlab executed the selection

for each oscillator. The reason why the complete range of β value,
for which this system example shows oscillatory behaviour, has

not been selected is because phase lock behaviour, when coupled,

is pursued. The phase dynamics for the uncoupled oscillators

Fig. 6. Uncoupled phase behaviour.

are presented in Figure 6. The horizontal axes correspond to the

relative position of each oscillator meanwhile the vertical axes

indicates time. The original simulation time was 30 [min], but

for clarity only the last 5 [min] are presented in Figure 6. A

colour scale indicates the value of the phase for each individual

oscillator, position and time (between −π and π). This form of
representation allow us to observe at a glance that there is no

degree of coordination between them when uncoupled. Afterward

the same set of thirty oscillators was coupled together defining,

this time, the coupling function in Theorem (1) as:

Ii(t)=
Zi+1−Z

eq
i+1

‖vi+1−v
eq
i+1‖− Zi−Z

eq
i

‖vi−v
eq
i

‖+
Zi−1−Z

eq
i−1

‖vi−1−v
eq
i−1‖− Zi−Z

eq
i

‖vi−v
eq
i

‖ (24)

Where ‖vi−v
eq
i ‖=

√
(Zi−Z

eq
i )2+(Yi−Y

eq
i )2 and v

eq
i =(Z

eq
i ,Y

eq
i ), is

the equilibrium point for the i-cell. The oscillators located at
position 1 and 30 were inter-coupled (forming a one dimensional

ring lattice). The results for the global phase behaviour solving the

set of 30 coupled ODEs systems is presented, with similar axis

definitions as before, in Figure 7. Phase lock behaviour is evident

with the onset of a periodic travelling way as colours suggest.

On the other hand, to test the result obtained in Theorem (1),

∆g̃ was obtained for each oscillator with an height H = 0.1 for
each one of them. The resulting function for the first oscillator

is presented in the lower panel of Figure (9). To avoid lengthy

calculations and also to avoid being forced to work with more

than one ∆g̃ function for each oscillator, linearity was presumed,
therefore converting the general ∆g̃ term into an expression as
below:

∆g̃[φi[k],ωi,Ii[k]]=
Ii[k]
0.1 ∆g̃[φi[k],ωi,0.1] (25)

The resulting predicted global phase behaviour can be seen in

Figure (8) and it is strikingly similar to the one obtained solving
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Fig. 7. Coupled phase behaviour described by solving the set of ODE as
in equation (11).

Fig. 8. Coupled phase behaviour obtained through equation (12).
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Fig. 9. Data table for the first oscillator, in the upper panel φ1, in the
lower panel ∆g̃ associated to an height of 0.1 in I1 .

the full set of ODEs equations. This is also remarkable in that

confirms in this example, linearity for the coupling term. Finally

another point addressed by Theorem (1) is that it allows us to

recognise directly what is the superposed effect of the coupling

over the independent dynamic of each oscillator.

VI. DISCUSSION AND CONCLUSION.

In this article a phase model has been inferred from an original

state space based model. This alternative model is to be useful

when entrainment and synchronism phenomenons arise due to a

coupling function. The effect of this coupling function can be

observed independently in the proposed global model from the

term that arise without coupling. This can be used to study the

nature of the coupling between a family of oscillators. Also can

be useful in estimate the importance of any such coupling in the

behaviour of each separate oscillator when synchronism or more

complex interdynamics are present (e.g. quasiperiodic motions).

Future work will include oscillator systems within state spaces

of dimension greater than two, alternative definitions for a rep-

resentative vector-like phase representation and a multivariable

version of Theorem (1).

VII. APPENDIX.

Constant values for the model parameters described in equations

(20) and (21):

νo=3.4[µMmin−1] ν1=3.4[µMmin−1] VM2=50[µMmin−1]

VM3=650[µMmin−1] n=2 m=2

w=4 K2=1[µM ] Kr=2[µM ]

Ka=0.9[µM ] kf =1[min−1] k=10[min−1]
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