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Phase behavior of two-dimensional hard rod fluids

Martin A. Bates and Daan Frenkel
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

(Received 3 November 1999; accepted 4 February 2000

Monte Carlo simulations are used to study two-dimensional hard rod fluids consisting of
spherocylinders confined to lie in a plane. The phase behavior is mapped out as a function of the
aspect ratio (/D) of the particles, from the hard disc limit at one extrenhé =0) to the thin

hard needle limit at the othelL(D ==). For long rods, a 2D nematic phase is observed at high
density in which the orientational correlation functions decay algebraically, indicating that the phase
does not possess true long range orientational order. The simulation data indicate that the transition
from this phase to the low density isotropic phase is continuous, via a Kosterlitz—Thouless
disclination unbinding type mechanism, rather than first order. For short rods the nematic phase
disappears so that, on expansion, the solid phase undergoes a first order transition directly to an
isotropic phase. Although the latter phase is globally isotropic, we find evidence for strong local
positional and orientational correlations between the particles. Where possible, the simulation
results are compared and contrasted to experimental, simulation and theoretical data for other
two-dimensional liquid crystalline systems. #D00 American Institute of Physics.
[S0021-960600)51016-2

I. INTRODUCTION behavior as the aspect ratio of the particles is increased.
However, we note that in 2D there is no distinction between
Computer simulation studies of hard body particles haveprolate and oblatérodlike and disklike particles, as there is
played an important role in the current understanding of thén 3D, because particles in two dimensions have only two
liquid crystalline behavior of systems composed of rodlikesymmetry axes. Since we are particularly interested in the
colloids. Following Onsager’s theoretical demonstration thahature of any liquid crystalline phases present in the phase
a system of infinitely long hard particles can exhibit an ori-diagram, the relevant predictions about these phases are de-
entationally ordered phase if the density is sufficiently High, scribed in Sec. Il. The simulations of systems composed of
computer simulation studies gave the first indication that‘long” and “short” rods confined to two dimensions are
smectic phases can also be formed by systems of particleiscussed in Secs. Ill and 1V, respectively, and the distinc-
which interact through excluded volume interactions afone.tion between them made clear. The phase diagram of 2D
Such discoveries have lead to further simulation and theorespherocylinders as a function of aspect ratio is presented in
ical studies of simple hard body models and now the phas&ec. V, along with a comparison between this family of sys-
diagrams for monodisperse systems composed of, for exems and other related models. Our conclusions are summa-
ample, ellipsoid and spherocylindefshave been deter- rized in Sec. VI.
mined as a function of particle shape anisometry, ranging
from their common limiting cases of hard spheres to infi-
nitely thin rods. Other factors present in real colloidal sys-; >p NEMATIC PHASES
tems which can influence the phase behavior, such as poly-
dispersity in the length of the particles, have also been One of the most interesting properties of 2D systems is
studied theoreticalfyand via simulatioff. Although many the lack of true long range ordétRO). Although the cor-
model colloidal systems in three dimensions have been inrelation length in such a system may be macroscopically
vestigated and are now well understdooyr understanding large, it is not infinite, as required for a true crystaBtraley
of two-dimensional(2D) liquid crystalline systems is far has shown that, whilst tru@rientational LRO cannot exist
from complete. for 2D nematics if the particles interact via a separable po-
Here we report a Monte Carlo simulation study of atential, this does not necessarily apply if the potential is not
family of 2D systems, composed of hard spherocylinders oseparable into positional and orientational patt$his de-
aspect ratid./D confined to lie in a plane. Although these coupling of the potential is not possible for almost all models
particles, defined as a rectangle of lengittand breadttD in which particle shape is taken into account including the
capped at each end by a semicircle of diam&geare more present one. Thus it is important to know whether “realis-
strictly described as ‘“discorectangles,” we shall use thetic” liquid crystalline models that include a shape tefas
term 2D spherocylinder throughout this paper. This modebpposed to a circular corexhibit true LRO. To differentiate
can be used to span an entire aspect ratio, from 2D har8l diskystems which possess true LRO from those that do not,
at one extremel(/D=0) to 2D hard needl@sat the other those that lack true LRO are commonly referred to as having
(L/D=x), and so we may expect to observe a variety ofquasi-LRO.
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Quasi-LRO is to be expected in a 2D nematic if the freelll. PHASE BEHAVIOR OF LONG RODS IN 2D
energy associated with collective fluctuations in the particle

: . ) Monte Carlo simulations were used to study the phase
orientations is of the form

behavior of 2D systems of spherocylinders of length
1 L/D=1,2,3,4,5,7,9, and 15. In this section we discuss the
F:_f K(V6(r))4dr, (1)  results of the long modeld./D=9 and 15; the shorter
2 lengths exhibit a qualitatively different behavior and will be
) ) ) o discussed in Sec. IV. The equation of state was determined
where 6(r) characterizes the orientation at positiprwith using constant pressui@®PT) Monte Carlo simulation&’
respect t20 a fixed axis and is the 2D Frank elastic pqr the two modeld /D=9 and 15, we performed simula-
constant* A more general form of Eq(1) should contain  qns for systems of 640(808) and 1200(158 8) particles,
two Franck constanti; andK, associated with distortions respectively, using both expansion runs of a high density
parallel and perpendicular to the localized director, but on &iq and compression runs of a low density gas. These sizes
sufficiently large length scale these constants are renormalyere chosen to ensure that the systems were essentially of
ized to the same valug.? It is useful to recall some predic- equal dimension along the and y-axes. The length of the
tions about the nature of a 2D nematic phase described byimyjation at each state point varied, but was typically
Eqg. (1). The _amphtude (_)f the orientational qu_ctuatlons di- 50 000—100 000 cycles for equilibration and 100 000 cycles
verges logarithmically with the number of particls for calculation of averages, although longer runs were used
where this was deemed necessary, in the vicinity of the NI
KT InN. 2) transition.
4K Since the behavior exhibited by both long rod systems is
qualitatively similar, we discuss here only the results for
This means that both the order parameder(cos()) and | /p=15. The equation of state is shown in Fig. 1. At the
the orientational correlation functiong;(r)=(cod{6(0)  nighest pressure studie® € 1.0, in unitskgT/D?), the solid
—6(n}]) (1=2,4,...) decay algebraically and vanish in the melts fairly rapidly to form a highly ordered nematic phase,
limits N— oo andr—co, respectively, in which the layered nature of the solid is completely lost.
On both expansion of the high density nematic phase and
compression of the low density isotropic phase, we do not
5 find evidence for either hysteresis or a discontinuity in the
gi(r)~c'r-m=c'r"keT27K (4)  equation of state and so it seems unlikely that there is a first
order transition between the orientationally ordered and dis-
wherec andc’ are constants. One possible description of theordered states. However, the 2D nematic order parameter
transition between a 2D nematic phase with quasi-LRO an@é=(cos(2)) (see Table), calculated via the usual diagonal-
an isotropic phase is via a Kosterlitz—Thoul€kd') dislo-  ization of the order parameter tensdndicates that the ori-
cation unbinding type mechanist.This transition is pre- entational order of the system is dependent on density and,
dicted to occur in 2D nematic systems at a critical value oftherefore, that there is a density driven transition from a dis-

(0%)~

S~cN~ kBT/27TK, (3)

the renormalized Franck constafg,* ordered to an ordered state. To further investigate the nature
of this transition, a number of constant volume runs were
Tf_Kc_l 5 performed for a few different system sizeld 960, 2500,
8kgT 6400, see Table) lin the density range where the order pa-

rameter was observed to rapidly increase and we found that,
However, whilst this means that a nematic phase is not stabkes for 2D hard needl€sSis strongly dependent not only on
for values of the Franck constant below the critical vifye  density, but also on the system size. This strong system size
it does not rule out the possibility of a nematic—isotropicdependence is exactly what we expect for a system with
(NI) transition via a different mechanism at higher densitiesquasi-LRO[see Eq(3)]. Indeed, if the orientational correla-
The 2D version of the Onsager thethfor infinitely thin  tion function in the nematic phase decays algebraically, we
rods confined to a plane predicts a continuous NI transitiorexpect that the nematic order paramesawill tend to zero
at a densitypL?~4.7, although due to the neglect of third for all densities as the system size is increased towards the
and higher virial coefficients this should be viewed with thermodynamic limit. For a finite system, we also expect that
some caution. Simulations using systems of hard needles ithe order parameter of the isotropic phase will be larger than
dicate that this model exhibits a continuous NI transition atzero once the correlation length of nematic fluctuations ex-
pL?2~72 via a KT disclination unbinding type mechanism, ceeds the size of the periodic simulation box. Whilst this
rather than a first order transition. Computer simulationameans that the order parameter and the equation of state
have been performed on other nonseparable and separalai®ne do not help us to determine the location of the transi-
potentials. Whilst quasi-LRO has been observed for the sepdion between the isotropic and nematic phases, analysis of
rable models studiet?:'® contrasting evidence is found for the system size dependence of the order parameter is useful.
nonseparable potentidl$®8Indeed, for ellipses, the nature Since the nematic order parameter is expected to decay as
of the transition appears to depend on the aspect ratio, are~N" 27K [Eq. (3)], we can use the system size depen-
the phase diagram possesses a tricritical point at which théence to obtain the Franck constdhis a function of den-
transition changes from first order to continudgs. sity. This in turn allows us to determine the location of the
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1.0 TABLE |. Summary of the thermodynamic properties obtained from Monte
P(p) (a) Carlo simulations of a system of 2D=15 spherocylinders. Column 1:
08 | simulation ensemble, NPT or NVT; column 2: number of particles; column
: ® 3: pressure, in unitegT/D?; column 4: density, in unit® ~2; column 5: 2D
orientational order paramet&= (cos()).
0.6 -
® Ensemble N P p S
0.4 1 . NPT 1200 0.02 0.008 64 0.0295
. NPT 1200 0.04 0.01345 0.0499
02 1 . NPT 1200 0.06 0.017 10 0.0904
o ® NPT 1200 0.08 0.020 72 0.1034
eee*”’ © NPT 1200 0.09 0.022 16 0.3595
0.0 e ' ' NPT 1200 0.10 0.023 45 0.5377
p NPT 1200 0.20 0.03207 0.8749
NPT 1200 0.25 0.03473 0.8812
6.0 NVT 960 e 0.020 0.183
K (b) Jl NVT 2500 0.020 0.144
5.0 1 NVT 6400 0.020 0.095
NVT 960 0.022 0.504
4.0 1 D NVT 2500 0.022 0.453
) NVT 6400 0.022 0.378
3.0 A AT NVT 960 0.024 0.714
NVT 2500 0.024 0.702
2.0 1 : NVT 6400 0.024 0.694
NVT 960 0.026 0.813
1.0 NVT 2500 0.026 0.777
o NVT 6400 0.026 0.752
0.0 e ; ; . NVT 960 0.028 0.830
0.020 0022 0024 0026 0028  0.030 NVT 2500 0.028 0.810
P NVT 6400 0.028 0.792

FIG. 1. (a) The equation of state for a 2D system of 1200 spherocylinders of
aspect ratid_/D =15 determined from NPT simulation&)) compression

from isotropic, (®) expansion from perfectly ordered nematic. The arrow P : :
indicates the location of the Kosterlitz—Thouless disclination unbinding typeﬂ-K/kBT<8’ that is, if C<1. The simulation data for all

transition between the isotropic and nematic phaé®sThe renormalized  three system sizes indicates that the nematic is no longer
e o Y St o ok s e et S ST s o e oo e e 1o e
(Ttg]refor oystems olL) 980, () 32’500, and ) % 48’0 barticlos and frompthe elastic constant evalqated at constant density is dependent on
algebraic decay of the orientational correlation functipf(r) [see Eqs(3) the system size; thl§ h?.S a's‘? been Observe.d for other
and (4)] for (@) =2 and (M) 1=4 for the larger system. Unit® in SyStemﬁHowever, whilst Increasing the system size appears
kgT/D?,p in D72 to renormalize the effective Franck constant to lower values,
this does not appear to shift the transition to higher densities,
at least within the computational accuracy for the system
disclination unbinding transition, below which there is no sizes and the model studied hésee Fig. )]
possibility of a stable nematic phase. Evidence that the orientational correlations in the nem-
The block averaging analysis of the order parameteratic phase decay algebraically comes from the angular cor-
which we briefly describe, follows that previously used for relation functionsg,(r), shown in Fig. 2a) for the lowest
the systems of infinitely thin rodsFor each of the constant density at which the 2D nematic phase is stdhle= 0.024,
volume runs, the values & S?, andS* were calculated for see also Fig. (®)]. Since these are expected to decay as
the whole systemN=960, 2500 or 6400and subsystems g,(r)er~ 7, with 5,=12%kgT/27K [see Eq(4)] at distances
with an area equal to 1/4, 1/16, 1/36, 1/64 and, for the largedbnger than the particle length, analysis of these functions
system, 1/100 of the simulation box for densities in the rangean also give information on the location of the disclination
0.020< p<<0.030 (units D~ 2). The (subsystem size depen- unbinding transition via the density dependence of the
dence of the order paramet& within the three different Franck constant. The elastic constants obtained from the cor-
systems was then fitted to a power law of the formrelation functiongy,(r) andg,(r) for the largest system are
S=aN"P [see also Eq(3)], with the coefficienb related to  plotted in Fig. 1b). Although the values are slightly higher
the Franck constant bly=kgT/27K. Similarly the size de- than those obtained from the block averaging of the order
pendencies o8? andS* gave constantls, andb,, related to  parameter for the same system, they do confirm the location
b by b,=2b andb,=4b. For densitiesp=0.022, we find of the continuous transition at~0.0235. Note that the ori-
that the relatiorb=b,/2=b,/4 is well satisfied as expected entational correlation functiorg(r) also show some system
in the nematic phase. In Fig.(d), the elastic constant size dependendsee Fig. 2a)]. For example, the correlation
K=aK/8kgT=1/16b) is plotted as a function of density, functiong,(r) determined for the smaller syster € 960)
where (b) is the average ob, b,/2, andb,/4. We recall in the rangea <5L decays algebraically but slower than that
that spontaneous disclination unbinding is expected idetermined for the larger systeiN € 6400). This, of course,
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FIG. 3. Equation of state for a 2D system of 840 spherocylinders of aspect
ratio L/D=5 determined from NPT simulationg{D) compression from
isotropic,(®) expansion from solid and\) compression an¢lh) expansion

using square-flip trials. The dotted lines indicate the coexistence pressure
and the coexistence densities of the isotropic and solid phases obtained from
free energy calculations. UnitB,in kgT/D2,p in D2,
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Thus a 2D nematic phase, in which the orientational corre-
lations decay algebraically, is observed. This phase under-
goes a continuous transition to an isotropic phase, via a
Kosterlitz—Thouless disclination unbinding type mechanism,
which can be located by determining the density dependence
the effective Franck constant. Below this critical density the
nematic phase is no longer stable, although the finite order
. 2 1 The ot condtn cton)-(cosgoy PSS abseried fr smal ytems nlcates at s
—6(r)}]) for systems of(®) 960 and(O) 6400 spherocylinders of length
L/D=15 at a density=0.024, just above the Kosterlitz—Thouless transi- below the transition. In contrast to the 2D needle system
tion. The solid lines indicate the algebraic decay(f)r ~72) of the ori- which, by definition, is at zero volume fraction, we expect to
ent?“?”a' COLfet'aﬁfO;‘ gggg“o:‘éﬁfg;egf%‘gotg% rﬁg%emférzfﬁ,; é‘z)r Aat thiobserve a solid phase at high densitiisite volume frac-
Ejygr:c;?;y.sr‘]l'?lzssghgrocylinde%’l; are shown as thin IinesS?or clar)i/ty. > ilons) for finite _aspect ratios. However, for the systems StUd__
ied, the nematic phase appears to be stable up to rather high
densities. At higher densities, relaxation of the system is too
slow to be able to investigate the melting behavior accu-
would lead to a larger effective Franck constant for therately.
smaller system, which is exactly what we observe in Fig.
1(b) from the gubsystem size analysis. This is m'o'st proba.bI¥V. PHASE BEHAVIOR OF SHORT RODS IN 2D
due to the periodic nature of the boundary conditions, which
tend to enhance the orientational order for the small system. The behavior exhibited by shorter rods is found to be
For larger distances the decay appears to be slower, althougather different from that just described for longer rods. Con-
since these separations are approaching half the simulati@tant pressure simulations were performed for aspect ratios
box dimension, we may expect to observe enhanced correlé/D=1, 2, 3, 4, 5, and 7, for systems composed of between
tions with the periodic images. For the larger system theés00 and 1000 particles using compression and expansion
decay for separations>6L is slightly faster than the alge- runs, as before. A typical equation of state is shown in Fig. 3
braic decay observed over the rangeL k% <5L. However, for spherocylinders of aspect ratio/D=5; since all the
we did not use the entire range to obtain estimates of thehorter models exhibit the same qualitative behavior, we
Franck constant because of the slow equilibration of longshall discuss the results for this system only. The first major
wavelength fluctuations of such large systems. Allowing fordifference between short and long rods can be observed di-
this faster decay when determining from the correlation rectly from the equation of state. The strong hysteresis and
function would slightly lower the effective elastic constant offset between the branches of the equation of state are
and this is presumably why the subsystem block analysis;learly indicative of a first order transition. On expansion,
which does take the whole system into account, gives a mathe order paramete® (not shown is found to drop from
ginally lower valug see Fig. 1b)]. A typical snapshot of this almost unity to essentially zero when the system jumps from
system in the vicinity of the transition is shown in Figbg  one branch to the other. From this we can almost certainly
We end this section by concluding that the behavior ofconclude that the short rod systems do not exhibit a nematic
2D spherocylinder systems for aspect ratlod=9 and phase, but undergo a transition directly from the solid to an
above is similar to that observed for infinitely thin needles. isotropic phase. To determine the location of the transition,
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we followed the standard route of calculating the Gibbs free
energy of each phase as a function of pres8ufeor the
isotropic phase, we can compute the absolute value of the
free energy via a thermodynamic integration along the equa-
tion of state taking the ideal gas as a reference state. For the
solid phase, we choose as a reference system an Einstein
crystal, with a Hamiltonian which couples the particles to
their equilibrium lattice positions and the orientations to an
aligning field; this Hamiltonian takes the fofm

H)\l,)\zz)\lZ (r

i—r0)2+\,>, st 6, (6)

wherer; and ri0 are the position and lattice site of partiéle
0, is the angle between the particle and aligning field apd
and\, are the coupling constants. Further details of the cal-
culation of the free energy of the solid phase of a system
with orientational and positional order can be found in Ref.
4, with minor corrections for the fixed center-of-mass con-
straint in Ref. 21. The coexistence pressure and densities
determined for the./D =5 system are shown in Fig. 3.
Further evidence that nematic phases are not observed
for the short rod models comes from the observation that the
systems were unable to jump from the low density branch of
the equation of state to the high density branch. We recall
that for a long rod system, the correlation length of nematic
fluctuations gradually increases with density within the iso-
tropic phase. As the density is further increased the system
becomes nematic and the orientational order continues to
steadily increase whilst the system remains fluid. Thus we do
not expect the orientational degrees of freedom to play a
significant role in the freezing transition, as the particles are
all essentially aligned prior to the transition to the sdégen
though this occurs at too high a pressure to be characterized
in our simulations. However, for the short rod systems, the
lack of orientational order prior to the freezing transition
leads to the system being unable to jump to the solid branch
of the equation of state, even for extremely long simulation
runs of over a million cycle¢for the L/D=5 system. One
reason for this can be observed in snapshots of the two
phases either side of the solid—isotropic transition; typical
examples of these are shown in Fig$a)dand 4b) for an
expansion run of a system of 840 particles. We observe that
the high density phase is highly ordered, both orientationally
and positionally, although we have not investigated whether
this phase should strictly be called a 2D solid or a 2D smec-
tic. On melting[see Fig. 4b)] the system clearly becomes
isotropic. However, the isotropic phase does not contain do-
mains reminiscent of a nematic phasénich are observed in
the isotropic phase of the long rod systenmit rather chains
of particles aligning side-by-side, more reminiscent of the
solid. A similar structure is observed for all short rod sys-
tems, everL./D =1, on both expansion of the solid and com-
pression of the fluid, although the chains appear to become
less well developed as the particle length decreases. The
equation of statésee Fig. 3 indicates that on further com-
pression of the isotropic phase, the solid phase is not recoy;

(b)
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FIG. 4. Snapshots of systems of spherocylinders of lebhgih=>5 in the
vicinity of the melting transition taken from NPT simulatioria) The solid

] - ) hase aP=3.0, p~0.145 andb) the isotropic phase &=0.2, p~0.130
ered. This seems entirely reasonable when we consider théata system of 840 particles. Snapshots of the melting of a solid of 2400

locally, the isotropic phase is essentially locked into a solidparticles at(c) P=2.25 and(d) P=2.00. Units,P in kgT/D?p in D%
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like structure. Conventional single particle trial moves used
in the Monte Carlo simulations do not help to unlock this
bottleneck; large angular displacement tri@6°) are always
rejected, whilst small successful displacements do not result
in any significant changes. To overcome this problem, we
performed trials in which small regions containing more than
one particle were rotated; thus in addition to single particle
trials, which help the system relax locally, trials were per-
formed in which a square region, of dimensions approxi-
mately equal to the length of a single particle, was rotated by
+90°. Although most of these were rejected due to overlap,
occasional successés0.1% in the vicinity of the melting
transition (0.135:p=<0.145) do indeed lead to significant
changes in structure. The data obtained from the use of these
trials in a compression run are shown in Fig. 3. The “square-
flip” trials are found to reproduce the jump in the equation
of state on compressig@after 100 000 s of cyclgsalthough

the densities are slightly lower than those obtained on expan-
sion. Snapshot&ot shown indicate that this is because the
system is composed of two large solid domains, perpendicu-

Phase behavior of 2D hard rod fluids
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larly aligned, rather than a single domain. Given even longer
runs the system may gradually transform into a single do-
main, but these were not performed. The square-flip trial 6.0
moves also helped to rule out another possibility. The equa-
tion of state indicates that the solid can be overexpanded past 4.0
the melting density determined from the free energy calcula-
tions. In large systems this leads to a highly defected layered
structure]see Fig. 4c)] which appears to be stable over hun-
dreds of thousands of cycles. Lowering the pressure slightly
leads to the layer structure being destroyed, in favor of the 0.0
isotropic phase composed of chajsse Fig. 4d)]. However, 00 20 40 60 80
when the same expansion run is performed using square-flip r /D
trials, the overexpanded metastable layered system is found L1
to disorder. Thus we conclude that this highly defected Strucgig, 5. The orientational correlation function® g,(r)=(co$2{6(0)
ture is not thermodynamically stable. The fact that the coex--g(r)}1) and (b) g,(r)=(cog4{6(0)— 6(r)}1) for an isotropic system of
istence pressure determined from the free energy calculatiori§00 particles of aspect ratldD=5 at a densityp=0.125. The interpar-
lies at the lower end of the hysteresis region obtained usinclé vectorr is resolved into components andr, , parallel and perpen-
. . . - icular to the orientation of the particle at the origin.

the square-flip Monte Carlo trials, which can equilibrate the
system much more efficiently than standard trials, gives us
increased confidence in the accuracy of the free energy cag op<r,<4.00 which occurs for steric reasons; for two
culations. particles to approach this close, they almost certainly will be

The snapshots of the isotropic phase of B =5 sys-  perpendicular to each other. A secondary maximunt at
tem indicate that not only are chains formed, but that neigh=. 6 5p can be identified as arising from two parallel par-
boring chains appear to align either parallel or perpendiculaficies although this is rather weak and does not extend along
to each other. This may lead us to wonder if this phase coulghe r direction, indicating that the chains do not stack on
exhibit a tetratic phase, the equivalent of the cubatic phase ifyp of each othefas they do in the solid phaséf the struc-
three dimension&,**in which there are two preferred direc- ture was tetratic, then we expect this to show up in the long
tions of alignment, but no positional order. However, thisrange region ofy,(r) which should be finite, in contrast to
can be ruled out by analyzing the orientational correlationy,(r) which will tend to zero. However, the observation that
functions. The second and fourth rank correlation functionsg,(r, ,r,) decays to zero rather quickly away from the

resolved into directions parallel and perpendicular to the paraxis indicates that the phase does not possess tetratic order.
ticle at the origin, are shown in Fig. 5. These indicate the

high local orientational and po;monal order in the |sot.r<_)p|cvl PHASE DIAGRAM OF 2D SPHEROCYLINDERS

phase; we recall that parallel alignment contributes positively

to bothg, andg,, whereas perpendicular alignment contrib- The results of the NPT simulations and free energy cal-
utes negatively tay, but positively tog,. The peaks along culations to determine the coexistence densities of the solid—
ther, direction clearly arise from parallel particles within isotropic transition exhibited by the short rod systems are
the same chain. The structure along theaxis is less summarized in Fig. 6. This figure indicates that the volume
well defined. g,(r;,0) has a strong minimum between fraction at which the solid melts is essentially constant and

2.0

10.0
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1.00 simulation cell, a simple scaling along the director will trans-
PV Cry (a) form a system of infinitely long rods into a system of par-

0.80 1 m ticles with finite volume and so the melting transition could

be studied in the finite length limit. This has been done for

0.60 1 Nem 3D systems of rodsand disk&® but not yet for 2D systems.
\ The data are plotted to show the behavior in the limiD
0.40 - \j\ —oo in Fig. 6(b). The simulation data fot/D=9 and 15
clearly indicate that there is a drop in the concentration
020 1 Iso (pL?/D?) at which the KT disclination unbinding transition

takes place as the rod length is shorter, as we expect since
the width of the particles becomes more and more important

0'000.0 20 40 60 80 100 120 140 160 as the rod becomes shorter. The nematic—isotropic transition
L/D disappears in the region<6L/D<9. We did not observe a
NI transition in the simulations foL/D =7, although since
2 10.0 only relatively small systems were used we cannot rule this
pD_2 out. In the simulations, the order parameter in the fluid at the
8.0 - melting transition was reasonably higB~0.20-0.40) and
subject to large fluctuations, which could possibly mean that
6.0 1 a nematic is stable for this aspect ratio, although no system
‘ size dependence was studied. The square-flip moves which
4.0 were used for thed./D=5 system were found to be less
useful as the rod length increases, since the square necessary
20 to flip a region of dimensionl(/D)? contains more particles
and so is more likely to be rejected. Snapshots from the
0.0 : : : : : simulations indicate that there are some chains of particles
00 01 02 03 04 05 0.6 similar to those formed in the isotropic phase of D

D/L =5 model, although these tend to be more disordered within
the chain, and also that there are also some regions similar to
FIG. 6. Phase behavior of 2D systems of spherocylinders as a function ahose of the nematic of the/D=9 model. Clearly larger
their aspect ratie./D. (O, @) Solid—isotropic transition(C]) 2D nematic— systems would be necessary to determine whether or not
isotropic transition(/A, A) melting transition in 2D disk$Ref. 8 and (H) . . _ . ..
NI transition in 2D needle$Ref. 9. The lines are a guide to the eye only. there is a stable nematic .ph'aseLaD =7. F|ggrg &b) indi- )
cates that even though this is a strong possibility, the density
range of the nematic would be severly reduced in compari-

not dependent on the length of the rod, although the densit§on to the longer rods/D=9 and 15, and so determining
gap between the two phases is reduced as the length is ithe location of the KT transition may be difficult.

creased. We note that there is still controversy surrounding In summary, we observe two types of behavior for
the melting transition for the limiting cade—0, that is, 2D  spherocylinders confined to a plane. Long roti${>7)

hard disks. For this model, it is not clear whether the meltinghave a behavior similar to infinitely thin needles, in that the
transition is first order, continuous or of the Kosterlitz— exhibit a 2D nematic phase with algebraic decay in the ori-
Thouless-type. This point is further addressed in Refs. 24ntational correlations between the particles. Shorter rods
and 25. However, whilst the order of the transition is not(L/D<7) do not exhibit a nematic phase, but undergo a
clear, the approximate density region in which the transitionmelting transition to a phase dominated by chains of particles
is located is not in doubt. The data in Fig. 6 indicate that thewhich align side-by-side, but are isotropically arranged. Thus
volume fraction at melting for elongated particles is largerwe observe that for short rods, the most favorable packing to
than that for 2D disks. This is because the orientational demaximize the entropy on melting is to retain the local solid-
grees of freedom present in the rod systems help to destrdike order and form an isotropic distribution of chains of
the solid phase in favor of the isotropic phase. We haveparticles. A crossover in behavior occursldD~7 when it
found no evidence for topological defects occurring even folis more favorable to lose the local positional order between
the shortest rods = 1. However, similar to the situation for particles but to retain the orientational order and so form a
2D hard disks, we cannot totally rule out the possibility thatnematic phase. We conclude that the enhanced stability of
a Kosterlitz—Thouless-type melting transition occurs forthe isotropic phase due to the formation of chains means that
very short rods. The melting transition for lengths abovethe nematic phase does not enter the phase diagram until
L/D=7 has not been studied, due to the long equilibrationL/D~7; this contrasts to the 3D case, where the nematic
times necessary to accurately locate the transition. Howevephase is observed for rods as shorlL.ép =42

it would be interesting to determine the volume fraction of It is interesting to compare the results of these simula-
the limiting case of infinitely thin rods at the melting transi- tions with other experiments and models of 2D liquid crys-
tion; although this transition is expected to occur at infinitetalline systems. Studies of 2D hard ellip€dadicate that the
number density, it will occur at finite volume fraction. By nematic is stable for aspect ratios lf~4 and above; we
assuming a constant director for the nematic phase over should compare the behavior of ellipses of aspect katiith
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spherocylinders of lengthL(+ D)/D. However, the NI tran- thin needles, this further suggests that the nematic phase for
sition appears to be continuous fk=6 but first order for all aspect ratiod./D (where observedwill have the same
k=4, and thus a tricritical point is expected between thesdehavior. For each model system exhibiting a nematic phase,
two aspect ratios. The fact that short ellipses do not exhibit ave have performed a block averaging analysis of the order
similar isotropic phase to spherocylinders is not surprisingparameter to obtain an estimate of the renormalized Franck
since spherocylinders can pack most effectively side-by-sideelastic constantK, to determine the location of the

In contrast, ellipses aligned side-by-side can roll against eacKosterlitz—Thouless disclination unbinding transition. The
other and therefore it is unlikely that chains will form and so solid—isotropic transition density drops below the extrapo-
the isotropic phase observed for spherocylinders is not alated KT transition density dt/D~7 and so for shorter rods
favorable as a nematic phase. This also appears to be the cage no longer observe a stable 2D nematic phase. Although
for the high density solid phase. For the ellipses, rather largéhe low density phase is isotropic, at densities below melting
fluctuations in the positions of the layers are observed. Inwe still observe a strong local correlation in the positions and
contrast, the spherocylinders tend to exhibit almost perfectedrientations of the particles. These correlations lead to the
ordered layers due to the effective side-by-side alignmenformation of chains of rods, in which the particles tend to
Thus we observe that a small difference in the shape of thalign side-by-side. Examination of the orientational correla-
particle can lead to rather different phase behavior. Scaletion functionsg,(r,,r,) appears to rule out the chance that
particle theory for 2D systems of ellipses and rectangles havthis short range order can lead to the formation of a 2D
also been performed. Whilst this theory does not take into tetratic phase in these systems.

account either the solid phase or the possibility to form

chains in the isotropic phase, we can compare the results fé&«CKNOWLEDGMENTS
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