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Abstract. - A new treatment of the phase behaviour of a colloid + nonadsorbing polymer mixture
is described. The calculated phase diagrams show marked polymer partitioning between
coexisting phases, an effect not considered in the usual effective-potential approaches to this
problem. We also predict that under certain conditions an area of three-phase coexistence should
appear in the phase diagram.

Introduction. - Phase separation in colloidal suspensions, induced by the addition of
nonadsorbing polymer, is a phenomenon of fundamental interest and considerable tech-
nological importance. A theoretical explanation was first advanced by Asakura and
Oosawa [1], and also independently by Vrij [2], based on the exclusion of polymer from the
region between two colloid particles when their surface-surface separation becomes smaller
than the diameter of a free polymer coil. The resulting imbalance in osmotic pressure gives
rise to an effective attractive «depletion» force between the colloid particles [3,4]. At high
enough concentration of polymer this depletion force causes the suspension to separate into
colloid-poor and colloid-rich phases. In the latter the particles can, depending on conditions
(see below), be in either liquidlike or crystalline spatial arrangements.

To predict the phase diagram of a colloid + polymer mixture, most workers to date have
adopted an approach in which the depletion potential (an effective pair potential) is added to
the parent interparticle potential; thermodynamic perturbation theory is then used to
calculate phase stability boundaries [5,6]. Although experimental studies [6,7] show
qualitative agreement with the predictions of these calculations, an important reservation
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has been expressed recently [8-11]. The effective potential approach assumes that the
polymer concentration is the same in coexisting phases and does not allow for the occurrence
of polymer partitioning between the various phases [12,13].

Here we explore the consequences of a simple statistical mechanical model [9,10] (*) for a
colloid + polymer mixture which can account for and predict polymer partitioning at phase
separation. In the simplest approximation the polymer is supposed dilute and at its 6-point,
and the colloid particles interact as hard spheres. The only effect of the interaction between
colloid and polymer is to restrict the volume in which the latter can move. Thus we treat the
polymer as a suspension of freely interpenetrable coils whose centres of mass cannot
approach closer than a distance à from any (nonadsorbing) surface. The centre of mass of a
polymer is therefore excluded from a sphere of radius a + à around a colloid particle of radius
a. Here we show that a mean-field treatment of this model does indeed predict marked
partitioning of the polymer. Furthermore, under certain conditions, we find a three-phase
region in the phase diagram where colloidal gas, liquid and crystal coexist. Earlier
treatments of the model only considered gas-liquid coexistence [9,10].

Statistical mechanics. - A convenient starting point in the calculation of the free energy in
our model is to work in the grand canonical ensemble [4,10]. The integration over the
translational-polymer degrees of freedom may be performed exactly, resulting in an effective
interaction between colloid particles of the form

W=Uc-lh(np)V{tee<rc). (D

In this expression Uc is the bare colloid interaction potential, //P is the osmotic pressure of a
pure polymer system expressed in terms of the polymer chemical potential ,«P, and Ffree is the
free volume in which the polymer coils can move. The free volume depends on the colloid
particle positions, collectively denoted by rc. The effective potential W has a many-body
nature, since a full expression for Vfree can be written only in terms of the mutual overlap of
the excluded-volume shells of all the colloid particles. The meaning of the final term in eq. (1)
is clearly the following: if the free volume changes due to a change in the positions of the
colloid particles, work has to be done against the pressure exerted by the polymer
molecules.

To make progress, we use a van der Waals mean field-approximation and replace Vfree(rc)
by its average value in the corresponding unperturbed system of colloidal particles [15]. Thus
we write Vfree = aV, where the «free-volume fraction» « depends only on the colloid volume
fraction £ = 47za3Nc/3V, and on the ratio à/a. The integration over the colloid degrees of
freedom may now be performed, since the final term in (1) no longer contains any dependence
on the colloid particle positions. Since colloidal systems are, to a good approximation,
constant-volume systems [16], we present our results in terms of the Helmholtz free energy.
The final expression, for the Helmholtz free energy of a system of Nc colloid particles and NP

polymer coils in a volume V, can be written in the suggestive form

F = Fc(Nc,V) + FP(Np,xV). (2)

The free energy decouples into a term corresponding to pure colloid in a volume V, and a
term corresponding to pure polymer in a volume aV. The interaction between polymer and
colloid is contained solely in the dependence of a on the colloid volume fraction.

C) We mention that this model corresponds to the asymmetric, nonadditive hard-sphere mixture
introduced some years ago in the context of liquid-vapour transitions [14].
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Since we treat the polymer as a suspension of noninteracting coils, we can write

Fp (Np , aV) = kTnV log J + other terms , (3)

where n = NP /V. The other terms in (3) are linear in NP and V and do not contribute to the
determination of the phase behaviour. The colloid contribution to (2) can be derived by
integration from the hard-sphere equation of state

FC(NC,V)= -Vt d$, (4)

where Z($) is the hard-sphere compressibility. For colloidal-fluid phases we use the
expression for Z suggested by Carnahan and Starling [17]; for colloidal crystals (FCC lattice)
we use that suggested by Hall [18].

The chemical potentials of the colloid and polymer (pc and //P), and the total osmotic
pressure (//) are now obtained from the free energy by differentiation:

™3 f - , (5)

(,«P - i&lkT = log f , (6)

f™3 ffa - $£} , (7)
3 « \ d£ /

where //" and //P are reference chemical potentials. The absolute value of the integra-
tion constant in (5) is not required. However, we can fix ,uc (fluid) relative to //c (solid) by
equating them at the expected coexistence compositions in the absence of polymer, namely
£ (fluid) = 0.494, $ (solid) = 0.545 [19].

To use these expressions, we need the free-volume fraction «($). An approximate
expression for « can be obtained by realising that, according to Widom's particle insertion
method [15], the chemical potential of a test hard-sphere species Q of radius 0" and volume
fraction £Q — > 0 in a sea of hard spheres of radius a and volume fraction <p can be written as

HQ = $ + kTlogtQ-kTlog<z, (8)

where a is exactly the desired free-volume fraction [10]. Comparing this expression with the
well-known scaled particle expression [20], or equivalently the Percus-Yevick result [21], for
the chemical potentials of a mixture of hard spheres of the kind indicated, one obtains

a = (i - # exp [ - AY - Br
2 - Cr

3] (9)

in which r = 0/(l - 0), A = 3£ + 3£2 + ? , B = 9Ç2 /2 + 3?3 , and C = 3? 3 (we have set
f = S/a). We use the same expression for both the fluid and the solid phases (2).

The calculation of the phase behaviour is facilitated by eliminating ptp between eqs. (5)-(7).

(2) The accuracy of expression (9) in the dense fluid and the solid is currently being evaluated and
ll be the subject of a forthcoming publication.
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Defining nR = n/a, eq. (6) gives

nn = exp [(//p - //p)/A;T], (10)

and we obtain expressions for ,uc and II which are functions of § and nR . Now, nR is a function
of polymer chemical potential and is therefore the same in coexisting phases. Thus to
calculate the compositions fa and fa °f a Pair °f such phases, we only need to solve
,"c(&» TOR) = ,«c(#2, WR) and II(fa, nR) = II(fa, nR), at given TOR. The polymer
concentrations in these phases are then found from % = <x(fa)nR and %2

 = <x(fa)nR. In fact
TOR can be interpreted as the polymer concentration in a reservoir of pure polymer in
equilibrium with the system, thus providing a connection with previous work [10].

Results. - Phase diagrams in the (fa wR)-plane calculated by this method are shown in
fig. 1 for à/ a = 0.1 and 0.4. With no added polymer (nR = 0) we recover the hard-sphere
freezing transition, with freezing at £ ~ 0.50 and melting at £ ~ 0.55. For eja ^ 0.32 the
region of liquid-crystal coexistence is broadened strongly on addition of polymer (fig. la)).
For oYa^O.32, critical and triple points emerge in the phase diagram (fig. !&)), which
becomes analogous to that of a simple atomic material [5, 6, 11]. The results of fig. 1 look very
similar to those obtained by the effective-potential method [5, 6], with the important
difference that the vertical axis in our diagrams is the concentration of polymer in a
(hypothetical) reservoir of pure polymer in equilibrium with the system and not the polymer
concentration in the system itself.

Since n = anR , phase diagrams in the experimentally accessible (fa n)-plane, shown in
fig. 2, are obtained from those of fig. 1 literally by multiplication by «(£). For <?/a^0.32 we
find simple fluid-solid coexistence, but with marked partitioning of polymer between the
phases (fig. 2a)). For oYa^O.32 we find that the triple point of fig. Ib) expands into a region
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Fig. 1. - Phase diagrams of colloid-polymer mixtures showing colloid volume fraction $ against
dimensionless polymer reservoir concentration (4/3)7rox3wR, for i/a = 0.1 (a)) and 0.4 (6)). Tie lines are
shown in the two-phase regions, whose composition is indicated as colloidal fluid (F), colloidal gas (w,
colloidal liquid (L) or colloidal crystal (C). In b) the critical point (CP) and triple point (bold line marked
TP) are also indicated.
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Fig. 2. - Phase diagrams of colloid-polymer mixtures as functions of colloid volume fraction £ against
dimensionless polymer concentration (4/3)-<?3w. The notation is the same as in fig. 1. Note that the
oblique tie lines imply considerable partitioning of the polymer among the phases. In the (£, w)-plane
the triple point observed in b) becomes the region of three-phase coexistence (gas-liquid-crystal) shown
shaded in b).

of three-phase coexistence (gas-liquid-solid) bounded by three distinct two-phase regions
(fig. 20)) (3).

In fig. 1 and 2 tie lines are indicated in the two-phase regions. Because of mass
conservation they are straight and the relative volumes of each phase can be obtained by the
usual lever rule [16]. In the three-phase region of fig. 26) the compositions of the phases are
given by the vertices of the triangle and the phase volumes by an area rule described by
Bartlett [16] in the context of binary mixtures of hard spheres with additive diameters.

Discussion. - We have presented a simple model of the colloid + nonadsorbing polymer
system, in which the translational degrees of freedom of the polymer are treated on the same
footing as those of the colloid. We predict marked polymer partitioning between coexisting
phases, and the emergence of a three-phase region for a/a ̂  0.32. Whilst we have made a
number of simplifying assumptions, we expect that these features will be preserved in a more
realistic treatment. For instance at polymer concentrations approaching coil overlap
((4/3) no 'An ~ 1, see fig. 2) it is certainly not reasonable to treat the polymer as ideal. A better
expression for the polymer free energy could then be used in (3). In addition a more realistic
colloid interaction could be incorporated into (4).

Experimentally, the data of Patel and Rüssel [12] indicate strong polymer partitioning in a
mixture of polystyrene colloids and dextran, whereas Robins [13] observed a weaker effect in
an emulsion + polymer system. Three-phase coexistence in colloid-polymer mixtures has not
yet been observed. However, Vincent et al. [6], in a study of mixtures of stearyl-grafted
colloidal silica and polydimethylsiloxane, found two-phase regions of gas-liquid, liquid-solid

(3) Compare [22] where it is shown that the triple point on the conventional p, T phase diagram of a
simple substance becomes a triple region in a
representation.

«density-density» (i.e. specific volume-specific energy)
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and gas-solid coexistence. These observations, combined with the predictions reported here,
suggest that this, and similar systems, should also show a region of three-phase coexistence.
That such an observation has not yet been reported may result from slow kinetics,
particularly of the liquid-solid separation, and the consequent persistence of metastable
states.

We acknowledge fruitful discussions with P. BARTLETT, D. FRENKEL, M. LAL, E. J.
MEIJER and I. D. ROBB. The possibility of three-phase coexistence in this system was also
independently pointed out to PBW by D. Roux. This work was partly supported by NATO
grant 132/84.
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