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We analysed two 26-year long (1970^1995) time-series on annual population growth rates of Norwegian
lemmings (Lemmus lemmus) from Finse, south Norway, using a threshold autoregressive (TAR) approach.
We demonstrate that the population dynamics is both phase- and density-dependent. The phase-depen-
dence accounts for the observed nonlinearity. We used the deduced stochastic model structure as a basis
for evaluating the dynamic properties of this system. The dynamics is characterized either by limit cycles
or chaos (the latter with a strong semi-periodic component). Stochasticity is seen to play an important
role in the determination of the periodicity. The ecological implications of these statistical and mathema-
tical results are discussed.
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1. INTRODUCTION

Periodic population cycles in small rodents and other
terrestrial vertebrates of the north have preoccupied
ecologists since Elton (1924, 1942) (cf. Cockburn 1988;
Stenseth & Ims 1993a,b; Stenseth 1995; Stenseth et al.
1998a,b). Recently, much attention has been given to
the presumed nonlinear nature of ecological interactions
generating periodic £uctuations (e.g. Turchin 1993, 1995;
Falck et al. 1995a,b; Framstad et al. 1997). Researchers
have considered these £uctuations to represent limit
cycles (May 1972; Stenseth 1977, 1985; Framstad et al.
1997), deterministic chaos (Turchin 1993; Hanski et al.
1993; Ellner & Turchin 1995; Turchin & Hanski 1997),
or dampened oscillations being sustained by environ-
mental stochasticity (Stenseth et al. 1996a) with
seasonality as a potentially important factor (Stenseth et
al. 1998a).
Here we report on the population dynamic properties

of statistical models resulting from nonlinear analysis of
time-series of annual population growth rates of
Norwegian lemmings (Lemmus lemmus (L.)). As an integral
part of our analysis we consider the e¡ect of stochastic
resonance in nonlinear models (e.g. Rand & Wilson
1991).

2. THE DATA

Norwegian lemmings were studied on two permanent
1ha grids (labelled M and H), 2.3 km apart, in the alpine
zone (ca.1250m above sea level) at a mountain site at
Finse, south Norway (60836'N 7830'E; Framstad et al.
1993a,b, 1997, their ¢g. 1a). The vegetation of the trapping
grids is characterized by various mixes of dwarf shrubs,
herbs, grasses, sedges, lichens, and mosses, with moder-
ately high productivity on grid H and intermediate
productivity on grid M. The climate is alpine (Òstbye et
al. 1975; Wielgolaski 1997a,b) with a short (2.5^3.5
months) and cool growing season (mean July temperature
+8.0 8C), heavy snow cover in winter, and mean annual
temperature of 72.1 8C (1961^1990; Aune 1993).
Since 1970, lemmings have been captured by kill-

trapping twice a year (late June/early July, and in late
August/early September, corresponding phenologically to
spring and autumn, respectively). We have used regularly
1200 trap-nights (the number of traps multiplied by the
number of nights they have been active) per grid and trap-
ping session (with some reduction in trap numbers due to
partial snow cover during some springs). We employ the
number of captures per 100 trap-nights as our abundance
index. For additional details about the trapping scheme
and grids see Framstad et al. (1997). Between 1970 and1995
a total of 3114 lemmings were caught on these two grids.
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As is common practice (cf. Henttonen et al. 1985;
Stenseth & Ims 1993c), we restricted our analysis to the
autumn data. In our case, this is essential due to the
generally low density of lemmings in spring and the high
number of zeros in the captures. Nevertheless, a similar
but less pronounced pattern emerges from the spring
samples (Framstad et al. 1997). In either case, a clear peri-
odicity is observed and spring and autumn series are
highly correlated.

3. AUTOREGRESSIVE MODELLING

(a) Preamble
Both the original and the log-transformed abundances

were highly skewed (with a surplus of low values;
Framstad et al. 1997). Following Framstad et al. (1997), we
investigated the structure of the population growth rates
rt � ln(Nt=Ntÿ1) � ln(Nt)ÿ ln(Ntÿ1) � nt ÿ ntÿ1 (where
Nt and nt are the non-transformed and log-transformed
abundances, respectively). Due to the presence of zeros in
the abundance data, a constant of 0.08 (equivalent to the
capture of a single individual during a full trapping
session) was added to each observation prior to log-
transformation (see ½ 4 for comments on the e¡ect of
adding constants of di¡erent magnitude). The analysed
time-series (in rt) are depicted together with their spec-
tral densities in ¢gure 1. The growth rates (in rt) are
assumed to be stationary (i.e. no trend), which seems
reasonable by reference to the time-series plots in ¢gure 1.
The rt series for both grids are characterized by a period
of 3.4 years. For the purpose of analysis growth rates (rt)
were standardized to mean zero and a standard deviation
(s.d.) of one. (The original rt series had means and s.d.s,
respectively, of 70.162 and 3.297 for grid H and 70.151
and 3.406 for grid M. Notice that these (negative) means
are not statistically di¡erent from zero.)
Using both the test for threshold nonlinearity (Chan

& Tong 1990; Tong 1990) and the non-parametric test
based on conditional means (Hjellvik & TjÖstheim 1995),
Framstad et al. (1997) rejected the hypothesis of linearity
at the 5% level for the rt series from both grids.

The order of the process corresponds to the number of
lags included in the model. Order determination by cross-
validation (Cheng & Tong 1992) indicated that the
optimal order of the rt series was one for grid M and two
for grid H. However, for either grid both orders one and
two were quite competitive.We thus chose order one to be
the overall best estimate. This is also in reasonable agree-
ment with the conclusion of Framstad et al. (1997).

All statistical analyses reported in this paper were done
using built-in and user-de¢ned functions in S-plus
(Venables & Ripley 1994).

(b) Nonlinearity in periodic £uctuations of microtine
rodents

Whenever linearity is rejected, alternative nonlinear
models must be speci¢ed. There are several ways of
dealing with observed nonlinearity in ecology (May 1986;
see also Tong 1990, 1995; TjÖstheim 1994). Part of the
nonlinearity may be dealt with by expressing the net
growth rates as functions of log-transformed abundances
(Gompertz 1825). Such log-transformation is also
appropriate in modelling population dynamics due to the

multiplicative nature of such population dynamic
processes (Williamson 1972; Stenseth et al. 1996b). More-
over, the log-transformation stabilizes the variance (Sen
& Srivastava 1990; Stenseth et al. 1996a,b).

Since the performance of individuals in the population
may be qualitatively di¡erent during the pre-peak phase
compared with the post-peak phase (Krebs 1978, 1996;
Mihok & Boonstra 1992), a threshold approach (cf. Tong
1995) may be applicable (see also Framstad et al. 1997).
Therefore, here we employ threshold autoregressive
statistical models (TAR models; originally introduced by
Tong (1978)).

(c) ContinuousTAR modelling
Framstad et al. (1997) used a non-continuous threshold

model (a self-exciting threshold autoregression model
(SETAR), which is a piece-wise linear autoregressive
model; see, for example, Tong (1983, 1990)). A non-
continuous formulation may be supported if the threshold
lies in a region of the state space for which there are few
observations. However, many population models assume
continuous rate functions (e.g. Edelstein-Keshet 1987;
Steneth & Chan 1998). We therefore extend the study of
Framstad et al. (1997) by using a new statistical approach,
continuous TAR models (Chan & Tsay 1998). Continuous
TAR models are additive models (Hastie & Tibshirani
1990) and are thus special cases of multivariate adaptive
regression splines (Friedman 1991; Lewis & Stevens 1991).
From a statistical point of view, the continuous TAR
model ènjoys' the property that under suitable conditions
estimators, including the thresholds, are asymptotically
normal so that standard statistical techniques on
con¢dence intervals and hypothesis testing are applicable.
The SETAR model, however, provides more £exibility in
¢tting data, but requires greater skill in model identi-
¢cation. The analyses based on the two di¡erent statistical
models provide similar conclusions and interpretations,
thereby suggesting the generality of the conclusions.

Our basic model formulation is a continuous
TAR(2;1,1) including a lower and an upper regime (see
equations (1) below). (Note that the notation SETAR (m;
p1: p2, : : :, pm) stands for a SETAR model with m regimes
and the order of the jth regime equals pj. The notation for
a continuous TAR (m; p1: p2, : : :, pm) has a similar
meaning for the continuousTAR models.)

rt � a�
c(rtÿ1 ÿ �)� "(ÿ);t if (rtÿ1 ÿ �)40

k(rtÿ1 ÿ �)� "(�);t if (rtÿ1 ÿ �)40,
(1)

8<:
where a is a ¢xed parameter common to both regimes,
and c and k are parameters referring to the lower and
upper regimes, respectively; � is a threshold parameter
separating the two regimes. Stochasticity (or dynamic
noise), "(.);t , is introduced as a sequence of independent
random variables with mean zero and ¢xed variance,
� 2

(.). Statistically speaking, piece-wise linear auto-
regressive models are almost as easy to ¢t as linear
autoregressive models, and the statistical properties of the
sample estimates of unknown parameters are quite well
developed (Tong 1990; Chan & Tsay 1998).

There are several advantages of a continuous TAR
model over Framstad et al.'s (1997) SETAR model: (i) the
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Figure 1. The time-series studied. (a) and (d) depict the two time-series (grids H and M, respectively) of yearly growth rates
(rt � ln(Nt=Ntÿ1) � ln(Nt)ÿ ln(Ntÿ1) � nt ÿ ntÿ1, standardized to mean zero and standard deviation one; see main text for further
de¢nitions). The raw periodograms (on the scale of 10 log10 where the unit is decibels; Venables & Ripley 1994, p. 357) for the
two (mean-deleted) series are given in ¢gures (b) and (e); used bandwidth is equal to 0.012, and the 95% con¢dence intervals
of the spectrum values (in decibels) for both grids H and M are obtained by shifting the interval (75.88, 17.57) by the
corresponding periodogram estimates. The smoothed periodograms (again on the scale of 108log where the unit is decibels) for
the two series are given in ¢gures (c) and ( f ); used bandwidth is 0.043, and the 95% con¢dence intervals of the spectrum values
(in decibels) for both grids H and M are obtained by shifting the interval (73.69, 6.46) by the corresponding periodogram
estimates. The smoothing is done using the S-plus function spectrum with the span of the modi¢ed Daniel window speci¢ed
as in c(3,3) (for details, see Venables & Ripley (1994), ch. 14; Bloom¢eld (1976), pp. 173^176). That is, the (log-) smoothed
periodogram is obtained by smoothing the (log-) raw periodogram values using a moving average scheme with weights 1,4,6,4,1.
The width of the centre mark on the 95% con¢dence interval indicator indicates the bandwidth. The smoothed spectrums of the
two grids are similar in shape, although the peak of grid M is higher; hence the cyclical structure in grid M is more pronounced.
This serves as another indicator of the common dynamics enjoyed by the two processes (cf. formal tests for common dynamics
reported in ½ 4).



continuous TAR model has a built-in continuous
conditional mean function which may be appropriate
from ecological considerations; and (ii) statistical infer-
ence of the continuous TAR model may be tested via
more or less classical techniques. The continuous TAR
model provides less £exibility compared to the SETAR
models, however. If the true model is a continuous TAR
model (or an appropriate approximation, as is the case
for the Maynard Smith & Slatkin (1973) model; see also
Stenseth & Chan (1998)), then the SETAR ¢t and the
continuous TAR ¢t must be similar. The converse is not
true, however. The similarity of the ¢tted models (see ½ 4)
suggests that the continuity assumption is appropriate in
our case.

4. STATISTICAL RESULTS

The statistical analysis indicates that a continuous
threshold model of order one provides a better ¢t than a
linear autoregressive model (as guided by the Akaike
information (AIC) criterion (Tong 1990), under which
AIC�72 ln(maximum likelihood)+2(number of para-
meters), and where minimum values indicate best ¢t:
continuous TAR(2;1,1) AIC�721.15 versus AR(2)
AIC�717.10 for grid H; and continuous TAR(2;1,1)
AIC�726.34 versus AR(2) AIC�713.34 for grid M).
This is consistent with the nonlinear structure of the data
(see ½ 3). A continuous TAR model of order two with the
threshold in lag one does, however, outperform our

accepted model for grid H (TAR(2;2,2) AIC�724.20
versus TAR(2;1,1) AIC�721.15). As the di¡erence in ¢t
of models of order one and two is quite small, we suggest
that the more parsimonious continuous TAR(2;1,1) model
is appropriate. These conclusions are supported by cross-
validation (see ½ 3). The sample autocorrelation function
of the residuals reveals no further structure; hence, the
TAR structure of the data seems acceptable.We therefore
focus on a continuous TAR(2;1,1) model in the further
analysis of the rt series for lemmings.
The estimated continuous TAR(2;1,1) models for the

two grids (H and M) are summarized in table 1a.
Residual variances, the error terms �2

�.�, for grid H are
larger than those for grid M. For both grids the error
terms are larger for the upper regime corresponding to
the post-peak phase (see below). Observing larger error
terms during the post-peak phase may not be surprising
since several factors might precipitate the crash.

We have studied the robustness of the continuous TAR
model with di¡erent constants added to the original
lemming data before converting them to the standardized
lemming growth rates. We have used these additive
constants: 0.01, 0.04, 0.08 (the `standard'), 0.16, 0.32 and
0.48. By and large, the estimates are fairly robust with
respect to changes in this constant. The estimate of the
parameter k for grid H is the only exception in that it has
larger changes with changes in this constant. However,
this parameter also has a somewhat larger standard error.
Our overall assessment is that the reported results and
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Table 1. Parameter estimates for the threshold autoregressive models for Norwegian lemmings (Lemmus lemmus) at Finse,
Hardangervidda, south Norway

(Model ¢tting is done by the method of conditional least squares. The analysis of the SETAR model in (b) is redone for this
paper, but the results are consistent with Framstad et al. (1997). Numbers in parentheses are standard errors for the given
estimates. Number of years in the various regimes represents the number of observations falling in the respective regimes.)

(a) Analysis of the continuous TAR (2;1,1)-model (see the model given by equations (1))

number of years RMS AIC

lower upper
population � a c k regime regime � 2

(1) � 2
(2)

grid H 0.46 (0.14) 0.76 (0.22) 0.29 (0.14) 72.72 (0.53) 14 10 0.23 0.41 721.15
grid M 0.18 (0.20) 0.86 (0.18) 0.58 (0.16) 71.83 (0.38) 14 10 0.17 0.37 726.34
pooleda

estimate 0.43 (0.12) 0.81 (0.15) 0.38 (0.11) 72.44 (0.34) 31 17 0.26 0.37 751.15

(b) Analysis of the SETAR (2;0,1)-model (see the model given by equation (2))

number of years RMS AIC

lower upper
population � a(7) a(+) k regime regime � 2

(1) � 2
(2)

grid H 0.10 0.40 (0.14) 2.04 (0.52) 72.74 (0.54) 13 11 0.24 0.38 721.27
grid M 0.05 0.20 (0.10) 1.37 (0.27) 71.98 (0.29) 11 13 0.10 0.31 732.39
pooleda

estimate 0.25 0.40 (0.10) 1.96 (0.35) 72.53 (0.33) 29 19 0.28 0.33 749.98

aPooled estimates were derived by minimizing the combined conditional least squares objective function; tests of null hypotheses of
common dynamics (continuousTAR) and common parameters (SETAR) could not be rejected.



conclusions are not critically dependent on the choice of
the additive constant.
We have tested for identical parameters of the

continuous TAR models for the two grids (the s.d.s
excluded) and found no reason to reject the hypothesis of
a common model structure (�2 � 4:74; 4 d.f., p�0.32). A
comparable test of common structure (excluding the
thresholds) for the SETAR models for the two grids gave
similar results (�2 � 2:84; 3 d.f., p�0.5). The latter test
should be interpreted with caution as the reported p value
is correct only if the dynamics is discontinuous at the
threshold (Chan & Tsay 1998). Pooled estimates are given
in table 1. In the case of continuous TAR models with
homogeneous Gaussian noise, the above test for common
model structure is asymptotically equivalent to the likeli-
hood ratio test (see Chan et al. (1998) for relevant discus-
sions). Hence, these tests for common model structure
should be reasonably powerful. Further studies are,
however, needed to study their ¢nite-sample behaviour.

Based on the AIC values, it appears that the continuous
TAR model and the general SETAR model (equation (2)
below) ¢t the rt series from grid H almost equally well.
The SETAR model outperforms the continuous TAR
model for grid M, but the main gain seems to come from
the lower regime. For the pooled data, the continuous
TAR model outperforms the SETAR model. Hence, the
continuous TAR model for the rt series is quite competi-
tive compared with the SETAR model.

5. THE DYNAMICS OF THE THRESHOLD MODELS

The class of continuous threshold models used in this
paper is known to be rich in dynamic behaviour, ranging
from limit points via limit cycles to chaos (Lim 1992a^ c).
Here we explore the model structure we found appropriate
for the lemmings at Finse. We also evaluate the dynamic
behaviour of the SETAR type of model originally reported
by Framstad et al. (1997). Such dynamic analysis is usually
done on a priori models not directly based on empirical
data. The value of the following analysis is that the basic
model is deduced on the basis of observed population
dynamics changes. As part of our analysis, we investigate
the e¡ect of stochasticity.

(a) The original SETAR model
Framstad et al. (1997) found the following non-

continuousTAR model:

rt �
a(ÿ) � "(ÿ);t if (rtÿ1 ÿ �)40

a(�) � k rtÿ1 � "(�);t if (rtÿ1 ÿ �)40,
(2)

8<:
where the parameter estimates are given in table 1b.

The model given by equations (2) is depicted in ¢gure
2a; the skeleton (the autoregressive model with stochastic
dynamic noise suppressed; Tong (1990)) is characterized
by a clear limit cycle (Framstad et al. 1997). Figure 2b
summarizes the full description of the dynamic properties
of this model. Superimposed on the parameter space
given in ¢gure 2b are the point-estimates together with
their combined 95% con¢dence envelopes. As can be
seen, the point-estimates for both grids fall within the
three-period region of the parameter space. The

con¢dence region for grid H is wider than that for grid
M, but both cover a wide variety of dynamic behaviour.

(b) The continuousTAR model
Figure 3 summarizes the dynamic behaviour of the

family of models corresponding to the model de¢ned by
equations (1). Figure 3a illustrates the model as such.
Figure 3b shows the dynamic behaviour of the model.
This diagram summarizes the results of a complete
stability analysis of continuous TAR models. Figures 3c
and 3d show the dominant period for various parts of the
parameter space, both for the deterministic case (the
skeleton), and for the stochastic model (the skeleton plus
dynamic noise; see equations (1)).

As can be seen from ¢gure 3b, the point-estimates for
grid M fall marginally within the region with chaotic
dynamics, whereas the point-estimates for grid H fall
within the region with clear periodic oscillations. For
both grids, a substantial part of the con¢dence region
falls within the two-period region as well as within the
chaotic region; the con¢dence region for grid H also falls
within the three-period region.
Adding stochastic dynamic noise (¢gures 3c^d), we

obtain a somewhat di¡erent pattern, which is easier to
relate to the observed dynamics. Depending on the level
of noise, a period of three to four years for grid M is
entirely plausible. However, for grid H a somewhat
shorter period is to be expected, as judged by the
analysis of the skeleton. The periods for the TAR models
are estimated to be 2.90 and 3.57 for grids H and M,
respectively. The skeleton for the pooled TAR model has
a limit cycle with period 2.00.

While the point-estimates of the relevant parameters
fall marginally into the chaotic region, there is always a
strong periodic component in the predicted dynamics.
Under the in£uence of stochasticity, there is still a clear
periodicity of three to four years, higher than the deter-
ministic case, but within the range of observed periodici-
ties in the data. The estimated residual variance (� 2

�.�) is
around 0.2 to 0.4 (table 1a). This suggests that the domi-
nating periods illustrated in the lower-left diagrams of
¢gures 3c,d apply (i.e. the panels with � � 0:5).
The impact of stochastic dynamic noise on the

geometry of the attractors of the skeleton is in itself inter-
esting. This was discussed byTakens (1994), as recorded in
the discussions of Tong (1995), and needs further attention
beyond the present paper. Here we only provide some
preliminary re£ections.

When k0( � ÿk) � 0, a £at spectrum occurs (all
periods between two and �1 are present in equal
strength). As k 0 increases to one, more periods in the vici-
nity of two are introduced. Such periods cannot be
observed in a purely deterministic system and are a result
of what is called `stochastic resonance' (cf. Rand &
Wilson 1991; Dykman et al. 1993; Nicholis 1993; Nicholis et
al. 1993;Wiesenfeld & Moss 1995).
Outside the ¢xed-point region of the parameter space,

the `shadowing lemma' prevents other periods than the
deterministic ones from dominating as long as the amount
of added noise remains small. (The shadowing lemma,
roughly speaking, states that for a well-behaved (i.e.
hyperbolic) dynamical system there exists an exact trajec-
tory of the system without noise which will be arbitrarily
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close to an observed trajectory of the system, now subject
to noise, provided that the noise level is su¤ciently small
(Peitgen et al. 1992).) To distinguish this from the stochastic
resonance de¢ned above, we call this `deterministic reso-
nance'.

The ¢xed-point case indicates that stochastic resonance
may also occur in the periodic and chaotic cases,
although these resonances are less well understood, and as
long as a small amount of noise is added in each case,
they are hardly observable. In the two-period case we
might, as an example, apply the stochastic resonance
analysis for the ¢xed point case to the second iterate of
the map equations (1), since it has two ¢xed points
instead of a two-period orbit. As noise is added, it predicts
high-periodic stochastic resonance as the two-period
point emerges in the vicinity of k 0 � 1, and period four
stochastic resonance as the two-period orbit disappears
with increasing k 0. The dominating period seems to
increase somewhat as noise is added.

We should, however, not go too far in interpreting
these results. Consider a linear stationary AR(2) model.
Switching o¡ the noise, we have a ¢xed point for the
`skeleton' and its non-normalized power density function
is identically zero. However, switching the dynamic noise
(however small) back on, the spectral peaks may be
located anywhere between 0 and �, depending on the AR
parameters. As a result, we should not expect to see the
peak frequency as a smooth function of the noise level.

Nevertheless, since all ecological systems are in£uenced
by a combination of deterministic and stochastic
components, we suggest the interaction between these
components to be an important topic of study within the
¢eld of ecology, a suggestion earlier made by Sugihara
(1994) and recently emphasized by Grenfell et al. (1998).
Indeed, with reference to the lemming population
dynamics, we believe that our analysis suggests, for the
¢rst time so far as we are aware, that an important aspect
of the underlying processes of the cycle may be found in
this very interaction.

6. INTERPRETING THE MODELS BIOLOGICALLY

(a) Interpreting the two regimes
Despite their structural di¡erences, both TAR and

SETAR models provide similar dynamics under the in£u-
ence of stochasticity (resembling observed lemming
dynamics). These models are based on our analysis of
growth rates rt and are formulated as piece-wise linear
terms for two separate growth regimes (i.e. (rtÿ1 ÿ � )40
and (rtÿ1 ÿ �)40). As discussions on small rodent
dynamics is usually framed in terms of increase, peak,
crash and low density, we need to be explicit about the
relationship between model regimes and phases of the
three to four year population density cycles of lemmings.
(Note here that rt � nt ÿ ntÿ1 describes the population
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Figure 2. Mathematical analysis of the Framstad et al. (1997)
model for the parameter space de¢ned by the � and k 0

parameters, where � � (a(ÿ)ÿ �)=(a(�)ÿ �ÿ k 0�) if
(a(�)ÿ�ÿk 0�) 6� 0 and k 0 � ÿk (cf. equation (2), table 1b).
(a) depicts the model for parameters � � 0:5 and k 0 � 3
(roughly corresponding to the estimates for grid H): the dots
show the data points; (b) shows the results of the analysis.
Within the parameter space, the 95% con¢dence region
corresponding to the estimates for grid H, grid M and pooled
variables (broken curves) are represented as ellipses, with the
respective point-estimates indicated by open circles. The
various regions in the parameter space are as follows: (a) The
¢xed point rt � � attracts all solutions; (b) and (c) two
coexisting attracting ¢xed points; (d) the ¢xed point rt � �
attracts some solutions whereas the rest tend to �1; (e) all
solutions tend to �1; (f ) the ¢xed point rt � 1=(1� k 0)
attracts all solutions; (g) a globally attracting two-periodic
solution exists (this solution bifurcates into a four-periodic
solution as indicated by the number in the ¢gure, and later
to a six-periodic solution, etc.); (i) a globally attracting

(Continued ) three-periodic solution exists (this solution
bifurcates into a ¢ve-periodic solution, which bifurcates into a
seven-periodic solution, etc.); and (k) a two-periodic attractor
and an attracting ¢xed point solution coexist. Notice that the
dynamic behaviour of the model of Framstad et al. (1997) is
fully explored and completely described in (b).
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Figure 3. The population dynamicsmodel corresponding to the continuousTARmodel estimated in this paper is shown in (a); the dots
show the data points. A change of coordinates removes the parameters a and � from themodel (equations (1)) and its properties of
population dynamics can be depicted in a (c, k 0) parameter space in (b).Within this parameter space, the 95%con¢dence regions
corresponding to the estimates for gridH, gridMandpooled variables (broken curves) are represented by ellipses (the respective point-
estimates are indicated by open circles). The various regions are as follows: (a) all solutions explode to�1; (b) some solutions explode to
ÿ1; (c) a globally stable ¢xed point; (d) some solutions tend to the ¢xed point, the rest toÿ1; (e) unbounded oscillations; (f ) at least
locally stable two-periodic £uctuations exist (regions corresponding to three- and four-periodic locally stable solutions are denotedwith
three and four, respectively); (h) almost all solutions are attracted to a bounded chaotic solution; (i) almost all solutions startingwithin a
special interval are attracted to a bounded and chaotic solution (solutions outside the interval tend toÿ1); and (k) almost all solutions
tend toÿ1. Figures (c) and (d) each depict the dominating period along increasing values of the k 0parameter for the point-estimate of c
corresponding to gridH (¢gure c) and to gridM (¢gure d), respectively.Within each panel, di¡erent levels of environmental stochasticity
(�) is assumed (notice that the estimated levels correspond to � � 0:5; numbers within the diagrams along the top indicate the domi-
nating period, whenever applicable, in the deterministic case (C indicates chaos); this dominating period is also shown as the curve
within each diagram; the clouds with the dots correspond to the distribution of the found dominating periods for the corresponding
system towhich environmental (and dynamic) noise is added. As can be seen, the period in the stochastic case is generally higher than the
corresponding period for the deterministic analogue. The diagrams shown in (c) and (d) present the results of Fourier analysis of the
point-estimate of gridH, for various levels of noise (� � 0:0, 0.2, 0.5, 1.0). In the deterministic case (� � 0:0), gridH is represented by a
stable period two-limit cycle (resonance indicated by a broken line), and the analysis of our paper says that as noise is added,more
periods in the vicinity of four (resonance indicated by a dotted line) should be added the periods in the vicinity of1. As the level of noise
is increased to� � 2:0 periods other than the deterministic period two are visible, but the strengths of these periods are not comparable to
the deterministic period. A further increase in the noise level, � � 0:5, the ¢gure shows that other resonances than the deterministic ones
become comparable to the deterministic resonance.However, the predicted stochastic resonance is not yet comparable with other not
predicted resonances.When the level of noise is increased to� � 1:0, neither the predicted stochastic resonance, nor the predicted deter-
ministic resonance dominates the Fourier spectrum.The deterministic resonance is visible, but the stochasticity has destroyed the
stochastic resonance before it became visible as a dominating period.



changes occurring through the year from the previous
autumn to the current autumn. The density changes
leading up to the previous autumn (i.e. rtÿ1) determine
the relevant model regime for rt.)

Focusing on the yearly density changes (rt), a three-year
density cycle can be divided into the pre-peak, peak and
post-peak years; population changes leading up to these
years would be, respectively, low growth, rapid increase
and crash. Due to the in£uence of population changes
during the previous year (rtÿ1), the lower regime of the
models ((rtÿ1 ÿ �)40) corresponds to the low growth
leading up to the pre-peak year. Similarly, the upper
regime ((rtÿ1 ÿ �)40) corresponds to the crash leading to
the post-peak year. The rapid population increase leading
up to the peak year will be associated with the upper
regime if the growth rate leading up to the pre-peak year
is greater than the threshold. Using actual observations
from our two grids at Finse, we may classify years to
growth regimes based on the estimated thresholds, and
compare this to the general cyclic pattern of pre-peak,
peak and post-peak years. For both grids, there is clear
association between the lower regime and the pre-peak
phase, and between the upper regime and the post-peak
phase (cf. table 2). Years of peak density were primarily
associated with the upper regime for grid H, but with the
lower regime for grid M.This implies that the growth rate
up to the pre-peak year (i.e. rtÿ1 with respect to the peak
year) is substantially higher on grid H than on grid M,
relative to the threshold for each grid (which is more than
twice as large for grid H as for grid M).
The low, but positive, growth rate of the lower regime

(leading up to the pre-peak year) is consistent with
a recovery from food deterioration as well as from a
predator-related suppression of the population after a
crash. The rate of this recovery is indicated by the steep-
ness of the transition between the two regimes. In the
continuous TAR model (equations (1)), this is given by
the parameter c; the smaller it is, the faster and more
pronounced is the transition between the two regimes.
(Recall that rtÿ1 ÿ �40 in the lower regime.)

The population dynamics (¢gures 2 and 3), resulting
from the derived skeletons, yield limit cycles, ¢xed points
and chaotic regions, all of which are to some extent
included within the con¢dence envelopes for the estimated
parameter values of the models.Within the region of para-
meter space characterized by a limit cycle, the period, for
the estimated parameters, is rather low (below four).
Within the chaotic region there is also almost periodic
oscillations, with generally low and rather stable period.
Adding stochastic noise, the model periods become
comparable to the observed periods for the series.

The threshold structure of our model is particularly
convenient for focusing on phase shifts in the perfor-
mances of the animals constituting the population during
the di¡erent phases (Chitty 1960, 1967, 1996; Krebs 1978,
1993, 1996). The phase-dependence argument rests
primarily on the existence of the threshold itself.

We expect the di¡erences in performance of the animals
from years corresponding to di¡erent phases, to be
re£ected by di¡erences in demographic parameters.
Acquiring good demographic data to characterize these
regimes is problematic due to the numerical dominance of
catches from the peak years and the reciprocal paucity of
data from other years of the density cycle. Nevertheless, we
have employed the threshold values of the continuousTAR
models for the respective grids and classi¢ed the years
based on observed changes in the autumn abundance of
lemmings at Finse. For our data, the proportion of sexually
mature males and females (classi¢ed by external charac-
teristics) can then be compared for the years associated
with the two regimes (only autumn catches are included;
to avoid the e¡ects of including juveniles, animals below a
body weight of 30 g have been deleted). Based on these
data, males tended to have a higher degree of sexual
maturity during the upper regime (49% mature versus
35% mature during the lower regime; both grids
combined, N�1237, (�2-test, p50:0001). Females on the
other hand had a marginally higher frequency of sexual
maturity during the lower regime (79%) than during the
upper regime (70%) (both grids combined, N�1001,
(�2-test, p�0.003). A tentative interpretation is that males
keep up their rate of sexual maturity well into the popula-
tion crash. Females, on the other hand, tend to mature
earlier during the slow population increase following the
crash, but also reduce their sexual activity somewhat
earlier during the peak and into the crash (but note that
females tend to have a high sexual maturity rate, at least
70%, for both regimes). Females, in particular, may thus
be seen to carry the population's transition from the
crash to the increase. However, due to the dominance of
data from a few peak years and the sensitivity to how
these years are classi¢ed to either lower or upper regimes,
considerable care is warranted in the interpretation of
these results. In particular, note that due to di¡erences in
the classi¢cation of peak years to lower and upper
regimes between the two grids (cf. table 2), the di¡erences
in maturity between the regimes are less pronounced for
males on grid M and females on grid H. Ideally, we
should base the comparison on characteristics of demo-
graphic performance of individuals in each year of the
respective regimes. Regrettably, our own catch data are
too skewed to make such a comparison meaningful.
Certainly, such data are badly needed.
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Table 2. Distribution of years of population density cyclic
phases versus model regimes

(Actual autumn lemming catch data from Finse, south
Norway, are employed. Years are classi¢ed as pre-peak, peak
and post-peak, according to the general pattern of the density
cycle and to the growth rate regime based on yearly density
changes relative to the threshold of the continuous TAR
model. The phase of low years of the occasional four-year
cyclic periods has been deleted from the comparison. Figures
in bold represent matching consistencies with the biological
interpretation of the statistically deduced regimes presented in
the main text.)

cyclic phase

regime pre-peak peak post-peak

grid H
lower 7 1 1
upper 0 5 7

grid M
lower 7 5 1
upper 0 1 7



(b) A possible scenario
The upper regime of the statistical models may be seen

as consistent with a mechanism based on predation (or
other trophic interactions; see Framstad et al. 1997). The
strength of the trophic interaction would then be charac-
terized by the parameter k. Ecologically, population
growth from the pre-peak year to the peak year may be
possible because any large predator population has not
yet had su¤cient time to build up, while the crash
following the peak year is easily interpreted as being
mediated by heavy predation. The density-dependent
structure of the model (equations (1)) is consistent with
much of the current Fennoscandian literature on £uctu-
ating microtine rodent populations focusing on predation
as the key factor (Hanski et al. 1991, 1993; Hanski &
Korpima« ki 1995; Stenseth et al. 1996b; Turchin & Hanski
1997; see also Hansson 1987). Our analysis suggests,
however, that in our case predation may only be an
important factor during the post-peak phase. Such an
interaction between lemmings and predators, specializing
on rodents, is important in a dynamic and interactive
sense. It will account for the order-two structure of the
model of the time-series on abundance (Framstad et al.
1997; cf. Stenseth et al. 1996b), this being compatible with
an order one for the rt series.

On the basis of this tentative interpretation, our
derived threshold model may be considered consistent
with the following c̀ombined phase- and density-depen-
dent scenario'. This scenario is not new. However, we
believe we are the ¢rst to base such a scenario on a
consistent statistical pattern. Neither does our analysis
exclude other scenarios. Nevertheless, the proposed
scenario may be helpful when trying to integrate available
data, as well as serving as a basis for suggesting further
experimental studies.

(i) The characteristics for the lower regime (i.e. the
pre-peak phase) may be seen to correspond to the
smaller constant term in the model of Framstad et
al. (1997). Growth may be low for at least one of
the following reasons (or a combination of them):
food depletion and reduced quality (Batzli 1992;
Agrell et al. 1995; Moen et al. 1993; Virtanen et al.
1997); or some form of maternal e¡ect (Boonstra &
Boag 1987; Mihok & Boonstra 1992; Boonstra 1994;
Boonstra & Hochachka 1997). On the basis of
currently available information, it is di¤cult to
assess which of these is more likely (see also
Boonstra et al. 1998).

(ii) The transition between the lower regime and the
upper regime coincides with the dynamic transition
between the pre-peak and the post-peak phases.
Such a transition may possibly be due to intrinsic or
extrinsic processes. It would be intrinsic if some sort
of demographic transition occurs (cf. Boonstra 1994;
Tkadlec & Zejda 1998). It would also be intrinsic if
(i) some genetic changes occur (Chitty 1960, 1967);
or (ii) this transition occurs as a result of recovery
of the vegetation (which might have been over-
grazed during the peak phase, as may be the case
in our system; see, for example, Moen et al. 1993).
On the basis of currently available information, it is
di¤cult to assess which of these is most likely.

(iii) The nature of the crash for this model (equations
(1)) may be seen to be due to some trophic inter-
action, such as predation by rodent specialist
predators (Henttonen 1987; Henttonen et al. 1987;
Erlinge et al. 1983, 1984; Erlinge 1987; Norrdahl
1995) or interactions with the food supply (Batzli
1992). Much current evidence favours the predation
alternative (see, for example, Stenseth et al. 1996b).

Focusing only on predation (as is done in much of the
current literature on microtine population ecology)
excludes the consideration of potentially important
dynamic interactions between lemmings (and other
microtine rodents) and vegetation. Within our scenario,
overgrazing of the vegetation might, however, play some
role in explaining the syndrome of low maximal growth
during the post-peak phase. Moen et al. (1993) did, for
instance, observe that there is a strong impact of
lemmings on the plants during the peak (see also Kalela
et al. 1961, 1971; Henttonen & Ja« rvinen 1981; Oksanen &
Oksanen 1981; Oksanen 1993). Moen and co-workers
showed, however, that the recovery of the plants is
evident only immediately after the decline, especially
amongst the mosses (which constitute a major part of the
diet of lemmings; see, for example, Hansson 1969, 1985;
Kalela & Koponen 1971; Tast 1991; Batzli 1993).
In summary, it thus seems that the pre-peak phase year

may be due to destruction of the food supply by over-
grazing during the preceding peak year. The transition
from the lower regime to the upper regime may be due to
a short-term lag in the recovery of the vegetation. The
crash may be due to heavy predation by predators specia-
lizing on lemmings and voles. This would then be charac-
terized as a multifactorial view of the rodent cycle,
somewhat resembling the view of, for instance, Lidicker
(1988, 1991). Our version is, however, testable through
experimental manipulations (Gaines et al. 1991) involving,
for instance, predator exclusion (during the post-peak
phase of the lemming cycle) and food addition (during
the initial part of the pre-peak phase of the cycle). On the
basis of our analysis it seems particularly worthwhile to
obtain a better grasp of the combined e¡ects of dynamic
trophic interactions and phase shifts of the individuals
constituting the population. Furthermore, understanding
why individuals seem to perform worse during the initial
post-peak phase than during other parts of the cycle is
certainly of critical importance. We expect that adding
high-quality food would raise the growth rate of the
lower regime, making the constant term higher and
possibly the lag-one term di¡erent from zero (for the
SETAR model) and £atter (for the continuous TAR
model). Excluding predators would reduce the slope of
the upper regime. Performing such experiments would be
di¤cult. However, taking a comparative approach using
di¡erent populations may indeed provide the required
information.

We further need to decouple phase and density e¡ects
in a systematic design. A series of introduction experi-
ments in which individuals from a given phase of the
cycle are introduced into large enclosures at variable
densities might indeed be rewarding. The resulting
dynamics, corrected for the fence e¡ect (Krebs et al. 1969;
Krebs 1992), should allow us to partition the variability
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in reproduction and mortality which is caused by density-
and by phase-dependencies. Similar types of experiments
have been done by, for instance, Ostfeld & Canham
(1995) and Johannesen & Ims (1996) but on Microtus
populations with no clear cyclic structure. Similar work is
badly needed for lemmings: the classic cyclic vertebrate
species of northern regions.

Finally, in order to understand the e¡ect of statistical
resonance we further need to perform such experiments
under the in£uence of di¡erent levels of environmental
stochasticity. For this purpose, a comparative approach
seems preferable.

7. CONCLUSION

A basic philosophy of our work has been to use the best
available and most appropriate statistical tools.
Speci¢cally, we use these statistical tools for two purposes:
(i) to gain insights into some aspects of the biological
process and (ii) to highlight areas where further bio-
logical experiments and ¢eld work may be necessary
before a fuller understanding of the biological process is
possible.

We are left with the conclusion that the Norwegian
lemmings in the mountains of south Norway have
density-dependent-dynamics (including both direct and
delayed density-dependence) which is also phase-
dependent. This supports our previous analysis (Framstad
et al. 1997). Here we have extended that analysis in several
respects. Most importantly, we have conducted ecological
stability analyses of both the original model of Framstad
et al. (1997) and the continuous TAR model derived here,
emphasizing the interplay between deterministic and
stochastic processes. Thus, we have coupled the derived
model dynamics more directly to the observed lemming
dynamics.

Seeing the lemming and microtine cycle as a
combined phase- and density-dependent structure might
indeed help us forward. Dramatically changing condi-
tions for the animals constituting the population at any
given time (in any particular phase of the cycle) may
cause the proposed phase-dependent nonlinearity. We are
convinced that an integrated approach like the one we
have taken in this paper, using both statistical and
mathematical modelling coupled with empirical studies,
will be needed to unlock the long-lasting enigma of the
lemming population cycle. At the conceptual level, there
is substantial evidence for a combined hypothesis, where
both trophic dynamic interactions and phase-shifts in the
performance of the individuals may represent keys to
unlock the lemming cycle. Finally, a major conclusion of
this paper is that we also need to understand the inter-
action between environmental and nonlinear deter-
ministic processes.
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