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Phase analysis of stimulated Brillouin scattering 

in long, graded-index optical fiber 

Steven M. Massey* and Timothy H. Russell 

Department of Engineering Physics, Air Force Institute of Technology, 2950 Hobson Way, Wright-Patterson AFB, 

OH 45433, USA 
*Corresponding author: steven.massey@afit.edu  

Abstract:  A continuous-wave beam was wavefront-split by a prism and 
propagated through separate paths before being coupled into a long, graded-
index fiber.  Stimulated Brillouin scattering (SBS) was generated in the 
fiber and the phase of the reflection was compared to that of the pump using 
lateral shearing interferometers immediately after reflection and also after 
propagating back through the separate paths.  To analyze the phase 
conjugating properties of SBS in the fiber, one of the paths included a path-
length oscillation.  It was found that SBS from the long, graded-index fiber 
did not conjugate the phase of the pump.  SBS formed a phase-locked beam 
immediately after reflection from the fiber, but did not lock the phases of 
the two beams after recombination as would be expected from a phase 
conjugate reflection.          

©2008 Optical Society of America  

OCIS codes: (190.4370) Nonlinear optics: Nonlinear optics, fibers. (190.5890) Nonlinear 
optics: Scattering, stimulated. (290.5830) Scattering: Scattering, Brillouin. 
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1. Introduction 
  

SBS can produce a high fidelity phase conjugate reflection under certain conditions.  In 
experiments using pulsed lasers as the SBS pump, step-index fibers with lengths typically 10 
m or less have been used for many years to produce high-fidelity phase conjugation.[1-6]  The 
fidelity degrades in longer lengths of step-index fiber due to the frequency shift between 
pump and SBS (Stokes) beams provided the interaction length is not limited by the coherence 
length of the source laser.[1, 2, 7]  Good fidelity, cw phase conjugation was recently 
demonstrated in step-index fibers at 15 m and 40 m in length with fidelity shown to have a 
dependence on the fiber’s length and numerical aperture (NA).[8]  SBS in short, graded-index 
fibers has been shown to produce a phase conjugate reflection,[4] but the fidelity was reported 
to be poor in separate research.[6]  In long lengths of fiber on the order of a kilometer or 
more, SBS has been reported to produce cw phase conjugation in graded-index fiber.[9-12]  
Conversely, it has also been reported to produce a low-order fiber mode regardless of pump 
mode structure in a process referred to as beam cleanup.[6, 13-18]  While graded-index fibers 
mitigate the modal dispersion among modes in the fiber, it has been calculated that the 
graded-index of the core causes preferential Brillouin gain for the low-order modes which 
inhibits phase conjugation.[6, 15]   

To determine the fidelity of phase conjugation, measurements of beam quality are 
typically used such as irradiance images, pinhole transmission, far-field divergence, or 

2
M measurements.  In many experiments, an aberration is used to distort the source beam 
before coupling into the phase conjugate medium.  The beam quality is sampled both before 
and after the aberration.  Phase conjugation should restore the beam quality of the source 
beam after reflecting back through the aberration from a phase conjugate mirror.  Beam 
quality measurements are sufficient when the goal is to increase the beam quality of a laser 
system, but spatial methods can be ambiguous as the phase conjugation fidelity declines or 
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beam cleanup occurs.[18]  While these measurements are indicative of the spatial coherence 
of the beam, the goal of coherent beam combining and phase-locking multiple beams through 
SBS phase conjugation requires a more direct measurement of the phase.     

In this work, the phase conjugation properties from SBS in a long, graded-index fiber are 
explored directly.  The source beam was split into two separate and variable paths before 
being coupled into the long, graded-index fiber.  The separate paths impart a phase aberration 
onto the beam.  The resulting phase difference between the two beams was observed using 
lateral shearing interferometers (LSIs) immediately after the Stokes reflection exited the fiber 
and after it traveled back through the two beam paths.  This method extricates the 
measurement of phase conjugation from measurements of beam quality.  Although the use of 
LSIs to measure beam phasing is not unique to this experiment, this is the first time it has 
been used to determine the relative phase characteristics of two beams at locations critical to 
phase conjugation.  While the irradiance images of the beams can be examined before and 
after the dual-path phase distortion, these indications of beam quality are secondary to the 
phase relationship of the beams being measured.  

The results of this experiment clearly indicate that phase conjugation was not achieved 
from SBS in a long, graded-index fiber.  The phase aberration induced by the first pass 
through the separate paths was not corrected by the second pass.  The beam was phase-locked 
immediately after reflection by the fiber despite phase variations between the tiled input 
beams.  In addition, the Stokes reflection showed phase variations after the second pass 
through the dual-path phase distortion in contrast to the locked phase of the input beam at this 
location.  These results are not consistent with phase conjugation since SBS in the long, 
graded-index fiber did not conjugate the phase of the pump beams.         

2. Experiment   
 

The apparatus is shown in Fig. 1.  The pump laser consisted of an external cavity diode laser 
operating at 10 mW (1550 nm) followed by a 2-stage fiber amplifier.  The first fiber amplifier 
was 5 m of Nufern’s Er-Yb, co-doped 7/130 (core diameter/clad diameter) polarization-
maintaining fiber counter-pumped with a 20-W LIMO, fiber-coupled diode at ~935 nm.  The 
output of the first stage was 500 mW with amplified spontaneous emission (ASE) in a ~4 nm 
bandwidth centered at ~1535 nm suppressed to -36 dB.  The output of the first stage was not 
pump-limited, but further increases in pump power increased the ASE.  The second stage was 
15 m of the same fiber, co-pumped with another 20-W LIMO, fiber-coupled diode at 935 nm.  
Free-space coupling was used and all the fiber ends in this work were polished at 8°.  The 2-
stage amplifier produced a pump-limited output power of 5 W.    

After isolation, the beam was expanded to a diameter of 10 mm before being wavefront-
split by an uncoated right-angle prism (Prism 1) into two beams with semicircular cross-
sections.  The beams then propagated through different paths which provided the phase 
distortion in the form of a variable phase delay between the two beams.  One of the paths was 
equipped with an optical trombone to test the ability of SBS in the long, graded-index fiber to 
conjugate the phase and correct small path-length variations upon reflection back through the 
system as expected from a phase conjugate reflection.  The optical trombone consisted of a 
180° turning prism (Prism 3) on a longitudinal translation stage which could be controlled 
with a piezo-electric transducer for rapid oscillations.  The two beams were tiled side-by-side 
with a prism (Prism 2) and coupled into a graded-index fiber which had a core diameter of 50 
µm and an NA of 0.21. 

As shown in Fig. 1, a lateral shearing interferometer (LSI) on each beam pickoff (Wedge 1 
and Wedge 2) was used to analyze the SBS reflection from the graded-index fiber 
immediately after reflecting from the fiber (LSI 2) and after recombination (LSI 1).  The LSI 
was made from two wedged windows separated by ~1 cm, and each window had one side 
AR-coated.  The two uncoated faces created reflections laterally shifted relative to each other.  
A lens was placed in front of each camera position such that Position 1 (Fig. 1) was imaged 
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onto Camera 1, and Position 2 was imaged onto Camera 2.  In the case of Position 2, the 
Stokes beam was reflected off Wedge 2 before reaching Position 2, and the Stokes beam was 
imaged onto Camera 2 as it would be at Position 2.   
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Fig. 1. Apparatus diagram displaying 2-stage, narrow-linewidth fiber amplifier, 
phase aberration consisting of two optical paths with variable length adjustment on 
one path, and a 2.5-km, graded-index optical fiber where SBS was generated.  LSI:  
lateral shearing interferometer, HR:  high reflecting mirror, Cam:  camera. 

 
With two beams tiled together as shown in Fig. 2(a), the LSI created three zones of 

interference as shown in Fig. 2(b).  Zone 1 of Fig. 2(b) is the left semicircular beam interfering 
with itself, while zone 3 is the right beam interfering with itself.  As long as the two wedges 
of the LSI are stable and much closer than the coherence length of the individual beams, these 
self-interference zones produce stable interference fringes regardless of fluctuations in the 
phase of the incident beams.  This contrasts with zone 2, which is the mutual interference 
between the left and right beams.  In this region, the position of the fringes depends on the 
relative phase between the left and right beams.  High contrast fringes indicate spatial 
coherence between the two semicircular beams, but the fringe position in zone 2 shifts with 
changes in relative phase between the two beams.  If the left and right beams are coherent and 
have the same phase, the maxima of the high-contrast fringes will line up across all three 
zones.  For example, if only a single beam is incident on the LSI as shown in Fig. 2(c), only a 
single interference zone is created as in Fig. 2(d).  If the two beams of Fig. 2(a) are in phase, 
the situation is similar to that of only a single beam incident on the LSI:  the three zones of 
interference in Fig. 2(b) become effectively one zone with continuous fringes.    

For comparison to the Stokes reflection, a highly reflective (HR) planar mirror was 
inserted in front of the graded-index fiber to reflect the tiled beams back toward the source.  
The phase variations imparted by a single pass through the two optical paths were analyzed 
using LSI 2, and the variations from the double pass were analyzed at LSI 1.   

Each image in this work was an average of 10 images taken successively at the camera 
frame rate of 30 Hz.  When activated, the transducer on the path-delay prism (Prism 3 in Fig. 

1) varied the relative phase between the two beams.  This vibration was chosen in the form of 
a triangle wave with a 5.5 Hz oscillation frequency to avoid resonance with the camera.  The 
full range of travel was 0.2 mm.  These conditions were chosen to contrast still fringes from 
shifting fringes. 
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(a) (b)

1 2 3

(c) (d)

1

 
Fig. 2. Diagram of the beam irradiance cross-section and interference zones created 
by an LSI.  With (a) two semicircular beams tiled together, the LSI forms (b) three 
interference zones consisting of self-interference zones (1 and 3) and mutual 
interference in zone 2.  With (c) a single beam incident on the LSI, (d) a single 
interference zone exists. 

      
The beam emitted by the single-mode amplifiers is shown in Fig. 3(a) imaged as it would 

be at Position 1 of Fig. 1.  In this case, a second HR was used to reflect the first-pass reflection 
from Wedge 1 to LSI 1.  The contour plot of the same image is also given in Fig. 3(a) for 
clarity showing a fundamental mode irradiance profile was emitted from the amplifier.  Fig. 

3(b) shows the irradiance profile of the beam at Position 1 after reflection from the HR mirror 
in front of the graded-index fiber, and Fig. 3(c) shows the Stokes beam generated in the 
graded-index fiber after propagation back to Position 1.  

 

(c)(b)(a)
 

Fig. 3. Shown at Position 1, without interference from the LSI, are (a) the source 
beam irradiance image and contour plot, (b) the reflection from the HR mirror in 
front of the fiber, and (c) the SBS reflection. 

 

The coupling efficiency to the fiber was 80 / 5%+ − .  In addition, the power transmitting 

the fiber from each beam path was 50 / 4%+ −  of the total transmission measured below SBS 
threshold.  As an indication that many modes were excited in the fiber, sample images of the 
fiber transmission are shown in Fig. 4.  The transmission through the fiber was multimode and 
slowly varied over time.  SBS threshold was reached in the fiber at 0.4+/-0.1 W of transmitted 
power, which corresponded to approximately 500 mW coupled to the core of the fiber 
considering transmission loss and the Fresnel reflection of the back end of the fiber.       
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Fig. 4. Sample images of the beam after transmission through the long, graded-index fiber. 

 
The source beam at Position 1 before being split into the two paths is shown in Fig. 5(a) as 

reflected from LSI 1.  With Prism 3 still, the reflection from the HR mirror in front of the 
fiber and the SBS reflection imaged at Position 1 are shown in Fig. 5(b) and Fig. 5(c), 
respectively.  The source beam was spatially coherent with continuous interference fringes 
across a single interference zone as shown in the diagram in Fig. 2(d).  However, after 
reflection from the mirror and passing through the separate paths a second time, the beams 
were not in phase across the three interference zones of Fig. 2(b) as shown by the fringe 
discontinuities in Fig. 5(b).  When the mirror was removed and SBS was generated in the long, 
graded-index fiber, the fringe discontinuity was also visible as shown in Fig. 5(c).  This is in 
contrast to the smooth phase front of the source beam at this location shown in Fig. 5(a).   

While fringe discontinuity does not support phase conjugation, it alone does not negate it.  
Because of the wavelength shift induced by SBS, even when phase conjugation occurs, the 
Stokes beam may not have the same continuous fringe pattern as the source beam after 
propagation back through the individual paths.  The dephasing due to the two paths would be 

( )2 p s l cφ π ν νΔ = − Δ ,[19] where pν  (
s

ν ) is the pump (Stokes) frequency, and lΔ  is the 

difference between the two beam paths.  Given the small Stokes shift in silicate fiber (~11 
GHz), this function varies slowly relative to a wavelength.  The relative phase shifts by 

2π when lΔ ≈ 27 mm.  Given that one path included the optical trombone, the two beam 

paths varied by more than 27 mm.  It is therefore expected that a phase conjugate beam would 
be only phased coincidentally after propagation back through the two paths.  More 
importantly, however, an additional 0.4 mm change in optical path length caused by vibration 

of Prism 3 would have a negligible effect on the relative phase ( 0.1 / 60
vib

φ λΔ ≈ ≈ ) if phase 

conjugation were achieved.  Therefore, a phase conjugate reflection would be characterized 
by visible fringes in zone 2 of the fringe pattern measured at Position 1 even with the 
vibration stage activated.     

 

(c)(b)(a)
 

Fig. 5. At Position 1, interference images are shown from LSI 1 of (a) the source 
beam, (b) the beam reflected by the mirror in front of the fiber, and (c) the SBS 
reflection. 

 
Prism 3 vibration was activated, and images were retaken at Position 1.  The source beam 

is shown again in Fig.  6(a) for comparison.  Fig.  6(b) was taken at Position 1 with the mirror 
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placed in front of the fiber.  The self-interference fringes in zones 1 and 3 were clearly visible, 
but the fringes due to mutual interference in zone 2 were rapidly oscillating.  The motion of 
the fringes resulted in a drop in fringe visibility in zone 2 as compared to Fig. 5(b).  In fact, the 
remaining fringes can be attributed to the diffraction effects visible in Fig. 3(b) without the 
interference induced by the LSI.   

Fig.  6(c) is an image of the Stokes beam at Position 1 taken with Prism 3 vibration 
activated.  This image shows that phase conjugation did not occur in the long, graded-index 
fiber.  Similar to the reflection from the planar mirror shown in Fig.  6(b), the fringes in zone 2 
of Fig.  6(c) rapidly oscillated despite the stable fringe pattern of the source beam at this 
location shown in Fig.  6(a).  A phase conjugate reflection would have conjugated the phase of 
the beams coupled into the fiber, and the aberration induced by the 2-path phase delay would 
have been corrected to result in stable fringes in the mutual interference region (zone 2) of Fig.  

6(c).  The fringe visibility in zone 2 of Fig.  6(c) was measured at 9.6 / 3.1%+ − , with the 
remaining fringes in zone 2 most-likely caused by diffraction from Prism 2.  In detail, the 
residual fringes do not span zone 2 continuously and are at a different angle than the fringes in 
zone 2 of Fig. 5(c).  However, this is a minor point compared to the overall lack of fringe 
visibility in zone 2 as compared to Fig. 5(c) and Fig.  6(a). 

 

(c)(b)(a)
 

Fig.  6.  At Position 1 with the vibration of Prism 3 activated, interference images 
are shown of (a) the source beam, (b) the beam as reflected from the mirror in front 
of the fiber, and (c) the SBS reflection. 

 
The beams were also analyzed at Position 2 in Fig. 1.  The source beam is shown in Fig. 

7(a) as reflected from the planar mirror in front of the fiber.  With the mirror removed, the 
typical Stokes beam observed is shown in Fig. 7(b).  The Stokes beam periodically appeared in 
the double-lobed mode shown in Fig. 7(c), but this mode was very sensitive to minute changes 
in fiber alignment and the position of Prism 3.  The single-lobed pattern of Fig. 7(b) was much 
more common and stable.       

 

(c)(b)(a)
 

Fig. 7.  At Position 2, without interference from the LSI, are shown (a) the source 
beam after passing through the two channels, (b) the typical SBS reflection from the 
fiber including a contour plot, and (c) a second SBS reflection from the fiber which 
was generated periodically, also including a contour plot. 

 
The beams were observed at Position 2 using LSI 2.  Despite the phase difference 

apparent between the two beams coupled into the fiber (Fig. 8(a)), the Stokes reflection 
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typically had a continuous phase front (Fig. 8(b)).  A phase conjugate reflection would 
conjugate the phase of the input beams including the phase mismatch apparent in Fig. 8(a).  
The phase difference would only be corrected after propagating back through the phase 
aberration caused by the two paths.  This result is not consistent with phase conjugation.   

In contrast, the double-lobed structure of Fig. 7(c) and Fig. 8(c) could certainly be 
interpreted as a phase conjugate replica of the pump with the high-spatial-frequency 
components filtered out.  However, while small movements of Prism 3 caused the fringes in 
zone 2 of Fig. 8(a) to shift vertically, the same movement of Prism 3 would cause the two-
lobed Stokes beam shown in Fig. 7(c) and Fig. 8(c) to change into the single-lobed beam of 
Fig. 7(b) and Fig. 8(b).  The fringes of zone 2 in Fig. 8(a) would drift in time or shift smoothly 
with small path-length changes using Prism 3, but the fringes in the double-lobed pattern of 
Fig. 8(c) would appear only with the fringe pattern shown.     

 

(c)(b)(a)
 

Fig. 8. At Position 2, with interference from LSI 2, are shown (a) the beam reflected 
from a mirror in front of the fiber, (b) the typical SBS reflection from the fiber, and 
(c) a periodically-generated SBS reflection from the fiber. 

 
For further analysis of the beams at Position 2, Prism 3 vibration was activated.  The 

source beam viewed with the mirror in front of the fiber is shown in Fig.  9(a).  As expected 
from two passes through the phase aberration, the fringe visibility in zone 2 was greatly 
reduced as compared to Fig. 8(a).  In fact, the remaining fringes are attributable to self-
interference fringes in the mutual interference region.  The residual interference fringes in 
zone 2 of Fig.  9(a) are apparent in the self-interference images of Fig.  9(b) and Fig.  9(c), 
which were taken with one path blocked.  In this case, the sharp edge of Prism 1 caused the 
beams to diffract, which caused self-interference fringes to appear in the mutual interference 
zone.   

With the vibration of Prism 3 activated, the Stokes reflection at Position 2 was stable, as 
shown in Fig.  9(d), despite the rapid movement of the fringes visible in zone 2 of Fig.  9(a) 
caused by the varying phase between the two paths of the source beam.  Comparison of Fig.  

9(d), when Prism 3 was active, to Fig. 8(b), when Prism 3 was still, shows that the Stokes 
reflection was phased regardless of the phase fluctuations between the two input beams.  A 
phase conjugate reflection would conjugate the varying phase of the input beams.  Instead, the 
Stokes reflection had a stable, continuous phase front.     
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(c)(b)(a) (d)
 

Fig.  9. At position 2, with interference from LSI 2 and Prism 3 vibration activated, 
are shown (a) the source beam, (b-c) the source beam with one channel blocked to 
show self-interference fringes only, and (d) the SBS reflection. 

   

3. Discussion 
 

In this experiment, a single-mode source beam was propagated through an aberration in the 
form of a 2-path phase delay before being coupled into a long, graded-index fiber.  The 
Stokes beam was compared to the source beam both before and after the aberration at Position 
1 and Position 2 in Fig. 1.  A phase conjugate reflection would conjugate the phase at both 
positions.  Therefore, a stable fringe pattern at Position 1 similar to the source beam would be 
observed despite variations in phase caused by the oscillation of Prism 3.  This was not 
observed, since zone 2 of Fig.  6(c) is characterized by a rapidly shifting fringe pattern despite 
the stable fringe pattern of the source beam at this location as shown in Fig.  6(a).  At Position 
2, a phase conjugate reflection would again conjugate the phase of the input beams.  After 
passing through the two paths, the input beam at Position 2 had a rapidly varying phase 
difference between the two beams as seen in zone 2 of Fig.  9(a).  However, the Stokes beam 
was phased as shown in Fig.  9(d).  These results show that phase conjugation was not 
achieved.   

Beam cleanup would have remarkably different characteristics.  Since the beam exits the 
fiber in a pure fiber mode, it would be spatially coherent across its transverse dimension 
immediately after exiting the fiber despite variations in phase of the input beams.  This was 
observed as shown in Fig.  9(d).  Once the Stokes beam was split into two independent beams 
at Prism 2 and propagated through the time-varying path lengths, the constant phase would be 
lost.  This was also observed as shown in Fig.  6(c).  In addition, the double-lobed structure 
observed in Fig. 7(c) and Fig. 8(c) is consistent with beam cleanup to the LP11 mode.  In the 
null region between the two lobes, the fringes lose contrast as the irradiance drops, and it 
appears that the two lobes are phase-shifted by π as would be expected from an LP11 mode.   

This experiment was not designed to study the spatial characteristics of the beams, but 
some observations can be made.  The Stokes beam shown in Fig. 7(b) at Position 2 does not 
resemble the double-semicircular irradiance pattern of the input beams shown in Fig. 7(a).  
Additionally, after good coupling efficiency to the fiber had been achieved, precise angle 
adjustment of the fiber tip was required in order for the Stokes beam to propagate back 
through the system on-axis.  This adjustment would not have been necessary if a phase 
conjugate beam had been generated.  A phase conjugate reflection with high fidelity would 
propagate in the direction opposite the pump beam despite small perturbations to the coupling 
characteristics.  In contrast, the appearance of Fig. 7(c) could be interpreted as imperfect phase 

conjugation of the pump or as beam cleanup to the 11LP mode of the fiber.  Considering the 

phase analysis of this work removes the possibility that phase conjugation was occurring.   
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4. Conclusions 
 

Lengths of graded-index fiber on the order of a kilometer are useful for coherent beam 
combination, but the Stokes beam is not a phase conjugate of the pump.  Instead, the Stokes 
reflection due to multiple beams focused into the graded-index fiber produces a phase-locked 
beam immediately upon exiting the fiber.  Propagation back through a phase distortion such 
as the independent paths used in this work disrupts the phase relationship.    
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