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Phase behavior of two-dimensional hard rod fluids
Martin A. Bates and Daan Frenkel
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

~Received 3 November 1999; accepted 4 February 2000!

Monte Carlo simulations are used to study two-dimensional hard rod fluids consisting of
spherocylinders confined to lie in a plane. The phase behavior is mapped out as a function of the
aspect ratio (L/D) of the particles, from the hard disc limit at one extreme (L/D50) to the thin
hard needle limit at the other (L/D5`). For long rods, a 2D nematic phase is observed at high
density in which the orientational correlation functions decay algebraically, indicating that the phase
does not possess true long range orientational order. The simulation data indicate that the transition
from this phase to the low density isotropic phase is continuous, via a Kosterlitz–Thouless
disclination unbinding type mechanism, rather than first order. For short rods the nematic phase
disappears so that, on expansion, the solid phase undergoes a first order transition directly to an
isotropic phase. Although the latter phase is globally isotropic, we find evidence for strong local
positional and orientational correlations between the particles. Where possible, the simulation
results are compared and contrasted to experimental, simulation and theoretical data for other
two-dimensional liquid crystalline systems. ©2000 American Institute of Physics.
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I. INTRODUCTION

Computer simulation studies of hard body particles ha
played an important role in the current understanding of
liquid crystalline behavior of systems composed of rodl
colloids. Following Onsager’s theoretical demonstration t
a system of infinitely long hard particles can exhibit an o
entationally ordered phase if the density is sufficiently hig1

computer simulation studies gave the first indication t
smectic phases can also be formed by systems of part
which interact through excluded volume interactions alon2

Such discoveries have lead to further simulation and theo
ical studies of simple hard body models and now the ph
diagrams for monodisperse systems composed of, for
ample, ellipsoids3 and spherocylinders4 have been deter
mined as a function of particle shape anisometry, rang
from their common limiting cases of hard spheres to in
nitely thin rods. Other factors present in real colloidal sy
tems which can influence the phase behavior, such as p
dispersity in the length of the particles, have also be
studied theoretically5 and via simulation.6 Although many
model colloidal systems in three dimensions have been
vestigated and are now well understood,7 our understanding
of two-dimensional~2D! liquid crystalline systems is fa
from complete.

Here we report a Monte Carlo simulation study of
family of 2D systems, composed of hard spherocylinders
aspect ratioL/D confined to lie in a plane. Although thes
particles, defined as a rectangle of lengthL and breadthD
capped at each end by a semicircle of diameterD, are more
strictly described as ‘‘discorectangles,’’ we shall use t
term 2D spherocylinder throughout this paper. This mo
can be used to span an entire aspect ratio, from 2D hard d8

at one extreme (L/D50) to 2D hard needles9 at the other
(L/D5`), and so we may expect to observe a variety
10030021-9606/2000/112(22)/10034/8/$17.00
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behavior as the aspect ratio of the particles is increas
However, we note that in 2D there is no distinction betwe
prolate and oblate~rodlike and disklike! particles, as there is
in 3D, because particles in two dimensions have only t
symmetry axes. Since we are particularly interested in
nature of any liquid crystalline phases present in the ph
diagram, the relevant predictions about these phases are
scribed in Sec. II. The simulations of systems composed
‘‘long’’ and ‘‘short’’ rods confined to two dimensions are
discussed in Secs. III and IV, respectively, and the disti
tion between them made clear. The phase diagram of
spherocylinders as a function of aspect ratio is presente
Sec. V, along with a comparison between this family of s
tems and other related models. Our conclusions are sum
rized in Sec. VI.

II. 2D NEMATIC PHASES

One of the most interesting properties of 2D systems
the lack of true long range order~LRO!. Although the cor-
relation length in such a system may be macroscopic
large, it is not infinite, as required for a true crystal.10 Straley
has shown that, whilst true~orientational! LRO cannot exist
for 2D nematics if the particles interact via a separable
tential, this does not necessarily apply if the potential is
separable into positional and orientational parts.11 This de-
coupling of the potential is not possible for almost all mod
in which particle shape is taken into account including t
present one. Thus it is important to know whether ‘‘real
tic’’ liquid crystalline models that include a shape term~as
opposed to a circular core! exhibit true LRO. To differentiate
systems which possess true LRO from those that do
those that lack true LRO are commonly referred to as hav
quasi-LRO.
4 © 2000 American Institute of Physics

P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



ee
icl

s
n
m
-

i-

he

th
an

o

ab

ic
es

tio
d
ith
s
a
,
n
ra
p
r
e
a
t

ase
th
the
r
e

ined

-

sity
izes
ly of

lly
les
sed
NI

s is
for
e

e,
st.
and
not
he
first
dis-
eter
l-

nd,
is-
ture
re

a-
hat,
n
size
ith

-
we

the
hat
han
ex-
is
tate
si-

s of
eful.
y as
n-

he

10035J. Chem. Phys., Vol. 112, No. 22, 8 June 2000 Phase behavior of 2D hard rod fluids
Quasi-LRO is to be expected in a 2D nematic if the fr
energy associated with collective fluctuations in the part
orientations is of the form

F5
1

2 E K~¹u~r !!2dr , ~1!

where u(r ) characterizes the orientation at positionr with
respect to a fixed axis andK is the 2D Frank elastic
constant.12 A more general form of Eq.~1! should contain
two Franck constantsK i andK' associated with distortion
parallel and perpendicular to the localized director, but o
sufficiently large length scale these constants are renor
ized to the same valueK.12 It is useful to recall some predic
tions about the nature of a 2D nematic phase described
Eq. ~1!. The amplitude of the orientational fluctuations d
verges logarithmically with the number of particlesN,

^u2&;
kBT

4pK
ln N. ~2!

This means that both the order parameterS5^cos(2u)& and
the orientational correlation functionsgl(r )5^cos@l$u(0)
2u(r)%#& ( l 52,4,...) decay algebraically and vanish in t
limits N→` and r→`, respectively,

S;cN2kBT/2pK, ~3!

gl~r !;c8r 2h l5c8r 2 l 2kBT/2pK, ~4!

wherec andc8 are constants. One possible description of
transition between a 2D nematic phase with quasi-LRO
an isotropic phase is via a Kosterlitz–Thouless~KT! dislo-
cation unbinding type mechanism.13 This transition is pre-
dicted to occur in 2D nematic systems at a critical value
the renormalized Franck constantKc ,12

pKc

8kBT
51. ~5!

However, whilst this means that a nematic phase is not st
for values of the Franck constant below the critical valueKc ,
it does not rule out the possibility of a nematic–isotrop
~NI! transition via a different mechanism at higher densiti
The 2D version of the Onsager theory14 for infinitely thin
rods confined to a plane predicts a continuous NI transi
at a densityrL2'4.7, although due to the neglect of thir
and higher virial coefficients this should be viewed w
some caution. Simulations using systems of hard needle
dicate that this model exhibits a continuous NI transition
rL2'7,9 via a KT disclination unbinding type mechanism
rather than a first order transition. Computer simulatio
have been performed on other nonseparable and sepa
potentials. Whilst quasi-LRO has been observed for the se
rable models studied,15,16 contrasting evidence is found fo
nonseparable potentials.9,16–18Indeed, for ellipses, the natur
of the transition appears to depend on the aspect ratio,
the phase diagram possesses a tricritical point at which
transition changes from first order to continuous.18
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III. PHASE BEHAVIOR OF LONG RODS IN 2D

Monte Carlo simulations were used to study the ph
behavior of 2D systems of spherocylinders of leng
L/D51, 2, 3, 4, 5, 7, 9, and 15. In this section we discuss
results of the long models,L/D59 and 15; the shorte
lengths exhibit a qualitatively different behavior and will b
discussed in Sec. IV. The equation of state was determ
using constant pressure~NPT! Monte Carlo simulations.19

For the two modelsL/D59 and 15, we performed simula
tions for systems of 640(8038) and 1200(15038) particles,
respectively, using both expansion runs of a high den
solid and compression runs of a low density gas. These s
were chosen to ensure that the systems were essential
equal dimension along thex and y-axes. The length of the
simulation at each state point varied, but was typica
50 000–100 000 cycles for equilibration and 100 000 cyc
for calculation of averages, although longer runs were u
where this was deemed necessary, in the vicinity of the
transition.

Since the behavior exhibited by both long rod system
qualitatively similar, we discuss here only the results
L/D515. The equation of state is shown in Fig. 1. At th
highest pressure studied (P51.0, in unitskBT/D2), the solid
melts fairly rapidly to form a highly ordered nematic phas
in which the layered nature of the solid is completely lo
On both expansion of the high density nematic phase
compression of the low density isotropic phase, we do
find evidence for either hysteresis or a discontinuity in t
equation of state and so it seems unlikely that there is a
order transition between the orientationally ordered and
ordered states. However, the 2D nematic order param
S5^cos(2u)& ~see Table I!, calculated via the usual diagona
ization of the order parameter tensor,9 indicates that the ori-
entational order of the system is dependent on density a
therefore, that there is a density driven transition from a d
ordered to an ordered state. To further investigate the na
of this transition, a number of constant volume runs we
performed for a few different system sizes (N5960, 2500,
6400, see Table I! in the density range where the order p
rameter was observed to rapidly increase and we found t
as for 2D hard needles,9 S is strongly dependent not only o
density, but also on the system size. This strong system
dependence is exactly what we expect for a system w
quasi-LRO@see Eq.~3!#. Indeed, if the orientational correla
tion function in the nematic phase decays algebraically,
expect that the nematic order parameterS will tend to zero
for all densities as the system size is increased towards
thermodynamic limit. For a finite system, we also expect t
the order parameter of the isotropic phase will be larger t
zero once the correlation length of nematic fluctuations
ceeds the size of the periodic simulation box. Whilst th
means that the order parameter and the equation of s
alone do not help us to determine the location of the tran
tion between the isotropic and nematic phases, analysi
the system size dependence of the order parameter is us
Since the nematic order parameter is expected to deca
S;N2kBT/2pK @Eq. ~3!#, we can use the system size depe
dence to obtain the Franck constantK as a function of den-
sity. This in turn allows us to determine the location of t
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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disclination unbinding transition, below which there is n
possibility of a stable nematic phase.

The block averaging analysis of the order parame
which we briefly describe, follows that previously used f
the systems of infinitely thin rods.9 For each of the constan
volume runs, the values ofS, S2, andS4 were calculated for
the whole system (N5960, 2500 or 6400! and subsystems
with an area equal to 1/4, 1/16, 1/36, 1/64 and, for the larg
system, 1/100 of the simulation box for densities in the ran
0.020,r,0.030 ~units D22). The ~sub!system size depen
dence of the order parameterS within the three different
systems was then fitted to a power law of the fo
S5aN2b @see also Eq.~3!#, with the coefficientb related to
the Franck constant byb5kBT/2pK. Similarly the size de-
pendencies ofS2 andS4 gave constantsb2 andb4 , related to
b by b252b and b454b. For densitiesr>0.022, we find
that the relationb5b2/25b4/4 is well satisfied as expecte
in the nematic phase. In Fig. 1~b!, the elastic constan
K5pK/8kBT51/16̂ b& is plotted as a function of density
where ^b& is the average ofb, b2/2, and b4/4. We recall
that spontaneous disclination unbinding is expected

FIG. 1. ~a! The equation of state for a 2D system of 1200 spherocylinder
aspect ratioL/D515 determined from NPT simulations;~s! compression
from isotropic,~d! expansion from perfectly ordered nematic. The arro
indicates the location of the Kosterlitz–Thouless disclination unbinding t
transition between the isotropic and nematic phases.~b! The renormalized
Franck constantK5pK/8kBT for spherocylinders of lengthL/D515 deter-
mined from NVT simulations by block averaging the nematic order para
eter for systems of~h! 960, ~s! 2500, and~n! 6400 particles and from the
algebraic decay of the orientational correlation functiongl(r ) @see Eqs.~3!
and ~4!# for ~d! l 52 and ~j! l 54 for the larger system. Units,P in
kBT/D2,r in D22.
Downloaded 11 Oct 2004 to 145.18.129.130. Redistribution subject to AI
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pK/kBT,8, that is, if K,1. The simulation data for al
three system sizes indicates that the nematic is no lon
stable below a densityr'0.0235. We also observe that th
elastic constant evaluated at constant density is depende
the system size; this has also been observed for o
systems.9 However, whilst increasing the system size appe
to renormalize the effective Franck constant to lower valu
this does not appear to shift the transition to higher densit
at least within the computational accuracy for the syst
sizes and the model studied here@see Fig. 1~b!#.

Evidence that the orientational correlations in the ne
atic phase decay algebraically comes from the angular
relation functionsgl(r ), shown in Fig. 2~a! for the lowest
density at which the 2D nematic phase is stable@r50.024,
see also Fig. 2~b!#. Since these are expected to decay
gl(r )}r 2h l, with h l5 l 2kBT/2pK @see Eq.~4!# at distances
longer than the particle length, analysis of these functio
can also give information on the location of the disclinati
unbinding transition via the density dependence of
Franck constant. The elastic constants obtained from the
relation functionsg2(r ) andg4(r ) for the largest system ar
plotted in Fig. 1~b!. Although the values are slightly highe
than those obtained from the block averaging of the or
parameter for the same system, they do confirm the loca
of the continuous transition atr'0.0235. Note that the ori-
entational correlation functionsgl(r ) also show some system
size dependence@see Fig. 2~a!#. For example, the correlation
function g2(r ) determined for the smaller system (N5960)
in the ranger ,5L decays algebraically but slower than th
determined for the larger system (N56400). This, of course,

f

e

-

TABLE I. Summary of the thermodynamic properties obtained from Mo
Carlo simulations of a system of 2DL515 spherocylinders. Column 1
simulation ensemble, NPT or NVT; column 2: number of particles; colu
3: pressure, in unitskBT/D2; column 4: density, in unitsD22; column 5: 2D
orientational order parameterS5^cos(2u)&.

Ensemble N P r S

NPT 1200 0.02 0.008 64 0.0295
NPT 1200 0.04 0.013 45 0.0499
NPT 1200 0.06 0.017 10 0.0904
NPT 1200 0.08 0.020 72 0.1034
NPT 1200 0.09 0.022 16 0.3595
NPT 1200 0.10 0.023 45 0.5377
NPT 1200 0.15 0.028 37 0.7822
NPT 1200 0.20 0.032 07 0.8749
NPT 1200 0.25 0.034 73 0.8812
NVT 960 ¯ 0.020 0.183
NVT 2500 ¯ 0.020 0.144
NVT 6400 ¯ 0.020 0.095
NVT 960 ¯ 0.022 0.504
NVT 2500 ¯ 0.022 0.453
NVT 6400 ¯ 0.022 0.378
NVT 960 ¯ 0.024 0.714
NVT 2500 ¯ 0.024 0.702
NVT 6400 ¯ 0.024 0.694
NVT 960 ¯ 0.026 0.813
NVT 2500 ¯ 0.026 0.777
NVT 6400 ¯ 0.026 0.752
NVT 960 ¯ 0.028 0.830
NVT 2500 ¯ 0.028 0.810
NVT 6400 ¯ 0.028 0.792
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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would lead to a larger effective Franck constant for t
smaller system, which is exactly what we observe in F
1~b! from the subsystem size analysis. This is most proba
due to the periodic nature of the boundary conditions, wh
tend to enhance the orientational order for the small syst
For larger distances the decay appears to be slower, alth
since these separations are approaching half the simula
box dimension, we may expect to observe enhanced cor
tions with the periodic images. For the larger system
decay for separationsr .6L is slightly faster than the alge
braic decay observed over the range 1.5L,r ,5L. However,
we did not use the entire range to obtain estimates of
Franck constant because of the slow equilibration of lo
wavelength fluctuations of such large systems. Allowing
this faster decay when determiningh l from the correlation
function would slightly lower the effective elastic consta
and this is presumably why the subsystem block analy
which does take the whole system into account, gives a m
ginally lower value@see Fig. 1~b!#. A typical snapshot of this
system in the vicinity of the transition is shown in Fig. 2~b!.

We end this section by concluding that the behavior
2D spherocylinder systems for aspect ratiosL/D59 and
above is similar to that observed for infinitely thin needle9

FIG. 2. ~a! The orientational correlation functiong2(r )5^cos@2$u(0)
2u(r)%#& for systems of~d! 960 and~s! 6400 spherocylinders of length
L/D515 at a densityr50.024, just above the Kosterlitz–Thouless tran
tion. The solid lines indicate the algebraic decay (g2(r )}r 2h2) of the ori-
entational correlation function, fitted over the range 1.5,r /L,5.0. ~b! A
typical snapshot of a configuration of 6400 2D hard spherocylinders at
density. The spherocylinders are shown as thin lines for clarity.
Downloaded 11 Oct 2004 to 145.18.129.130. Redistribution subject to AI
.
ly
h

.
gh
on
la-
e

e
g
r

s,
r-

f

Thus a 2D nematic phase, in which the orientational cor
lations decay algebraically, is observed. This phase un
goes a continuous transition to an isotropic phase, vi
Kosterlitz–Thouless disclination unbinding type mechanis
which can be located by determining the density depende
the effective Franck constant. Below this critical density t
nematic phase is no longer stable, although the finite or
parameter observed for small systems indicates that st
local nematic fluctuations persist over a narrow density ra
below the transition. In contrast to the 2D needle syst
which, by definition, is at zero volume fraction, we expect
observe a solid phase at high densities~finite volume frac-
tions! for finite aspect ratios. However, for the systems stu
ied, the nematic phase appears to be stable up to rather
densities. At higher densities, relaxation of the system is
slow to be able to investigate the melting behavior ac
rately.

IV. PHASE BEHAVIOR OF SHORT RODS IN 2D

The behavior exhibited by shorter rods is found to
rather different from that just described for longer rods. Co
stant pressure simulations were performed for aspect ra
L/D51, 2, 3, 4, 5, and 7, for systems composed of betw
600 and 1000 particles using compression and expan
runs, as before. A typical equation of state is shown in Fig
for spherocylinders of aspect ratioL/D55; since all the
shorter models exhibit the same qualitative behavior,
shall discuss the results for this system only. The first ma
difference between short and long rods can be observed
rectly from the equation of state. The strong hysteresis
offset between the branches of the equation of state
clearly indicative of a first order transition. On expansio
the order parameterS ~not shown! is found to drop from
almost unity to essentially zero when the system jumps fr
one branch to the other. From this we can almost certa
conclude that the short rod systems do not exhibit a nem
phase, but undergo a transition directly from the solid to
isotropic phase. To determine the location of the transiti

is

FIG. 3. Equation of state for a 2D system of 840 spherocylinders of as
ratio L/D55 determined from NPT simulations;~s! compression from
isotropic,~d! expansion from solid and~n! compression and~m! expansion
using square-flip trials. The dotted lines indicate the coexistence pres
and the coexistence densities of the isotropic and solid phases obtained
free energy calculations. Units,P in kBT/D2,r in D22.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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we followed the standard route of calculating the Gibbs f
energy of each phase as a function of pressure.20 For the
isotropic phase, we can compute the absolute value of
free energy via a thermodynamic integration along the eq
tion of state taking the ideal gas as a reference state. Fo
solid phase, we choose as a reference system an Ein
crystal, with a Hamiltonian which couples the particles
their equilibrium lattice positions and the orientations to
aligning field; this Hamiltonian takes the form4

Hl1 ,l2
5l1(

i
~r i2r i

0!21l2(
i

sin2 u i , ~6!

wherer i andr i
0 are the position and lattice site of particlei,

u i is the angle between the particle and aligning field andl1

andl2 are the coupling constants. Further details of the c
culation of the free energy of the solid phase of a syst
with orientational and positional order can be found in R
4, with minor corrections for the fixed center-of-mass co
straint in Ref. 21. The coexistence pressure and dens
determined for theL/D55 system are shown in Fig. 3.

Further evidence that nematic phases are not obse
for the short rod models comes from the observation that
systems were unable to jump from the low density branch
the equation of state to the high density branch. We re
that for a long rod system, the correlation length of nema
fluctuations gradually increases with density within the is
tropic phase. As the density is further increased the sys
becomes nematic and the orientational order continue
steadily increase whilst the system remains fluid. Thus we
not expect the orientational degrees of freedom to pla
significant role in the freezing transition, as the particles
all essentially aligned prior to the transition to the solid~even
though this occurs at too high a pressure to be character
in our simulations!. However, for the short rod systems, th
lack of orientational order prior to the freezing transitio
leads to the system being unable to jump to the solid bra
of the equation of state, even for extremely long simulat
runs of over a million cycles~for the L/D55 system!. One
reason for this can be observed in snapshots of the
phases either side of the solid–isotropic transition; typi
examples of these are shown in Figs. 4~a! and 4~b! for an
expansion run of a system of 840 particles. We observe
the high density phase is highly ordered, both orientation
and positionally, although we have not investigated whet
this phase should strictly be called a 2D solid or a 2D sm
tic. On melting@see Fig. 4~b!# the system clearly become
isotropic. However, the isotropic phase does not contain
mains reminiscent of a nematic phase~which are observed in
the isotropic phase of the long rod systems!, but rather chains
of particles aligning side-by-side, more reminiscent of t
solid. A similar structure is observed for all short rod sy
tems, evenL/D51, on both expansion of the solid and com
pression of the fluid, although the chains appear to beco
less well developed as the particle length decreases.
equation of state~see Fig. 3! indicates that on further com
pression of the isotropic phase, the solid phase is not re
ered. This seems entirely reasonable when we consider
locally, the isotropic phase is essentially locked into a so
Downloaded 11 Oct 2004 to 145.18.129.130. Redistribution subject to AI
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FIG. 4. Snapshots of systems of spherocylinders of lengthL/D55 in the
vicinity of the melting transition taken from NPT simulations.~a! The solid
phase atP53.0, r'0.145 and~b! the isotropic phase atP50.2, r'0.130
of a system of 840 particles. Snapshots of the melting of a solid of 2
particles at~c! P52.25 and~d! P52.00. Units,P in kBT/D2,r in D22.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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like structure. Conventional single particle trial moves us
in the Monte Carlo simulations do not help to unlock th
bottleneck; large angular displacement trials~90°! are always
rejected, whilst small successful displacements do not re
in any significant changes. To overcome this problem,
performed trials in which small regions containing more th
one particle were rotated; thus in addition to single parti
trials, which help the system relax locally, trials were p
formed in which a square region, of dimensions appro
mately equal to the length of a single particle, was rotated
690°. Although most of these were rejected due to over
occasional successes~'0.1%! in the vicinity of the melting
transition (0.135<r<0.145) do indeed lead to significan
changes in structure. The data obtained from the use of t
trials in a compression run are shown in Fig. 3. The ‘‘squa
flip’’ trials are found to reproduce the jump in the equati
of state on compression~after 100 000 s of cycles!, although
the densities are slightly lower than those obtained on exp
sion. Snapshots~not shown! indicate that this is because th
system is composed of two large solid domains, perpend
larly aligned, rather than a single domain. Given even lon
runs the system may gradually transform into a single
main, but these were not performed. The square-flip t
moves also helped to rule out another possibility. The eq
tion of state indicates that the solid can be overexpanded
the melting density determined from the free energy calcu
tions. In large systems this leads to a highly defected laye
structure@see Fig. 4~c!# which appears to be stable over hu
dreds of thousands of cycles. Lowering the pressure slig
leads to the layer structure being destroyed, in favor of
isotropic phase composed of chains@see Fig. 4~d!#. However,
when the same expansion run is performed using square
trials, the overexpanded metastable layered system is fo
to disorder. Thus we conclude that this highly defected str
ture is not thermodynamically stable. The fact that the co
istence pressure determined from the free energy calcula
lies at the lower end of the hysteresis region obtained us
the square-flip Monte Carlo trials, which can equilibrate t
system much more efficiently than standard trials, gives
increased confidence in the accuracy of the free energy
culations.

The snapshots of the isotropic phase of theL/D55 sys-
tem indicate that not only are chains formed, but that nei
boring chains appear to align either parallel or perpendic
to each other. This may lead us to wonder if this phase co
exhibit a tetratic phase, the equivalent of the cubatic phas
three dimensions,22,23 in which there are two preferred direc
tions of alignment, but no positional order. However, th
can be ruled out by analyzing the orientational correlat
functions. The second and fourth rank correlation functio
resolved into directions parallel and perpendicular to the p
ticle at the origin, are shown in Fig. 5. These indicate
high local orientational and positional order in the isotrop
phase; we recall that parallel alignment contributes positiv
to bothg2 andg4 , whereas perpendicular alignment contri
utes negatively tog2 but positively tog4 . The peaks along
the r' direction clearly arise from parallel particles with
the same chain. The structure along ther i axis is less
well defined. g2(r i,0) has a strong minimum betwee
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3.0D,r i,4.0D which occurs for steric reasons; for tw
particles to approach this close, they almost certainly will
perpendicular to each other. A secondary maximum ar i

'6.5D can be identified as arising from two parallel pa
ticles although this is rather weak and does not extend al
the r' direction, indicating that the chains do not stack
top of each other~as they do in the solid phase!. If the struc-
ture was tetratic, then we expect this to show up in the lo
range region ofg4(r ) which should be finite, in contrast to
g2(r ) which will tend to zero. However, the observation th
g4(r i ,r') decays to zero rather quickly away from ther'

axis indicates that the phase does not possess tetratic o

V. PHASE DIAGRAM OF 2D SPHEROCYLINDERS

The results of the NPT simulations and free energy c
culations to determine the coexistence densities of the so
isotropic transition exhibited by the short rod systems
summarized in Fig. 6. This figure indicates that the volu
fraction at which the solid melts is essentially constant a

FIG. 5. The orientational correlation functions~a! g2(r )5^cos@2$u(0)
2u(r )%#& and ~b! g4(r )5^cos@4$u(0)2u(r )%#& for an isotropic system of
1000 particles of aspect ratioL/D55 at a densityr50.125. The interpar-
ticle vectorr is resolved into componentsr i and r' , parallel and perpen-
dicular to the orientation of the particle at the origin.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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not dependent on the length of the rod, although the den
gap between the two phases is reduced as the length i
creased. We note that there is still controversy surround
the melting transition for the limiting caseL→0, that is, 2D
hard disks. For this model, it is not clear whether the melt
transition is first order, continuous or of the Kosterlitz
Thouless-type. This point is further addressed in Refs.
and 25. However, whilst the order of the transition is n
clear, the approximate density region in which the transit
is located is not in doubt. The data in Fig. 6 indicate that
volume fraction at melting for elongated particles is larg
than that for 2D disks. This is because the orientational
grees of freedom present in the rod systems help to des
the solid phase in favor of the isotropic phase. We ha
found no evidence for topological defects occurring even
the shortest rodsL51. However, similar to the situation fo
2D hard disks, we cannot totally rule out the possibility th
a Kosterlitz–Thouless-type melting transition occurs
very short rods. The melting transition for lengths abo
L/D57 has not been studied, due to the long equilibrat
times necessary to accurately locate the transition. Howe
it would be interesting to determine the volume fraction
the limiting case of infinitely thin rods at the melting trans
tion; although this transition is expected to occur at infin
number density, it will occur at finite volume fraction. B
assuming a constant director for the nematic phase ov

FIG. 6. Phase behavior of 2D systems of spherocylinders as a functio
their aspect ratioL/D. ~s, d! Solid–isotropic transition,~h! 2D nematic–
isotropic transition,~n, m! melting transition in 2D disks~Ref. 8! and ~j!
NI transition in 2D needles~Ref. 9!. The lines are a guide to the eye only
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simulation cell, a simple scaling along the director will tran
form a system of infinitely long rods into a system of pa
ticles with finite volume and so the melting transition cou
be studied in the finite length limit. This has been done
3D systems of rods4 and disks26 but not yet for 2D systems
The data are plotted to show the behavior in the limitL/D
→` in Fig. 6~b!. The simulation data forL/D59 and 15
clearly indicate that there is a drop in the concentrat
(rL2/D2) at which the KT disclination unbinding transitio
takes place as the rod length is shorter, as we expect s
the width of the particles becomes more and more impor
as the rod becomes shorter. The nematic–isotropic trans
disappears in the region 6,L/D,9. We did not observe a
NI transition in the simulations forL/D57, although since
only relatively small systems were used we cannot rule
out. In the simulations, the order parameter in the fluid at
melting transition was reasonably high (S'0.20– 0.40) and
subject to large fluctuations, which could possibly mean t
a nematic is stable for this aspect ratio, although no sys
size dependence was studied. The square-flip moves w
were used for theL/D55 system were found to be les
useful as the rod length increases, since the square nece
to flip a region of dimension (L/D)2 contains more particles
and so is more likely to be rejected. Snapshots from
simulations indicate that there are some chains of parti
similar to those formed in the isotropic phase of theL/D
55 model, although these tend to be more disordered wi
the chain, and also that there are also some regions simil
those of the nematic of theL/D59 model. Clearly larger
systems would be necessary to determine whether or
there is a stable nematic phase atL/D57. Figure 6~b! indi-
cates that even though this is a strong possibility, the den
range of the nematic would be severly reduced in comp
son to the longer rodsL/D59 and 15, and so determinin
the location of the KT transition may be difficult.

In summary, we observe two types of behavior f
spherocylinders confined to a plane. Long rods (L/D.7)
have a behavior similar to infinitely thin needles, in that t
exhibit a 2D nematic phase with algebraic decay in the o
entational correlations between the particles. Shorter r
(L/D,7) do not exhibit a nematic phase, but undergo
melting transition to a phase dominated by chains of partic
which align side-by-side, but are isotropically arranged. Th
we observe that for short rods, the most favorable packin
maximize the entropy on melting is to retain the local sol
like order and form an isotropic distribution of chains
particles. A crossover in behavior occurs atL/D'7 when it
is more favorable to lose the local positional order betwe
particles but to retain the orientational order and so form
nematic phase. We conclude that the enhanced stabilit
the isotropic phase due to the formation of chains means
the nematic phase does not enter the phase diagram
L/D'7; this contrasts to the 3D case, where the nem
phase is observed for rods as short asL/D54.4

It is interesting to compare the results of these simu
tions with other experiments and models of 2D liquid cry
talline systems. Studies of 2D hard ellipses18 indicate that the
nematic is stable for aspect ratios ofk'4 and above; we
should compare the behavior of ellipses of aspect ratiok with

of
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spherocylinders of length (L1D)/D. However, the NI tran-
sition appears to be continuous fork56 but first order for
k54, and thus a tricritical point is expected between th
two aspect ratios. The fact that short ellipses do not exhib
similar isotropic phase to spherocylinders is not surprisi
since spherocylinders can pack most effectively side-by-s
In contrast, ellipses aligned side-by-side can roll against e
other and therefore it is unlikely that chains will form and
the isotropic phase observed for spherocylinders is no
favorable as a nematic phase. This also appears to be the
for the high density solid phase. For the ellipses, rather la
fluctuations in the positions of the layers are observed
contrast, the spherocylinders tend to exhibit almost perfec
ordered layers due to the effective side-by-side alignm
Thus we observe that a small difference in the shape of
particle can lead to rather different phase behavior. Sca
particle theory for 2D systems of ellipses and rectangles h
also been performed.27 Whilst this theory does not take int
account either the solid phase or the possibility to fo
chains in the isotropic phase, we can compare the result
the critical aspect ratio for the nematic phase to be obse
with that determined for rectangles~the same as our mode
except with no end-caps!. We recall that for spherocylinders
a nematic phase is observed only forL/D'7 or larger and
that the NI transition is always continuous. Scaled parti
theory predicts that a continuous NI transition occurs
L/D.5.44 and a first order NI transition occurs
L/D,5.44. If the semicircular end caps on the spherocy
ders behave as extra square units of lengthD/2, the tricritical
point would occur for spherocylinders atL/D54.44, al-
though somewhere betweenL/D54.44 and 5.44 is more
likely. Thus it seems reasonable that the NI transition
spherocylinders is always continuous, since we find that
nematic phase is only observed at densities well above
predicted nematic–isotropic tricritical point. However,
would be interesting to compare the results with a theory
does take into account the possibility of the particles align
side-by-side in chains, since this seems to be the reaso
the enhanced stability of the isotropic phase over the nem
for short rods. The only comparable experimental system
that of long phospholipid tubules suspended on a surfac
which the NI transition is claimed to be first order.28 How-
ever, it seems likely that this is due to aggregration of p
ticles in the dense nematic phase, since this phase coe
with an isotropic phase of very low density.

VI. CONCLUSIONS

We have studied the phase behavior of a family of
systems composed of rigid rods confined to lie in a plane
a function of the rod length. Systems composed of partic
longer thanL/D'7 are found to undergo a transition fro
the isotropic fluid to a 2D nematic phase. The orientatio
correlations in this phase decay algebraically and thus s
gest that this phase does not possess true long range o
Since this is also the case for the limiting case of infinite
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thin needles, this further suggests that the nematic phas
all aspect ratiosL/D ~where observed! will have the same
behavior. For each model system exhibiting a nematic ph
we have performed a block averaging analysis of the or
parameter to obtain an estimate of the renormalized Fra
elastic constantK, to determine the location of the
Kosterlitz–Thouless disclination unbinding transition. T
solid–isotropic transition density drops below the extrap
lated KT transition density atL/D'7 and so for shorter rods
we no longer observe a stable 2D nematic phase. Altho
the low density phase is isotropic, at densities below melt
we still observe a strong local correlation in the positions a
orientations of the particles. These correlations lead to
formation of chains of rods, in which the particles tend
align side-by-side. Examination of the orientational corre
tion functionsgl(r i ,r') appears to rule out the chance th
this short range order can lead to the formation of a
tetratic phase in these systems.
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