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Within a second virial theory, we study bulk phase diagrams as well as the free planar isotropic-
nematic interface of binary mixtures of nonadditive thin and thick hard rods. For species of the
same type the excluded volume is determined only by the dimensions of the particles, whereas
for dissimilar ones it is taken to be larger or smaller than that, giving rise to a nonadditivity
that can be positive or negative. We argue that such a nonadditivity can result from modelling
of soft interactions as effective hard-core interactions. The nonadditivity enhances or reduces the
fractionation at isotropic-nematic (IN) coexistence and may induce or suppress a demixing of the
high-density nematic phase into two nematic phases of different composition (N1 and N2), depending
on whether the nonadditivity is positive or negative. The interfacial tension between co-existing
isotropic and nematic phases show an increase with increasing fractionation at the IN interface, and
complete wetting of the IN2 interface by the N1 phase upon approach of the triple point coexistence.
In all explored cases bulk and interfacial properties of the nonadditive mixtures exhibit a striking
and quite unexpected similarity with the properties of additive mixtures of different diameter ratio.

PACS numbers: 61.30.Cz, 61.30.Hn, 05.70.Np, 68.08.Bc

I. INTRODUCTION

In his paper about the isotropic-nematic (IN) transi-
tion in solutions of monodisperse, rod-like particles that
interact through a hard, steric repulsion, Onsager briefly
discussed a possible extension of his results to polydis-
perse systems1. Since then, a tremendous amount of
work has been devoted to the study of the influence of
polydispersity on the phase behavior of such hard-rod
fluids, both for the case where this polydispersity is of
the quenched type2,3 and for where it is of the annealed
type4,5. Focusing on the former, even the simplest (bi-
nary) mixtures consisting of long hard rods that differ
only in length or diameter exhibit quite nontrivial phase
diagrams. In addition to the pure isotropic and nematic
phases of various composition and regions of their coex-
istence, the high-density nematic phase can demix (and
possibly remix) into two nematic phases of different com-
position (denoted N1 and N2). The reason for the ex-
istence of an IN transition in binary mixtures is the
same as that in a monodisperse hard-rod fluids, being
a competition between orientation entropy and entropy
of packing1,6. In contrast, the nematic-nematic demixing
does not involve changes in excluded volume (i.e. packing
entropy), but rather a competition between orientation
entropy and entropy of mixing7. Another interesting fea-
ture is that for sufficiently large size disparity, the two
distinct nematic phases do not remix even at arbitrary
high pressure9.

Unfortunately, it is quite difficult to compare these the-
oretical findings with results obtained from actual exper-
iments. Although rod-like particles can be synthesized
chemically in various ways6, typically their size distribu-

tion is mono- or bi-disperse only to a first approxima-
tion. By contrast, suspensions of rod-like viruses such
as tobacco mosaic virus, M13, pf1 and fd are character-
ized by a high degree of monodispersity, and are there-
fore attractive model systems, despite the complicating
factors associated with their fixed physical dimensions,
their charged nature and the fact that they are not ac-
tually infinitely rigid but exhibit some degree of bending
flexibility.

Recently, however, experimental procedures have been
developed that allow one to modify the length and the
diameter of these viruses10, which opens the possibility
to form binary mixtures of a well-defined bidispersity. In
particular, one of the methods is based on altering the
effective diameter of the fd-virus by coating it with the
polymer polyethylene glycol (PEG). Studies of such bi-
nary mixtures of thin and thick rods have revealed coexis-
tence regions of the isotropic and different nematic phases
(IN2 and IN1), as well as a nematic-nematic coexistence
region (N1N2) and an IN1N2 triple point11. Although
some of the gross features of this experimentally deter-
mined phase diagram are in agreement with theoretical
predictions based on an extension of Onsager’s second-
virial theory to binary mixtures of hard rods12,13, some
of the experimental and theoretical findings turn out to
be in sharp contrast with each other.

According to the theory, mixtures of thin rods (with
a diameter D1) and thick ones (diameter D2) of equal
length L should exhibit a spindle-like IN coexistence
without any nematic-nematic demixing for diameter ra-
tios d = D2/D1 < 3.8. Experiments, however, point at a
broad N1N2 coexistence for a diameter ratio as small as
d ∼ 2.011. Furthermore, in the interval 3.8 < d < 4.29
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the single nematic phase demixes according to the the-
ory into two nematic phases N1 and N2 of different com-
position, whilst remixing takes place at sufficiently high
total density (or osmotic pressure), that is, above an up-
per critical (or consolute) point. Experiments, however,
reveal a lower consolute point that closes the N1 − N2

coexistence11, i.e., the N1 −N2 demixing becomes more
pronounced with increasing osmotic pressure.

Possible explanations for these differences may well
be found in the idealisations incurred when modelling
the virus particles as infinitely elongated, infinitely rigid
rods that interact with each other only through additive
hard-core potentials. Indeed, the virus particles are semi-
flexible and charged, as already alluded to. In addition,
the grafted polymer coating is soft and hence compress-
ible, and the length-to-breath ratio of the rods is at best,
say, 50. It is important to recall that the second virial
theory is believed to be exact only in the limit of infi-
nite aspect ratios of the rods6. The impact of a finite
length-to-diameter ratio was recently considered within
an extension of the so-called Parsons-Lee theory to mix-
tures of hard rods14. This theory does reproduce a lower
consolute point for mixtures of thin and thick rods albeit
only if their length (presumed equal) is extremely small.
A lower consolute point has also been predicted for binary
mixtures of semi-flexible hard thin rods of unequal thick-
ness, at least if their persistence lengths and their widths
do not differ by more than roughly the square root of
either persistence length over their contour length15,16.
However, the predicted isotropic-isotropic demixing is
not found in the experiments involving the mixtures of
naked and coated fd virus particles11. The theory15,16

does anyway not strictly apply to this experimental sys-
tem, because of the tacit assumption that the length of
the rods greatly exceeds their persistence length.

In an attempt to shed light on the issue, we focus on the
effects that any nonadditivity of the interactions between
the two kinds of rod might have on their phase behavior.
Such a nonadditivity emerges naturally if one replaces
actual soft rod-rod repulsions by effective hard-core re-
pulsions, characterized by effective hard-core diameters
that in effect are distances of closest approach. As is
well known, the screened-Coulomb interactions between
charged virus particles in an electrolyte solution can be
reasonably approximated by an effective steric interac-
tion with a hard-core diameter that is the sum of the
bare, ”physical” diameter of the rod and an electrostatic
contribution proportional to the Debye screening length
of the suspending medium17. For the interaction between
a pair of polymer-coated virus particles one would have
an effective diameter of the order of the radius of gyra-
tion of the tethered chains8, at least if the Debye length
is much smaller than that.

It is not at all obvious that the effective interaction
length between a bare and a polymer-coated charged rod
should be the linear average of the interaction lengths of
the two separate species, in other words, one would from
the outset expect the interaction within such an effec-

tive description to be non-additive rather than additive.
Indeed, as we shall see below in section II, even highly
simplified model potentials produce non-additive effec-
tive hard-core interactions in mixtures of rods. The level
of nonadditivity may be expressed in a parameter α de-
fined such that the effective hard-core diameter of an un-
like pair of rods can written as 1

2 (D1 +D2)(1+α), where
Dσ is the effective hard-core diameter of the interaction
between two like rods of species σ = 1, 2. For an addi-
tive mixute, α = 0. In this paper, we make plausible by
explicitly considering the steric interactions between the
various types of rod that, even within a simplified model,
α may attain values that can be positive or negative up
to, say, ten per cent. Additional sources of nonadditiv-
ity may be found, say, in electric polarisation effects of
the charges on the polymer coating, but these will not be
considered here.

Although the microscopic origin of nonadditivity is ul-
timately based on the less (α > 0) or more (α < 0)
efficient packing of the mixture compared to the pure
species, we do not attempt to calculate α from a realis-
tic microscopic theory. Having ascertained that α need
indeed not be zero, we treat it as a phenomenological pa-
rameter in a generalised Onsager theory, and investigate
its consequences for the phase behavior of the mixture,
and for the interfacial properties of co-existing isotropic
and nematic phases. As we shall see, both the predicted
phase diagrams and interfacial properties of the isotropic-
nematic interface are very sensitive to values of |α| as
small as a few per cent. Of course, this does not im-
ply that all effects of electrostatic interactions, flexibil-
ity, etc., are accurately or even properly modelled. In
fact, we find that non-additivity cannot explain the exis-
tence of the lower consolute point found by Fraden and
co-workers11.

The remainder of this paper is organized as follows. In
Sec. II we introduce a simple model for polymer-coated
rods, and provide an estimate for typical values of the
nonadditivity parameter α. In Sec. III we introduce
the Onsager-type free energy functional, and derive from
that the basic Euler-Lagrange equations describing the
orientational and density distribution of the rods under
conditions of thermodynamic equilibrium. In Sec. IV we
solve these equations for bulk geometries, and analyze the
structure of a few typical bulk phase diagrams. In Sec. V
we briefly describe a method to solve the Euler-Lagrange
equation for interface geometries of binary mixtures, and
study IN1, N1N2 and IN2 interfaces, the latter in par-
ticular in the vicinity of the bulk IN1N2 triple point. A
summary and discussion of the results are presented in
Sec. VI.

II. NONADDITIVITY OF INTERACTIONS

The physical origin of nonadditivity can be illustrated
on the basis of a simple model for a mixture of bare and
PEG-coated fd viruses11. The bare rods are modelled



3

as rigid hard rods of length L and diameter ∆1 (L À
∆1), and hence the interaction potential between two
bare rods, φ11(r), is given by βφ11(r) = ∞, 0 for r < ∆1

and r > ∆1, respectively. Here, r denotes the shortest
distance between the main axes of the two rods.

The PEG-coated rods are identical to the bare ones,
except that they bear an additional soft layer extending
to a distance ∆2/2 from the axis of the rod, i.e., to a
distance (∆2 − ∆1)/2 from their hard-core surface. We
do not specify the relation between the dimensions of the
tethered PEGs and ∆2 in any detail, but one expects that
(∆2 −∆1)/2 is of the order of the radius of gyration of
the grafted PEG (so we only consider ∆2 > ∆1). We ex-
pect that the soft, repulsive interaction that occurs when
the polymer coating of two rods overlap should be quite
similar to that of overlapping star polymers18. In order
to keep the model as simple as possible, we represent the
interaction of mean force resulting from the presence of a
polymer coating by a square-shoulder potential that is a
function of r alone, and ignore any angle dependence that
might arise in reality. This angular dependence should
be significant only for configurations of rods inclined at
small angles, which bear only a tiny statistical weight
in the limit of large aspect ratios. Note that although
our representation of the soft potential is isotropic, the
virials based on it are anisotropic because the interaction
volumes are a function of the relative orientations of the
rods.

The interaction potential between a bare and a coated
rod, φ12(r), should obviously be identical to the naked-
rod potential φ11(r) if r < ∆1 and r > (∆2 + ∆1)/2.
Within our description, φ12(r) takes on a value different
from that, ε1 > 0, if ∆1 < r < (∆1 + ∆2)/2, i.e., when
the hard-core of the bare rod perturbes the soft outer
layer of the coated rod. It is to be seen as an average
of the actual interaction potential over its range. Our
effective interaction potential between two coated rods,
φ22(r), is more complicated and consists of two shoulders
in between the range of the hard-core repulsion (r < ∆1)
and the noninteracting long-distance regime (r > ∆2).
The first shoulder, for ∆1 < r < (∆1 + ∆2)/2, is such
that φ22(r) = 2ε1, and represents the overlap of the hard
core of the first rod with the polymer layer of the second
one, and vice versa by symmetry. The second shoulder,
for (∆1 + ∆2)/2 < r < ∆2, represents overlap of the two
polymer layers, and is such that φ22(r) = ε2 > 0.

The nature of the polymer chains is such that we ex-
pect their entropy to be reduced more by a penetrating
rigid rod than by another polymer. Indeed, the cross
virial of a rod and a flexible chain is much larger than
the geometric average of the rod-rod and the chain-chain
virials19. For this reason we only consider cases where
2ε1 > ε2. The pair potentials φσσ′(r) between rods of
species σ and σ′ are illustrated graphically in Fig. 1.

It is a straightforward exercise to calculate the second
virial coefficients Bσσ′ averaged over all angles, from the
pair interactions φσσ′(r) given above1,6. In the Onsager
limit L À ∆2 ≥ ∆1, where terms of order L∆2 can be
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FIG. 1: Interaction potentials φ11(r), φ12(r), φ22(r) between
bare-bare (solid), bare-coated (dashed), coated-coated (dot-
ted line) rods, respectively, as a function of the (shortest)
distance r between the axes of the two rods.

ignored, one finds

B11 = (π/4)L2∆1, (1)

B12 = (π/4)L2

(
∆1 +

∆2 −∆1

2
(
1− e−βε1

))
, (2)

B22 = (π/4)L2

(
∆1 +

∆2 −∆1

2
(
2− e−2βε1 − e−βε2

))
.

(3)

These expressions can be used to map the model mixture
of bare and PEG-coated rods onto a mixture of hard rods
with effective hard-core diameters D1 and D2. We choose
D1 and D2 to be such that the like-like second virial
coefficients of the effective hard-core system are identical
to B11 and B22 given in Eq. (1) and (3), respectively,
i.e., we impose that Bσσ = (π/4)L2Dσ. This yields

D1 = ∆1

D2 = ∆1 +
∆2 −∆1

2
(2− exp(−2βε1)− exp(−βε2)).

(4)

One may verify that D2 = ∆2 in the limit that βεi →∞,
as expected. We now also impose that the cross virial
coefficient of the effective hard-core system equals B12

given in Eq. (2). For arbitrary ε1 and ε2 this re-
quires a nonadditivity parameter α such that B12 =
(π/8)L2(D1 + D2)(1 + α), which yields

α =
1

d + 1

[
2 +

2(d− 1)(1− exp(−βε1))
2− exp(−2βε1)− exp(−βε2)

]
− 1, (5)

with d = D2/D1 the effective diameter ratio of the rods.
In Fig. 2 we show the contour plot of the nonadditiv-
ity parameter α as a function of the energy scales ε1
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FIG. 2: Contour plot of the nonadditivity parameter α as
a function of the square-shoulder values ε1 and ε2 for the
effective diameter ratio D2/D1 = d = 3.5. The grey area
denotes the nonphysical region ε2 > 2ε1 (see text).

and ε2 for the effective diameter ratio d = 3.5, which
is the value that we will use in our calculations below;
other values for d produce similar contour plots. The
grey area in Fig. 2 is the regime deemed unphysical,
with 2ε1 < ε2. As one can see, for physically reason-
able values of ε1 and ε2 of the order of kBT both pos-
itive and negative values for α are possible, even when
ε1 > ε2. The crossover from positive to negative nonad-
ditivity takes place, independently from the value of d,
when exp(−βε2) = 2 exp(−βε1)− exp(−2βε1), i.e., when
βε2 ∼ (βε1)2 if βε1 < 1 and βε2 ∼ βε1 − ln 2 if βε1 > 1.
Presuming that both βε1 and βε2 are indeed of the order
unity, we expect |α| to be in the range 10−2−10−1. Such
small deviations from additivity are sufficient to qualita-
tively alter the phase behavior of the rods, as we shall
see next. In our study, we from now on treat α, D1 and
D2 as independent parameters. We investigate both the
bulk and the interfacial behavior of the effectively purely
hard-core system, in which the soft interactions are in-
corporated through the degree of non-additivity α.

III. DENSITY FUNCTIONAL AND METHOD

Consider a fluid of hard cylinders of two different
species σ = 1, 2 of diameter Dσ and equal length L
(Dσ/L → 0) in a macroscopic volume V at temperature
T and chemical potentials µσ. Let r denotes the center-
of-mass coordinate of a rod and ω̂ the orientation of the
long axis. The interactions between the σσ′-pair of rods
with coordinates q = {r, ω̂} and q′ = {r′, ω̂′} are char-
acterized by a hard-core potential, which is the simple
contact potential for rods of the same species (σ = σ′),

whereas for unlike rods (σ 6= σ′) it corresponds to in-
teractions between hard rods of diameter (1 + α)D1 and
(1 + α)D2.

Within the second virial approximation and in the ab-
sence of external potentials, the grand potential func-
tional Ω[{ρσ}] of the one-particle distribution functions
ρσ(r, ω̂) can be written1,6,13 as

βΩ[{ρσ}] =
∑

σ

∫
dqρσ(q)

(
ln[ρσ(q)L2Dσ]− 1− βµσ

)

−1
2

∑

σσ′

∫
dqdq′fσσ′(q; q′)ρσ(q)ρσ′(q′), (6)

with β = (kBT )−1 the inverse temperature, and
fσσ′(q, q′) the Mayer function, which equals −1 if the
rods overlap and vanishes otherwise. Since we consider
the limit Dσ/L → 0 for any σ, the relative shape dispar-
ity of rods is characterized by the ratio d = D2/D1 of the
diameters and the value of the nonadditivity α.

The minimum conditions δΩ[{ρσ}]/δρσ(q) = 0 on the
functional lead to the set of nonlinear integral equations

ln[ρσ(q)L2
σDσ]−

∑

σ′

∫
dq′fσσ′(q; q′)ρσ′(q′) = βµσ (7)

to be solved for the equilibrium distributions ρσ(q).
These equations are identical to the Euler-Lagrange
equations for additive rods mixtures, and we can directly
apply the method developed earlier12,13. The structure
of the bulk phase diagram depends now on the value of
the nonadditivity parameter α, and has to be determined
first.

Since the bulk distribution functions of the isotropic
and nematic phase are translationally invariant, i.e.,
ρσ(r, ω̂) = ρσ(ω̂), we can reduce Eq. (7) to

ln[ρσ(ω̂)L2
σDσ] +

∑

σ′

∫
dω̂′Eσσ′(ω̂, ω̂′)ρσ′(ω̂′) = βµσ,

(8)
with Eσσ′ the excluded volume of a pair of cylinders of
species σ and σ′ given by

Eσσ′(ω̂, ω̂′) = −
∫

dr′fσσ′(r, ω̂; r′, ω̂′)

= L2(Dσ + Dσ′)(1 + α(1− δσ,σ′))| sin ϕ|
(9)

in terms of the angle ϕ between ω̂ and ω̂′, i.e., ϕ =
arccos(ω̂ · ω̂′). Note that additional O(LD2) terms are
being ignored in Eq. (9), in line with the needle limit
(Dσ/L → 0) of interest here. Given the linear depen-
dence of the excluded volume on Dσ, one can see that

E12(ω̂, ω̂′) =
1
2
(E11(ω̂, ω̂′) + E22(ω̂, ω̂′))(1 + α). (10)

In some sense, α plays a similar role in the present context
as the so-called χ -parameter in the Flory theory of poly-
mer solutions on a lattice, where demixing is driven by
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FIG. 3: (a) Bulk phase diagrams of binary thin-thick mixtures
(diameter ratio d = 3.5) for different nonadditivity parame-
ter α in the p − x representation, with p∗ = (π/4)βpL2D1

the dimensionless pressure, and x the mole fraction of the
thicker rods. We distinguish the fully symmetric isotropic
phase (I) and orientationally ordered nematic phases (N1

and N2). For the nonadditivity parameter α = 0.07 the
IN1N2 triple phase coexistence is marked by (4), and the
N1N2 critical point by (∗). (b) The same phase diagrams in
density-density representation, where n∗1 = n1LD2

1(π/4) and
n∗2 = n2LD2

2(π/4) are the dimensionless bulk number densi-
ties of thin and thick rods, respectively. The tie-lines connect
coexisting state points.

direct unfavorable nearest neighbor interaction between
unlike species as compared to that between like species.

Details of the numerical schemes to solve Eq. (8) have
been discussed elsewhere12,13. Here we use a nonequidis-
tant θ-grid of Nθ = 30 points θi ∈ [0, π/2], where
1 ≤ i ≤ Nθ, in order to find the bulk distributions ρσ(θi).
Coexistence of different phases {I, N1, N2} is determined
by imposing conditions of mechanical and chemical equi-
librium.

IV. BULK PHASE DIAGRAMS

In Fig. 3 we show both pressure-composition (a) and
density-density (b) representations of bulk phase dia-
grams of thin-thick binary mixtures (Lσ = L, D2 > D1)
for the diameter ratio d = 3.5 at various values of the
nonadditivity parameter α. In Fig. 3(a) the composi-
tion variable x = n2/(n1 + n2) denotes the mole fraction
of thick rods, nσ =

∫
dω̂ρσ(ω̂) is the number density

of species σ, and p∗ = (π/4)βpL2D1 is a dimension-
less bulk pressure. Note that the IN coexistence pres-
sure pthin and pthick of the pure thin (x = 0) and pure
thick (x = 1) system are given by (π/4)βpthinL2D1 =
(π/4)βpthickL2D2 = 14.045, i.e., pthick = pthin/d, and
that the tie-lines connecting coexisting phases are hori-
zontal in the p− x representation of Fig. 3(a). This rep-
resentation is convenient for theoretical analysis, whereas
the densities (volume fractions) of thin and thick rods are
experimental control parameters20. For this reason the
same phase diagrams of thin-thick binary mixtures are
shown in Fig. 3(b) in the density-density representation,
with n∗1 = n1LD2

1(π/4) and n∗2 = n1LD2
2(π/4) being the

dimensionless bulk number densities of thin and thick
rods, respectively. In this representation the tie-lines,
indicated by the dotted lines, are no longer horizontal.

The structures of the bulk phase diagrams for various
α show a striking similarity with the bulk phase diagrams
of additive binary mixtures of thin and thick hard rods13.
At low pressures (or low densities) the phase diagrams
show an isotropic (I) phase, and at higher pressures (or
densities) one (α < 0.07) or two (α ≥ 0.07) nematic
phases (N1 and N2). For α < 0.07 the phase diagram
is spindle-like, and the only feature is a strong fraction-
ation at coexistence, such that the nematic phase is rel-
atively rich in thick rods and the isotropic phase in thin
ones. Although the nonadditivity modifies the fraction-
ation gap, the reason behind it remains the same: the
relatively large excluded volume in interactions of the
thick rods makes them more susceptible to orientational
ordering12,21,22. As a general tendency, the fractionation
at isotropic-nematic coexistence becomes stronger for in-
creasing values of α.

For α > 0.06 the bulk phase diagram develops nematic-
nematic (N1N2) coexistence in a pressure regime p > pt,
with pt the triple-point pressure. Using the simple Gaus-
sian ansatz for one-particle distribution functions, one
can demonstrate that the packing entropy does not play
a role in nematic demixing in our system, similar to the
case of additive mixtures7. Although it is known that
the functional form of ρσ(ω̂) is not Gaussian even at high
densities, an analysis of the exact high-density distribu-
tion functions confirmed such a mechanism of nematic
demixing12. On this basis we assume it to be valid at
arbitrary high pressure in our system, and expect the
structure of the bulk phase diagrams to be similar to
those of additive mixtures. In particular, for α = 0.07
nematic remixing is observed at a sufficiently high pres-
sure, as illustrated in Fig. 3. The consolute point, at
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FIG. 4: Nonadditivity parameter α∗ at which the consolute
point and triple point coincide for various values of the diam-
eter ratio d. For mixtures, characterized by α(d) < α∗(d) the
N1N2 demixing is not detected.

which the density and composition difference between the
coexisting nematic phases vanishes, is indicated by (∗).
For α = 0.1, limitations of the numerical scheme23 do
not allow us to determine whether or not remixing takes
place at high enough pressures. We note that in the limit
of very high pressures, where the rods increasingly align
themselves, both end corrections and higher order virials
need to be taken into account for an accurate description
of the phase behavior. On the other hand, in analogy
with additive mixtures, one expects that critical values
of α and d, beyond which the nematic does not take place
at arbitrary high densities, exist12.

In order to characterize the amount of nonadditivity in
the excluded volume interactions which leads to signifi-
cant structural modification of the phase diagram (i.e.
nematic demixing), we explore various thin-thick mix-
tures of different values of α and d, and determine the
value of α∗ for which the pressure of the nematic-nematic
consolute point and the triple point pressure coincide.
Results of our studies are presented in Fig. 4. For α < α∗

(at fixed d) the N1N2 phase separation is not detected,
and for α ≥ α∗ there is N1N2 coexistence in the phase
diagram. It is evident that in the interval d ∈ [3.5, 4.2]
even a small nonadditivity |α| < 5 − 7% may induce or
suppress the N1N2 demixing transition.

One might surmise that the linearity of the function
α∗(d) within the explored range of α reflects the linear-
ity of the excluded volume E12(ω̂, ω̂′) in terms of d and α,
because it drives the nematic-nematic phase separation.
The mapping of the non-additive to the additive case is
not trivial, however, for the data of Fig. 4 do not quite
obey the relation d + αd + α → d that one would naively
expect from Eq. (9). Nonetheless, direct comparison of

the bulk phase diagrams of the nonadditive mixture with
d = 3.5 and α = 0.07 and the additive mixture with
d = 4.0 (presented in13) shows close values of the frac-
tionation gap at the N1N2 coexistence. Further evidence
for similarity of these systems in the high density regime
will be demonstrated in our analysis of their interfacial
properties presented next.

V. INTERFACES

Free planar interfaces between various coexisting bulk
phases can be studied similar to the interfaces of addi-
tive mixtures13,24,25. We focus on the nonadditive thin-
thick mixture characterized by d = 3.5 and α = 0.07.
The nematic director n̂ of the asymptotic nematic bulk
phase(s) can, in general, have a nontrivial tilt angle
θt = arccos(n̂ · ẑ) with respect to the interface normal. In
the present calculations we restrict attention to θt = π/2,
i.e., n̂ ⊥ ẑ. As we have checked, this geometry is ther-
modynamically favorable because of its minimal surface
tension.

Similar to the studies of additive mixtures, we use the
planar symmetry of the interfaces and assume the distri-
bution functions to be uniaxially symmetric with respect
to the director, i.e. ρσ(r, ω̂) = ρσ(z, θ), which reduce
Eqs. (7) to

βµσ = ln[ρσ(z, θ)L2
σDσ] +

∑

σ′

∫
dz′dθ′ sin θ′

×Kσσ′(z − z′, θ, θ′)ρσ′(z′, θ′), (11)

with Kσσ′(z − z′, θ, θ′) = − 1
2π

∫
dϕdϕ′dx′dy′fσσ′(q, q′).

We solve Eq. (11) in order to determine uniaxially
symmetric nonuniform distributions ρσ(z, θi) using an
equidistant z-grid of Nz = 200 points in the inter-
val z ∈ [−5L, 5L], and corresponding bulk distributions
ρσ(θi) as boundary conditions. Further details of the nu-
merical calculations were discussed in Ref.13.

The IN1 and N1N2 interfaces are found to be smooth
and monotonic, in the sense that the profiles of the ne-
matic uniaxial order parameters Sσ(z) and the densities
nσ(z) change monotonically from the bulk values in the
I (N1) phase to those in the N1 (N2) phase. The cor-
relation length ξN1 of the bulk N1 phase at the triple-
phase coexistence (as well as ξI and ξN2 for the I phase
and the N2 phase, respectively) can be extracted from
the asymptotic decay of the one-particle distributions
ρσ(z, θ) to their bulk values ρN1

σ (ω̂), since the deviation
δρσ(z, ω̂) = ρσ(z, ω̂)− ρN1

σ (ω̂) is of the form13

δρσ(z, ω̂) = Aσ(ω̂) exp(−z/ξN1), z →∞. (12)

Interestingly, we find that ξN1/L = 0.49 ± 0.02 is the
same as for the additive mixture with d = 4.013, which
has a virtually identical phase diagram.

The properties of the IN2 interfaces depend strongly
on the pressure difference with the triple point (IN1N2
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FIG. 5: Dimensionless surface tension γ∗IN2 = βγIN2LD1 of
IN2 interfaces as a function of dimensionless pressure p∗ =
βpL2D1(π/4) for thin-thick mixtures with diameter ratio d =
3.5 and different values of nonadditivity α = 0.0 (¦), 0.07
(◦) and 0.1(¤). The dashed line indicates γ∗IN2(p

∗) for the
additive thin-thick mixture of diameter ratio d = 4.0.

phase coexistence). As it is demonstrated in Fig. 5,
the surface tension of the IN2 interface shows a non-
monotonic dependence on the bulk pressure p, and
strongly correlated with the fractionation at the IN2 co-
existence. Upon increasing the nonadditivity, the surface
tension γ∗IN2

(p) grows, again indicating that α plays a
role similar to the diameter ratio d. For comparison we
have included γ∗IN2

(p) for an additive thin-thick mixture
with d = 4.0, which is again quite close to the results for
the nonadditive mixtures with d = 3.5 and α = 0.07 and
0.1.

The microscopic thickness t of the interface is defined
as t = |z+ − z−| where z± are solutions of n1

′′′(z) = 0,
and a prime denotes differentiation with respect to z.
As this equation has a set of solutions in every interfa-
cial region, we choose for z± the outermost ones, i.e.,
the ones nearest to the bulk phases. The density of thin
rods is a convenient representation of structural changes
within the interface, since they have a smaller excluded
volume and a non-vanishing concentration in both coex-
isting phases. This criterion provides a single measure
for the thickness of both monotonic and non-monotonic
profiles, with and without a thick film in between the
asymptotic bulk phases at z → ±∞. The interfacial
width for the one-component IN interface is, with the
present definition, given by t/L = 0.697.

The thickness of the IN2 interface was found to diverge
upon approach of the triple-point pressure pt. This can
be seen in Fig. 6, where t/L is plotted as a function of
the dimensionless undersaturation ε = 1− p/pt, which is
a convenient measure of the pressure difference with the
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FIG. 6: Thickness t/L as a function of the undersatura-
tion ε = 1 − p/pt from the triple point pressure pt for thin-
thick mixtures with diameter ratio d = 3.5 and nonadditivity
α = 0.07 (∗). For comparison we show thickness of the IN2

interface of the additive mixtures for d = 4.0 (◦). The inset
shows the surface tension ratio R [see Eq. (13)] as a function
of the triple point undersaturation ε.

triple point. The nature of the film can be analyzed from
the density profiles n1(z) of the IN2 interface (or equiv-
alently Sσ(z), or n2(z)). In Fig. 7 the profiles of n1(z)
are shown at several values of the undersaturation ε. The
asymptotic densities at z → ±∞ in Fig. 7 are those of the
coexisting I and N2 bulk phases (at the corresponding ε).
For ε → 0 value n1(z) in the film approaches the density
of thin rods of the bulk triple point N1 phase, indicated
by the dashed line in Fig. 7. However, the undersatu-
ration ε = 10−4 is yet too large to be in the asymptotic
thick-film regime. The same identification can be made
for n2(z) and Sσ(z), and on this basis we conclude that
the wetting phenomenon under consideration is complete
triple point wetting of the free IN2 interface by the N1

phase. The similarity with complete wetting of the IN2

interface by the N1 phase in additive thin-thick mixture
with d = 4.0 is again rather striking, as is clear from Fig.
6, where the thickness of the IN2 interface for additive
rods is indicated by (◦).

Since one expects, for the short-range interactions of
interest here, that the thickness of the wetting N1 film in
the IN2 interface diverges as t ∼ −ξN1 ln ε for ε → 026,
the value of the correlation length of the bulk N1 phase
can be extracted, ξN1 = 0.49 ± 0.02, which is consistent
with the earlier determined value from decay of ρσ(z, θ)
into the bulk N1 phase.

The analysis of the structural properties of the IN2

interface can be complemented by studies of the ratio of
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FIG. 7: Density profiles of the thin rods n∗1(z) in the
IN2 interface for diameter ratio d = 3.5 and nonadditivity
α = 0.07 at triple point undersaturations ε = 1 − p/pt =
10−2, 10−2.5, 10−3, 10−3.5, 10−4. The bulk I/N2 phase is at
z → −∞/∞. The dashed line n∗1 = 3.977 represents the bulk
density of thin rods in the triple point N1 phase. These pro-
files indicate the formation of a wetting N1 film in the IN2

interface.

surface tensions

R(ε) =
γIN2(ε)

limp↓pt(γIN1 + γN1N2)
, (13)

as presented in the Inset in Fig. 6. It is clear that upon
approach of triple-point coexistence limε→0 R(ε) = 1,
which implies a vanishing contact angle. This provides
the thermodynamic proof of complete triple-point wet-
ting. The ε-dependence of R again reveals that ε = 10−4

is too large to be in the asymptotic thick-film regime.

VI. SUMMARY AND DISCUSSION

In this paper we have explored the bulk phase dia-
grams and the interfacial properties of the nonadditive
mixtures of thin and thick hard rods. The nonadditiv-
ity was introduced in an attempt to effectively capture
some of the effects of soft interactions between them, hav-
ing in mind mixtures of bare and PEG-coated fd virus
particles in aqueous suspension11. We showed that the
effective hard-core diameter of the unlike interactions,
1
2 (D1 + D2)(1 + α) with D1 and D2 the effective diame-
ter of the like interactions, can easily be smaller or larger

than the additive case, 1
2 (D1 + D2), by more than a few

per cent.

As is illustrated in Fig. 3, a small amount of non-
additivity α > 0 can stabilize the high-density nematic-
nematic phase coexistence, even if it is only metastable
for an additive mixture with the same diameter ratio.
However, the experimentally observed lower critical point
of the nematic-nematic demixing transition11 could not
be reproduced by incorporating nonadditivity into the
theory. We suggest, therefore, that further theoretical
studies of this system should consider in more detail the
impact in particular of a finite bending flexibility, be-
yond the ground-state approximation15. Another issue
that needs to be resolved is the (elastic) response of the
polymer coat to volume exclusion between the rods, an
aspect completely ignored in our analysis.

We find the bulk phase diagrams of nonadditive binary
mixtures to show a large similarity with those of the addi-
tive mixtures of larger diameter ratio. This is most likely
related to the linear dependence of the rod-rod excluded
volume on both the diameter ratio d and the nonadditiv-
ity α albeit that is it not clear whether there is an ex-
act mapping linking non-additive and additive hard-rod
mixtures. We also found that many if not all of the inter-
facial phenomena that we studied are similar to those of
additive mixtures with a larger diameter ratio. Similar
to the interfaces between different bulk phases in addi-
tive mixtures, the IN1 and N1N2 interfaces are smooth
and monotonic, whereas the IN2 interface exhibits com-
plete wetting by the N1 phase upon approach of the triple
phase coexistence. The complete triple-point wetting sce-
nario was confirmed by (i) the logarithmic divergence of
the thickness of the N1 film with vanishing undersatu-
ration, and (ii) the surface tension ratio limε→0 R = 1.
Such a similarity between properties of additive and non-
additive mixtures may represent a significant difficulty to
distinguish these in experiments.
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