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We study the effects of nanoparticles (NPs) on thermotropic nematic liquid
crystals (LCs) in relatively dilute NP–LC mixtures. We are interested in the
fundamental generic mechanisms that quantitatively and qualitatively affect the
phase behavior of LCs. A simple molecular field analysis shows that a phase
transition will likely occur upon entry into the ordered phase. Moreover, the
interaction between nematogenic NPs and LCs could force a sergeant–soldier-
like behavior, in which only the phase behavior of one component is affected
despite the symmetric appearance of the coupling term. When NPs are
anisotropic, their influence on LC phase behavior can be qualitatively different
depending on the anchoring, even in the absence of the disorder. We illustrate
numerically that a random-field-type disorder might impose either short-range,
quasi-long-range, or even long-range order, which might survive.
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1 Introduction

Mixing soft materials with appropriate nanoparticles (NPs) can yield effective materials
exhibiting new or anomalously enhanced properties (Balazs et al., 1979; Hamley, 2003). If
soft materials exhibit a kind of orientational or translational order, the richness of the
resulting qualitatively different effective materials explodes. Liquid crystalline (LC) materials
are an excellent example. They combine a unique combination of liquid character, order,
softness, and optical transparency (de Gennes, 1995; Kleman and Lavrentovich, 2003;
Oswald and Pieranski, 2019). The liquid character enables relatively simple preparation of
mixtures. Order in LC matrices can give rise to long-range forces among immersed NPs
(Poulin et al., 1979; Pires et al., 2007). Softness can enable relatively strong responses in the
LC matrix in the presence of adequate NPs (Lelidis et al., 1993; Li et al., 2006; Palffy-
Muhoray, 2007). Furthermore, optical transparency enables relatively simple observation of
NP-driven changes (Poulin et al., 1979; Pires et al., 2007). It should be noted that long-range
forces among NPs could trigger the self-assembling of NPs, which can open different
structural pathways (Hegmann et al., 2007; Bisoyi and Kumar, 2011; Lagerwall and Scalia,
2012; Lagerwall and Scalia, 2017).

Nematic (de Gennes, 1995; Kleman and Lavrentovich, 2003; Oswald and Pieranski,
2019) orientational order represents the simplest LC phase structure. It is described by the
nematic molecular field. In bulk nematic equilibrium, the molecular field is uniaxial and
spatially homogeneously aligned along a single symmetry-breaking orientation. Local
uniaxial order is commonly described in terms of the nematic director field �n and the
nematic order parameter S. The unit vector points along the local uniaxial direction, where
the states ± �n are physically equivalent. The amplitude field S describes the amount of
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ordering along �n. In thermotropic LCs, one commonly obtains a
nematic phase by cooling it from the isotropic (ordinary liquid)
phase in which S = 0. Perturbed nematic order could generally
exhibit biaxial states, which requires description in terms of the
tensor nematic order parameter Q (see Supplementary
Appendix SA).

Appropriate NPs could influence the nematic order via different
generic mechanisms if inserted into nematic LCs. Important
controlling parameters are the concentration of NPs, geometrical
shape (Bellini et al., 2000; Kyrou et al., 2018; Kyrou et al., 2020;
Skarabot et al., 2022), NP surface treatment (Nobili and Durand,
1992; Lavric et al., 2013a; Oswald and Pieranski, 2019; Kyrou et al.,
2020), material characteristics of NPs (Mertelj et al., 2013; Kumar,
2014; Moghadas et al., 2015; Poursamad and Hallaji, 2017; Emdadi
et al., 2018a; Emdadi et al., 2018b; Drozd-Rzoska et al., 2019;
Jahanbakhsh et al., 2019; Poursamad and Emdadi, 2019; Lahiri
et al., 2020; Bury et al., 2022; Ma et al., 2022; Sumandra et al.,
2022), and LC material properties (de Gennes, 1995; Kleman and
Lavrentovich, 2003; Oswald and Pieranski, 2019). Furthermore, NPs
could effectively impose qualitatively different disorders on the LC
order (Harris et al., 1973; Cleaver et al., 1996; Crawford and Žumer,
1996; Radzihovsky and Toner, 1997; Popa-Nita and Kralj, 2006).
Most studies focusing on the impact of the disorder are performed in
LC-aerosil mixtures, which can exhibit at least three qualitatively
different disorder characteristics (Jin and Finotello, 2001; Bellini
et al., 2002; Leon et al., 2004; Rotunno et al., 2005; Buscaglia et al.,
2006; Cordoyiannis et al., 2006; Relaix et al., 2011). Furthermore,
NPs could enforce LC matrix topological defects (TDs) (Mermin,
1979; Kurik and Lavrentovich, 1988) in the nematic orientational
order. TDs correspond to topologically protected, elastically
distorted regions in the orientational order. Nematic LCs could
host either point or line defects (Schopohl and Sluckin, 1987; Kurik
and Lavrentovich, 1988; Lavrentovich, 1998; Kralj and Virga, 2001).
Generally, TDs can strongly interact with NPs, opening the door to
predetermined and controlled superstructures stabilized by TD–NP
interactions (Kikuchi et al., 2002; Yoshida et al., 2009; Karatairi et al.,
2010; Liu et al., 2010; Rozic et al., 2011; Coursault et al., 2012; Wang
et al., 2012; Lavric et al., 2013a; Lavric et al., 2013b; Liu et al., 2018).

This paper considers different NP-driven generic mechanisms
via which NPs impact nematic thermotropic behavior.

2 Results

Mixtures of nematic LCs and NPs can exhibit complex
configurations. In the following, we present some qualitatively
different scenarios and discuss generic mechanisms.

Supplementary Appendix SB illustrates a simple mean-field
Maier–Saupe analysis that reveals the type of coupling terms in a
mixture of two nematic mesogens. It yields the following free energy
density expression:

f ≈ f0 + 1 − p( ) a0 T − 1 − p( )T*( )S2 − bS3 + cS4( ),

+p A0 T − pT2
*( )S22 − BS32 + CS42( ) − wSS2. (1)

Here, S ≡ S1 and S2 label the nematic order parameters of the
first and second components. Their volume concentrations are given
by p1 � 1 − p and p2 � p, respectively. Quantities a0, b, c, T* ≡ T1

*,

A0, B, C, and T2
* are material constants, in which we neglect

temperature dependencies in the temperature windows of our
interest. Furthermore, f0 determines the contributions of the
remaining degrees of freedom.

Let us suppose that the first and second components represent
LC molecules and NPs, respectively, and the volume concentration
of NPs is given by p ≡ p2. The presence of NPs introduces an
additional contribution equal to p(1 − p)a0T*S2 in the LC
condensation term in Eq. 1.

This term resembles the structure of the so-called
Flory–Huggins free energy contribution (Onsager, 1949; Flory,
1956; Doi, 1981):

fFH � p 1 − p( )χ, (2)
where χ stands for the Flory–Huggins constant. For a positive value
of χ, this term enforces phase separation if χ exceeds the critical value
χc. Suppose that in the absence of ordering, it holds χ(I) < χc, where
χ(I) denotes the Flory–Huggins constant in the isotropic phase
(where S = 0). On entering the nematic phase, the effective
Flory–Huggins interaction increases:

χ N( ) � χ I( ) + a0T*S
2. (3)

In most LCs, the second term, “switched-on” in the nematic, is
relatively strong. Consequently, on cooling an isotropic mixture to
the nematic phase, phase separation is generally likely to occur
(Anderson et al., 2001). Figure 1 illustrates a typical phase separation
in a mixture of nematic and spherical NPs (i.e., S2 � 0) on entering
the nematic phase. In the phase separation regime, the regions
exhibiting essentially strong and low nematic LC order coexist.

FIGURE 1
Typical phase separation pattern on entering the nematic LC
phase in a nematic-NP mixture. In the case shown, NPs are spherical.
Regions are exhibiting i) relatively strong nematic and ii) essentially
isotropic (or paranematic) order, which are i) poor and ii) rich in
NP content, respectively.
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These regions exhibit relatively low and high concentrations of NPs,
respectively.

Let us suppose that the mixture remains homogeneous. A simple
Maier–Saupe-type analysis (Humphries et al., 1972) presented in
Supplementary Appendix SB suggests that in a mixture of two
nematogenic components, a free energy density f(coupl) term
coupling ordering of both ingredients arises; see the last term in
Eq. 1. It should be noted that despite its symmetric structure (e.g., in
Eq. 1), the coupling term reads f(coupl) � −wS1S2); such terms have
significantly different impacts on the two components. Here, Si
determines the amplitude of nematic ordering in the ith component.
Furthermore, in real samples, different structures of coupling terms
arise depending on the type of NPs and their surface treatment.
Figure 2 illustrates the “sergeant–soldier” type of behavior, where we
consider the simplest possible term (Holbl et al., 2022),

f coupl( ) � −wS21S22, (4)
which does not affect the qualitative order-disorder behavior of
individual components. For simplicity, we assume that both
components have identical condensation material constants with
the exceptions of bulk phase transition temperatures of isolated
components and w > 0 (i.e., this term tends to increase the degree of
order in both components). We assume that an isolated ith
component exhibits an isotropic-nematic phase transition at T(c)

i ,
where T(c)

2 >T(c)
1 . Thus, the coupling term is absent in the regime

T>T(c)
2 , where both order parameters are melted. However, in the

temperature regime T<T(c)
2 , the second component condensates.

For this reason, the first mesogen experiences the effective free
energy density ordering field contribution

f coupl( ) � −weffS
2
1, (5)

where weff � wS22 > 0. This term renormalizes the phase transition
of the first component. It holds

T c( )
eff � T c( )

1 + weff

a1
, (6)

where T(c)
eff determines the enhanced phase transition of the first

component. Therefore, increasing the value of the coupling strength
raises the phase transition temperature of the first component, while
the phase transition of the second component is unaffected. The
resulting temperature behavior of the mixture is shown in Figure 2.
It should be noted that in the case of bilinear coupling (see the last
term in Eq. 1), the first component also exhibits pre-transitional
effects in the temperature interval T ∈ [T(c)

eff, T
(c)
2 ] if the effective

coupling strength is below some critical value. If the latter value is
exceeded, the degree of order S1 exhibits gradual (noncritical)
increase with decreasing temperature below T(c)

2 .
Next, we consider a dilute mixture where the second component

consists of anisotropic particles. For illustration, we assume that the
free energy F consists of LC condensation, LC nematic elastic, and
NP–LC interfacial free energy contributions, where details are given
in Supplementary Appendix SA. Of our interest is the impact of NPs

FIGURE 2
“Sergeant–soldier” behavior. For the dimensionless coupling strength σ � w/wc , below the critical value (corresponding towc), on increasing σ, the
phase transition temperature of “soldier” (S1)monotonously increases(see figures A–D). On the other hand, the phase transition of “sergeant” (S2) is in this
regime independent of σ. All graphs from figures (A–D) and presented together in figure (E). In the simulation, we used two identical nematogens, which
for w � 0 exhibit 1st order transition and dimensionless temperatures T(c)

1 � 100 and T(c)
2 � 105.
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on the LC order–disorder phase transition. We assume that NPs
relatively weakly disrupt the nematic director field, as illustrated in
Figure 3. In the nematic phase, �n is essentially homogeneously
aligned along a single symmetry-breaking direction. We assume
that a nanoparticle locally enforces orientation along the unit vector
�e, which is allowed to fluctuate. We also set S to be essentially
spatially homogeneous, i.e., S ~�S, where �(. . .) indicates the spatial
averaging over the system’s volume V. Furthermore, we neglect
spatial variations in the nematic director field. With this in mind, it
follows (see Supplementary Appendix SA)

F

V
~ a0 T − T*( )S2 − bS3 + cS4 − p

aNPwS

vNP
S2, (7)

where S2 ≡ �P2 � (3( �e· �n)2−1)
2 measures the orientational order of

anisotropic NPs. Quantities NNP, aNP, and vNP stand for the
number of NPs, NP’s surface area, and NP’s volume, respectively.
For weakly interacting NPs, it roughly holds (van der Schoot et al.,
2008)

S2 ~
∫P2eαxdx

∫eαxdx
, (8)

where �e · �n � x ∈ [−1, 1], α � aNPwS/(kBT), kB, and we imposed
cylindrical symmetry.

In the limit α≫ 1, it holds S2 ~ 1. Eq. 7 yields

~f~ r s2 − 2s3 + s4 − σs, (9)
where r � T−T*

TIN−T* is the reduced temperature, ~f � f/(a0(TIN−
T*)S20), s = S/S0 stands for the scaled nematic order parameter,
the scaling unit S0 � b

2c measures the nematic order at TIN in bulk

equilibrium, and σ ~ p aNPξ
2
IN

vNPde
is the effective dimensionless field

conjugated to the order parameter. Quantities ξIN and de stand
for the nematic correlation length at TIN and the surface
extrapolation length (see Eq. (A6)). The latter length describes
the effective strength of LC–NP coupling.

The phase behavior of this effective system is as follows. Typical
nematic order parameter temperature variations are depicted in
Figure 4. For σ < σc = 0.5, the system exhibits a first-order transition
at rc � 1 + σ, where the bulk I–N phase transition corresponds to
rIN � 1. On the other hand, for σ ≥ σc, the system exhibits a gradual
evolution of nematic order with decreasing temperature.

If α ~ 1, the following roughly holds: S2 ≡ �P2 ~
aNPw�S
kbT

. In this
case, NPs only renormalize the I–N phase transition temperature. It
should be noted that we have neglected the nematic director field
distortions in the previously considered estimates.

In the following, we discuss cases where NPs introduce a certain
degree of randomness. The I–N phase transition is extremely
susceptible to disorder due to the existence of Goldstone modes
in the nematic director field in the nematic phase (Kleman and
Lavrentovich, 2003; Palffy-Muhoray, 2007). These are the
consequences of continuous symmetry breaking, via which bulk
nematic equilibrium is established. According to the Imry–Ma
theorem (Larkin, 1970; Imry and Ma, 1975), even infinitesimally
weak random-field-type disorder is sufficient to break the long-
range order (LRO) of the pure bulk phase, which is reached via
continuous symmetry breaking. The resulting phase should possess

FIGURE 3
Dilute nematic LC—anisotropic NP mixture, where NPs relatively
weakly interact with the nematic LC host. Consequently, the nematic
LC orientational order, described by the nematic director field �n, is
essentially spatially homogeneous. Local anisotropic NP
orientation is determined by the unit vector �e.

FIGURE 4
Nematic LC order s � S/S0 variations on increasing dimensionless
temperature r � T−T*

TIN−T* for different values of the effective field σ. The
latter arises due to the effective LC–NP coupling. The upper curve
corresponds to σ � 0.75, and the curves below refer to cases
σ � 0.5, σ � 0.25, and σ � 0, respectively. In the regime σ < σc ≡ 0.5,
systems exhibit first-order transition between the isotropic (σ � 0) or
paranematic (σ >0) and nematic phase, which takes place at the
dimensionless critical temperature rc � 1 + σ. The dashed curves
describe the degree of nematic order at the free energy density
maximum separating paranematic (or isotropic) and nematic (meta)
stable states. It should be noted that for σ � 0 (σ � 0.25), the global
nematic minimum persists in the regime r < rc � 1 (r < rc = 1.25). In the
remaining regime, the isotropic (paranematic) phase corresponds to
the global minimum.
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short-range order (SRO), and the resulting domain-type pattern
is predicted to be dominated by a single characteristic domain
size ξd ∝w

− 2
4−d

RF . Here, wRF measures the disorder strength, and d is
the space-dimensionality. Therefore, in effectively d = 2 or d =
3 systems, one expects ξd ∝w−1

RF and ξd ∝w−2
RF, respectively.

However, several later experimental and theoretical systems
reveal that the resulting behavior is much more complex. For
appropriate conditions, configurations exhibiting quasi-long-
range order (QLRO) (Denholm and Sluckin, 1993;
Chakrabarti, 1998; Feldman, 2000; Cvetko et al., 2009;
Ranjkesh et al., 2014) or even LRO (Chakrabarti, 1998; Bisoyi
and Kumar, 2011; Ranjkesh et al., 2014) are reported.

A convenient model to study the impact of NP-imposed
randomness on the I–N phase transition is the
Lebwohl–Lasher lattice model (Lebwohl and Lasher, 1972). Its
key ingredients are presented in Supplementary Appendix SC.
Using it, we probe the impact of NP-imposed random-type
behavior on the LC order–disorder phase transition in the
orientational order. Despite its simplicity, this approach well
captures the essential features of LCs. In modeling, we vary the
concentration p of sites by imposing a randomly selected
orientation with finite disorder strength W. In typical studies
focusing on a system’s range of orientational order, one
commonly measures or calculates the orientational order
correlation function G(r). This correlation function measures
how orientational correlations decay with relative distance r.
However, several studies (Denholm and Sluckin, 1993; Cvetko
et al., 2009; Ranjkesh et al., 2014) reveal that G(r) dependence
relatively poorly distinguishes between SRO and QLRO.
Numerically, it is computationally more effective to extract the
range of order using finite-size analysis (Eppenga and Frenkel,
1984; Ranjkesh et al., 2014). Namely, according to the central

limit theorem, one expects that S ≡ �P2 in the case of SRO exhibits
scaling behavior

�P2 ∝ L−γ, (10)
where γ � 3/2 in d = 3. If QLRO replaces SRO, it follows 0< γ< 3/2.
On the other hand, LRO is fingerprinted by γ � 0.

Our simulations used this finite-scaling approach to determine
the range of order on the varying concentration of NPs, their
imposed anchoring strength W, and temperature. Furthermore,
in the presence of disorder, one expects history-dependent
behavior. For this reason, we probed systems’ behavior for three
different histories, which we refer to as i) annealed history (AH), ii)
temperature-quenched history (TQH), and (iii) field-quenched
history (FQH). In AH, we gradually decreased temperature
stepwise and calculated the structure at a given T by using as the
initial “seed” structure the fixed-point configuration calculated at the
previous T. In QH, we calculated the structure at a given T by
originating from the isotropic phase. Finally, in FQH, the “seed”
structure was spatially homogeneously aligned along a single
symmetry-breaking direction. In Figures 5, 6, we plot γ for
varying several control parameters. In Figure 5, we focus on W-
driven behavior for different concentrations of NPs using AH deep
in the nematic phase. In Figure 6, we present a more detailed impact
of W on LC configurations at one concentration of NPs where we
vary the history of samples and probe two different temperatures
below the bulk I–N phase transition temperature. One sees that SRO
(i.e., configurations characterized by γ � 3/2 can be reached only for
relatively high values ofW, especially in diluted samples. The control
parameters T andW are given in the dimensionless scaled form. The
references are as follows: bulk I–N phase transition is realized at
T ~ 1.1, and W is measured with respect to LC–LC neighboring
molecular interactions. It should be noted that for low enough values
of W and p, one observes LRO.

FIGURE 5
Variation of γ on increasing the dimensionless anchoring
strength W for different concentrations of NPs, which enforce
random-field-like disorder for AH. It should be noted that for p = 0.1,
one does not achieve SRO, which is anticipated according to the
Imry–Ma theorem.

FIGURE 6
Variation of γ on increasing the dimensionless anchoring
strengthW for different dimensionless temperatures T and histories of
samples. For W > 1, relatively strong memory effects are observed.
Furthermore, in the regime W < 0.2, simulations predict LRO.
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3 Conclusion

We illustrated several mechanisms via which NPs could
quantitatively or qualitatively modify the phase behavior of the
bulk nematic LC phase. The simplicity of nematic ordering explodes
into a rich palette of behaviors enabled by varying control
parameters. In the study, we addressed only a few of them:
concentration of NPs, nature and strength of NP–LC
interactions, and anisotropy of NPs. The diversity of phenomena
becomes even wider if the ferromagnetic, ferroelectric, or
multiferroic properties of NPs are included. The ferromagnetic
nanoparticles dispersed within the liquid crystals provide a new
way to develop magneto-optic devices (Ji et al., 2019) that can also be
used for THz filtering and modulation, in which sensing
applications are becoming increasingly widespread (Abina et al.,
2022).

In this paper, we focused only on phase behavior. It should
be noted that structural behavior could be even richer. For
instance, recent technological advances enable the stabilization
of nematic structures incorporating diverse configurations of
TDs, i.e., lattices of disclinations (Culbreath et al., 2011;
Ackerman et al., 2012a; Ackerman et al., 2012b; Evans et al.,
2013; Murray et al., 2014; Glazar et al., 2015; Guo et al., 2016;
Peng et al., 2017; Wang et al., 2017; Yu et al., 2019; Sohn et al.,
2020; Guo et al., 2021) or other assemblies (Harkai et al., 2020).
Such structures could be further modified by appropriate
NPs, which could make them more robust or introduce
additional functionalities in the system. For example,
conductive NPs assembled within a line defect can form a
conductive wire (Coursault et al., 2012). Furthermore, recent
experiments demonstrated (Harkai et al., 2020) that one could
efficiently switch among competing line-defect structures using
external fields. If these well-controllable defects would drag
trapped NPs with them, one could construct rewritable
networks of NPs, which could open doors to diverse
applications.
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