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Abstract. Inspired by experimental work on colloidal cuboid-polymer dispersions (Rossi et al., Soft Matter,
7, 4139 (2011)) we have theoretically studied the phase behaviour of such mixtures. To that end, free
volume theory (FVT) was applied to predict the phase behaviour of mixtures of superballs and non-
adsorbing polymer chains in a common solvent. Closed expressions for the thermodynamic properties of a
suspension of hard colloidal superballs have been derived, accounting for fluid (F), face-centred cubic (FCC)
and simple cubic (SC) phase states. Even though the considered solid phases are approximate, the hard
superballs phase diagram semi-quantitatively matches with more evolved methods. The theory developed
for the cuboid-polymer mixture reveals a rich phase behaviour, which includes not only isostructural F1-
F2 coexistence, but also SC1-SC2 coexistence, several triple coexistences, and even a quadruple-phase
coexistence region (F1-F2-SC-FCC). The model proposed offers a tool to asses the stability of cuboid-
polymer mixtures in terms of the colloid-to-polymer size ratio.

1 Introduction

While colloidal hard spheres only exhibit an equilib-
rium fluid-solid phase transition, the phase behaviour
of anisotropic hard particles is more intricate. Direc-
tional excluded-volume interactions between anisotropic
colloidal particles also give rise to entropy-driven phase
transitions [1,2], which have been studied for lyotropic sys-
tems such as rod-like [3–5] and platelet-like particles [6],
as well as for non-axisymmetric colloids [7, 8]. The im-
mersion of non-adsorbing free polymers (depletants) into
an ensemble of hard particles leads to a region around
the colloidal particles where the polymers have a lower
configurational entropy than in bulk, namely the deple-
tion zone (bounded by the grey curves around the black
shapes in fig. 1). The excluded volume between the de-
pletant and the colloidal particle of interest defines this
depletion zone. Overlap of these depletion zones (grey
areas in fig. 1) leads to an effective attraction between
the colloidal particles [9–11]. Depletant addition to a sys-
tem of anisotropic particles induces effective depletion
attraction patches [12–15] because the depletion attrac-
tion is stronger for larger overlap of depletion zones (see
bottom panels of fig. 1). The effects of entropic patchi-

a e-mail: r.tuinier@tue.nl

Fig. 1. Top panels: schematic representation of the depletion
zones and their overlap between hard spheres (diameter d) due
to a second, polymeric component (gray coils, radius δ) in a
common solvent. The gray curves envelop the depletion zones,
and the filled areas correspond to their overlap. Bottom panels
as top ones but for hard colloidal cuboids.

ness [12, 13] in lyotropic systems have received increasing
attention [14, 16]. However, analytical treatments for en-
tropic patchiness between non-axisymmetric particles are
scarce.

Among the possible non-axisymmetric particles, col-
loidal cuboids are of interest due to their potential appli-
cation as photonic crystals [17, 18], their possible roles in
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Fig. 2. 3D (top panels) and 2D (bottom panels) representation
of a superball for increasing m values from left to right: m =
{2, 3, 5, 10}. In the 2D projection the radius of the superball
(a) and the maximum distance of the superball surface from
its center (rmax) are indicated.

emulsion stabilization [19] and anti-reflective coatings [20]
and to prepare porous membranes [21]. Due to recent
progress in colloidal synthesis, it is nowadays possible to
prepare colloidal cuboids with a well-defined shape and
size [22, 23]. A commonly applied model to describe col-
loidal cuboids is the superball shape. Formally, superballs
are a subset of a family of geometric shapes called superel-
lipsoids, introduced by Barr [24]. The implicit equation
describing the shape of a superball [25] reads

f(x, y, z) =
∣∣∣
x

a

∣∣∣
m

+
∣∣∣
y

a

∣∣∣
m

+
∣∣∣
z

a

∣∣∣
m

≤ 1, (1)

where a is the radius of the superball (the shortest distance
from the centre of the superball to its surface) and m is the
shape parameter. The surface of the superball is described
for f(x, y, z) = 1, whereas the locus of points inside the
superball are retained for f(x, y, z) < 1. Here we focus
on m ≥ 2: the shape of the superball lies in between a
sphere (m = 2) and a cube (m = ∞) [26]. We depict in
fig. 2 a collection of superballs in the range of m values
investigated.

The phase behaviour of colloidal superballs has been
studied both experimentally [18, 27] and via computer
simulations [26, 28, 29]. Some experimental studies on the
effect of non-adsorbing polymers on the phase behaviour
of colloidal superballs have also been conducted [22, 30].
However, a (relatively) simple model for the thermody-
namic properties of superballs (and superball-polymer
mixtures) is not available. Hence, we first describe in this
paper a theoretical framework both for the superball fluid
and for two possible superball solid states. The tools re-
quired to calculate the phase diagrams of the cuboid-
polymer mixture are subsequently presented. With all
closed expressions at hand, we present a collection of phase
diagrams as well as a phase stability overview, which re-
veals various rich multi-phase coexistence regions, includ-
ing a possible four-phase coexistence. We finalize by sum-
marizing the main conclusions of our findings. We provide
a reproducible, closed model whose insights may provide
a better understanding of experimentally observed phase
behaviour of superball-polymer mixtures [22,30].

Fig. 3. Normalized second virial coefficient B∗

2 as a function
of the shape parameter m. Gray dots correspond to numerical
solutions of the superball area and surface mean curvature (see
appendix A for details). The black curve shows a fit through the
data points, whose accumulated relative error is 5.15 · 10−5 =
100%∗

P
[1/B∗

2 (m)−1/B∗,fit
2 (m)]/Npoints, where Npoints is the

number of points used to find the fit in eq. (3).

2 Theory

In this section we first present the canonical expressions
developed for a suspension of colloidal superballs, both
in the fluid and in the two solid phases considered. Sec-
ondly, we present the free-volume theory developed to ac-
count for the grand-canonical thermodynamic properties
of a mixture of superballs plus non-adsorbing polymers.

2.1 Canonical thermodynamic expressions for colloidal
superballs

2.1.1 Fluid state

We consider a collection of Nc hard superballs in a vol-
ume V , each superball having a volume vsb, surface area
ssb and surface integrated mean curvature [31] csb. The
second virial coefficient (B2) for hard particles is given
by the orientationally averaged excluded volume between
two particles [32], and for a suspension of monodisperse
convex particles (hence for superballs with m ≥ 2) in a
fluid state reads [33,34]

B2

vsb

= B∗

2 = 3γ + 1, γ =
ssbcsb

3vsb

, (2)

where γ is the so-called asphericity parameter. The nu-
merically obtained normalized second virial coefficient B∗

2

for hard superballs is shown in fig. 3. In appendix A we
explain how γ can be computed numerically, yielding B∗

2

using eq. (2). It follows that B∗
2 smoothly increases with m

from the sphere limit (m = 2, B∗
2 = 4) to the cube limit

(m = ∞, B∗
2 = 5.5) due to the increase of the particle

anisotropy. In this work, we use a closed expression for B2

by fitting (solid curve) the calculated data (see appendix A
for details) with the (inverse) equation of an ellipse, which
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accurately matches the data (accumulated error shown in
fig. 3):

B∗

2 =
1

0.42
√

1 − (1−2/m
1.83 )2 − 0.17

. (3)

An equation of state (EOS) for a fluid of hard convex
particles was first derived by Gibbons using scaled parti-
cle theory [35], and a more accurate EOS was proposed
by Boubĺık [36–38] taking into account virial coefficients
higher than B2 in a Carnahan-Starling–like fashion [39]:

Π̃o = βΠvsb =
φc + Qφ2

c + Rφ3
c − Sφ4

c

(1 − φc)3
, (4)

where Π̃o is the reduced osmotic pressure of the pure hard
superball dispersion, β is 1/kBT (with kB the Boltzmann
constant and T the absolute temperature),

Q = 3γ − 2, R = 1 − 3γ(1 − γ), S = γ(6γ − 5),

and where φc is the volume fraction of hard superballs:

φc =
Nvsb

V
.

The superscript “o” is used to indicate the (depletant-free)
osmotic pressure and chemical potential of a suspension
of pure superballs. Using the closed relation between B2,

γ and Π̃o of eqs. (2)–(4), the EOS for a fluid of hard
superballs as a function of m is completely defined. Com-
puter simulations have shown the accuracy of the Boubĺık
EOS for a wide range of m values [28, 29]. Obviously, the
Carnahan-Starling [39] EOS is recovered for m = 2. The
chemical potential of the superballs is related to the os-
motic pressure through the Gibbs-Duhem relation for a
single-component system at constant temperature:

dµ̃o =
1

φc

dΠ̃o

dφc

dφc, (5)

with µ̃o = βµo the reduced chemical potential. The chem-
ical potential follows from eqs. (4) and (5) as

µ̃o = µ̃ref +

∫ φc

0

1

φc

dΠ̃

dφc

dφc

= µ̃ref + (S − 1) ln(1 − φc) + lnφc

+
(10 + 4Q + 2S)φc − (13 + 3Q − 3R + 5S)φ2

c

2(1 − φc)3

+
(5 + Q − R + S)φ3

c

2(1 − φc)3
, (6)

with µ̃ref = ln(Λ3/vsb) the reference chemical potential
of a superball fluid and Λ the thermal wavelength. The
free energy follows from the chemical potential and the
osmotic pressure through the thermodynamic relations:

F̃ = φcµ̃
o − Π̃o, µ̃o =

(
∂F̃

∂φc

)

T,V

, (7)

with F̃ = βFvsb/V the reduced free energy.

Fig. 4. Top panel: {1 0 0}-plane representation of the face-
centred cubic (FCC) crystal lattice for increasing m values
from left to right: m = {2, 3, 5, 10}. The approximated free
volume is illustrated as a grey region. Also indicated are the
nearest-neighbour distance (r) and the maximum distance
from the centre of the superball (r2Dmax) for m = 10. Gray shapes
represent a particle that just touches a nearest neighbour. Bot-
tom panels as top ones but for the simple cubic (SC) lattice.
In this case the arrows hold for r and the superball radius (a)
as these quantities defined the volume that the central particle
explores without overlapping with its nearest neighbours. In all
cases considered here the solids are 20% off their close-packing
structure.

2.1.2 Solid states

For the colloidal solid phases we modify the cell theory
proposed by Lennard-Jones and Devonshire (LJD) for
hard spheres [40]. We consider each particle to be con-
tained in a closed region whose shape is determined by its
neighbouring particles, which are fixed at their lattice po-
sitions [41], see fig. 4. The free energy of the solid is calcu-
lated from the number of configurations determined from
the volume Vf that the centre of the particle explores with-
out overlapping with its nearest neighbours. This leads to
the following normalized free energy for a solid:

F̃ = φc ln

(
Λ3

vsb

)
− φc ln

(
Vf

vsb

)
. (8)

The free volume Vf depends on the shape parameter m and
the volume fraction φc, but also on the relative position of
the nearest neighbours and hence on the structure of the
solid. In this work we consider two crystal structures: face-
centred cubic (FCC) and simple cubic (SC). A schematic
view of the FCC and SC structures of superballs for several
m values is shown in fig. 4.

We focus first on the FCC crystal. The exact free vol-
ume depends on the shape of the Wigner-Seitz cell [41],
which for an FCC crystal has a rather complicated geom-
etry [42,43], but is usually approximated as a sphere [11].
The free volume considering this spherical approximation
is given by

V FCC
f =

4π

3
(r − rcp)

3
, (9)

where r is the distance between the centres of a superball
and its nearest neighbours, and rcp is r at close packing.
For the FCC crystal, we consider a “frozen” crystal where



Page 4 of 15 Eur. Phys. J. E (2018) 41: 110

the particles are perfectly aligned. Hence, for the FCC
lattice rcp is two times the distance between the edges of
the superballs (2r2Dmax, see appendix A). The distance r at
a certain volume fraction can be determined from rcp as

r = rcp

(
φcp

c

φc

)1/3

, (10)

with φcp
c the close-packing fraction. Combining rcp =

2r2Dmax = 2a
√

2(1/2)1/m (see appendix A) with
eqs. (8)–(10) provides the free energy for the FCC phase,
using a Taylor expansion for the term (φcp,FCC

c /φc)
1/3 −1

as in the original LJD approach for hard spheres [11, 40].
The chemical potential and osmotic pressure are calcu-
lated via the thermodynamic relations given in eq. (7),
leading to the following closed (yet approximate) thermo-
dynamic expressions for the FCC phase as a function of
m:

F̃FCC = φc ln

(
Λ3

vsb

)
+ φc ln

[
34f(m)23/m

4π23/2

]

−3φc ln

(
φcp,FCC

c

φc

− 1

)
,

µ̃o
FCC = µ̃0 + ln

[
34f(m)23/m

4π23/2

]
− 3 ln

(
φcp,FCC

c

φc

− 1

)

+
3

1 − φc/φcp,FCC
c

,

Π̃o
FCC =

3φc

1 − φc/φcp,FCC
c

. (11)

The m-dependency of the close-packing volume fraction
in an FCC crystal is provided as (see appendix B)

φcp,FCC
c =

1

2
f(m)23/m, (12)

where f(m) is (see appendix A)

f(m) =
[Γ (1 + 1/m)]3

Γ (1 + 3/m)
, (13)

where Γ is the Euler Gamma function. For m = 2, eq. (11)
recovers the free energy for hard spheres in the FCC
phase [40].

The thermodynamic properties of the SC superball
crystal is found using a similar approach as for the FCC
crystal. For the SC structure, the free volume has the
shape of a cube. To approximately take into account the
effect of rotations of cuboidal particles on the SC free en-
ergy, the size of the free volume is chosen such that the
central particle can rotate inside its unit cell. This effec-
tively reduces the free volume by a factor of eight com-
pared to the one obtained for perfectly parallel cuboids.
This approach overestimates the free volume for particles
with low m values. The free volume of the SC crystal is
given by

V SC
f = (r − rcp)

3
, (14)

Table 1. Close-packing volume fractions for spheres, cubes
and for superballs with m = 3 at which both crystals have the
same close-packing fraction.

m = 2 m = 3 m = ∞
FCC π/3

√
2 ≈ 0.74 Γ (4/3)3 ≈ 0.71 0.5

SC π/6 ≈ 0.52 Γ (4/3)3 ≈ 0.71 1

with r defined via eq. (10) and rcp = 2a. Following a
similar procedure as for the FCC phase state, the thermo-
dynamic functions of the SC phase read

F̃SC = φc ln

(
Λ3

vsb

)
+ φc ln f(m)

−3φc ln

[(
φcp,SC

c

φc

)1/3

− 1

]
,

µ̃o
SC = µ̃0 + ln f(m) − 3 ln

[(
φcp,SC

c

φc

)1/3

− 1

]

+
(φcp,SC

c /φc)
1/3

(φcp,SC
c /φc)1/3 − 1

,

Π̃o
SC =

φc(φ
cp,SC
c /φc)

1/3

(φcp,SC
c /φc)1/3 − 1

, (15)

with the close-packing fraction in the SC phase given by

φcp,SC
c = f(m). (16)

We note here that effects of particle rotations are only
qualitatively accounted for via our estimation of Vf . For
non-axisymmetric hard particles, Onsager-like theories [3]
for crystalline phases are non-trivial due to the lack of a
single reference axis for the inter-particle orientations. Al-
ready for biaxial hard particles no analytical solutions are
found [44]. Further discussion on possible ways of incorpo-
rating rotational contributions is presented in appendix C.
In table 1 we provide the close-packing volume fractions
for perfect spheres (m = 2) and perfect cubes (m = ∞)
and for a limiting intermediate case. While FCC packings
are more efficient for small m, SC arrangements can pack
closer for large m. It follows from eqs. (12) and (16) that
both the FCC and the SC phases have the same φcp

c at
m = 3. Further details on the close-packing fractions are
provided in appendix B.

Most of the limitations in our model are those inher-
ent to the cell theory used in the calculation of the free
energy of the crystalline phases. Cell theory is known to
give accurate results for FCC and SC crystals of spher-
ical colloids [42, 43], but extending cell theory to other
crystal structures is not straightforward due to the com-
plex geometries of the space explored by the centres of
mass of the particles. Already for a body-centred-cubic
crystal of hard spheres, cell theory does not match with
simulations [43]. Furthermore, the cell theory approach
followed does not account for defects, which affect the
fluid-crystalline phase transition of cuboidal hard parti-
cles [45, 46]. The accuracy of cell theory for anisotropic
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Fig. 5. Schematic representation of the free-volume theory
construction for colloid-polymer mixtures. Colloidal cuboids
are indicated as big black particles; the corresponding deple-
tion zones surrounding them indicated in grey. The system of
interest (centre) is surrounded by a reservoir containing only
depletants (grey particles). Left panel: there is only one stable
phase. Right panel: at high enough depletant concentration the
system of interest is phase-separated into a cuboid-rich and a
dilute cuboid phase.

particles is a matter of debate. Particularly, it is diffi-
cult to accurately account for rotational contributions for
non-axisymmetric particles into the solid-phase partition
function. More advanced theoretical approaches to prop-
erly describe the complex solid phases of superballs are
rather involved and would make the description at hand
less tractable (and most likely not involving a set of closed
expressions).

2.2 Thermodynamics of superball-polymer mixtures

2.2.1 Free-volume theory

We account for the mixtures of superballs plus non-
adsorbing polymer in a semi–grand-canonical fashion via
free-volume theory (FVT) [11, 47]. Within FVT, the
cuboid-polymer system (S) is considered to be in equi-
librium with a reservoir (R) of polymers. In R and S
the solvent is treated as background. The system and the
reservoir are connected through a membrane permeable
for the polymers and the common solvent, but imperme-
able for the cuboidal particles. A sketch of this osmotic
equilibrium approach is given in fig. 5. The key quan-
tity relating the polymer concentrations in R and S is the
free-volume fraction available for depletants in the system
α. Following the original ideas of FVT, we assume that
α is independent of the chemical potential of the deple-
tants in R. Furthermore, we take the simplest model for
polymeric depletants, namely the penetrable hard-sphere
(PHS) model [48]: depletants are treated as ghost-like
spheres (with radius δ) that can freely interpenetrate each
other but do not overlap with the superballs. PHSs mimic
ideal polymer chains [11]. One last approximation made
is that the ensemble-averaged free volume for depletants
in the system, 〈Vfree〉, is independent of the concentration
of depletants: 〈Vfree〉 ≈ 〈Vfree〉o. This results in the follow-
ing (normalized) expression for the grand potential of the

system [16]:

Ω̃ =
βΩvsb

V
= F̃ − Π̃R

d α
vsb

vd

, (17)

with V the volume of the system, Π̃R
d = βΠR

d vd the re-
duced depletant osmotic pressure in R, and vd the volume
of the depletant (vd = 4πδ3/3). Since the depletants are
considered to behave ideally, the (reduced) osmotic pres-
sure in the R is simply given by Van ’t Hoff’s law:

Π̃R
d = βΠR

d vd = φR
d .

The depletant concentration in the system follows from

φS
d = αφR

d .

From the semi-grand potential, the chemical poten-
tial of the superballs and the osmotic pressure of super-
ball plus PHS mixtures are obtained through the standard
thermodynamic relations:

µ̃ =

(
∂Ω̃

∂φc

)

T,V,NR
d

, Π̃ = φcµ̃ − Ω̃, (18)

with NR
d the number of depletants in R. Using these quan-

tities, phase coexistences follow from

µ̃i = µ̃j = . . . and Π̃i = Π̃j = . . . , (19)

where i and j denote the two (or more) coexisting phases
(fluid, FCC or SC). If coexistence between three phases
takes place a triple point (TP) arises, and we denote four-
phase coexistence via a quadruple point (QP) [16,49]. Col-
loidal systems may exhibit isostructural phase coexistence
(such as gas-liquid equilibrium [50, 51]) when attractive
interactions between particles are present [47, 52, 53]. In
such a case, the low-density phase will be entropically
favourable and the high-density phase is stabilized by at-
tractive interactions between the particles. The limit of
isostructural phase coexistence is defined via the critical
point (CP), at which

∂µ̃i

∂φc

=
∂2µ̃i

∂2φc

= 0 and
∂Π̃i

∂φc

=
∂2Π̃i

∂2φc

= 0. (20)

Whenever a phase state has a CP an isostructural
phase coexistence can take place, which can be stable
or metastable. The transition from a potentially stable
to a metastable isostructural phase coexistence is defined
by the critical end point (CEP), where the CP and the
TP or QP of the corresponding isostructural coexistences
merge [52,53]:

µ̃i = µ̃j = . . . and Π̃i = Π̃j = . . . and

∂µ̃i

∂φc

=
∂2µ̃i

∂2φc

= 0 and
∂Π̃i

∂φc

=
∂2Π̃i

∂2φc

= 0. (21)

These conditions enable to determine the topology of the
phase diagrams as a function of the system parameters:
the colloidal shape (through m) and the relative depletant
size through

q =
δ

a
. (22)
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2.2.2 Free-volume fraction

The only remaining unknown parameter in eq. (17) is
the free-volume fraction for depletants in the system, α.
Widom’s insertion theorem [54] relates the free-volume
fraction α to the work (W ) required to bring a depletant
from R to S via

α =
〈Vfree〉o

V
= e−βW , (23)

where 〈Vfree〉o is the free volume for depletants in the
undistorted (depletant-free) system. This work (W ) is ap-
proximated using Scaled Particle Theory (SPT) [55, 56],
by connecting the limits of inserting a very small deple-
tant (up to second order) and a very big depletant in the
system of interest, followed by scaling back to the actual
size of the depletant. As the depletants are spherical, a
single scaling factor (λ) enables to express this work as

W = lim
λ→1

W (λ),

W (λ) = W (0) +
∂W

∂λ

∣∣∣∣
λ=0

λ +
1

2

∂2W

∂λ2

∣∣∣∣
λ=0

λ2

︸ ︷︷ ︸
λ≪1

+ vdΠo
k

︸ ︷︷ ︸
λ≫1

.

(24)

In the small depletant insertion limit (λ ≪ 1) no overlap
of depletion zones is assumed. This allows writing W as a
function of the excluded volume between a superball and
a sphere (vexc), which actually defines the depletion zone
volume. This leads to

α(λ ≪ 1) = 1 − φc

(
vexc(λ)

vsb

)
, (25)

so

βW (λ ≪ 1) = − ln

[
1 − φc

(
vexc(λ)

vsb

)]
, (26)

where the scaled depletion volume is obtained by scaling
the depletant thickness: δ → λδ. We use normalized units
also in the big-depletant limit for convenience:

βW (λ ≫ 1) =
π

6f(m)
(λq)3Π̃o. (27)

By combining eqs. (24) to (27), a general expression for
W in terms of ṽexc(λ) = vexc(λ)/vsb is derived:

βW = − ln(1 − φc) + y(φc)
∂ṽexc(λ)

∂λ

∣∣∣∣
λ=0

+
1

2
y(φc)

2

(
∂ṽexc(λ)

∂λ

∣∣∣∣
λ=0

)2

+
1

2
y(φc)

∂2ṽexc(λ)

∂λ2

∣∣∣∣
λ=0

+
πq3

6f(m)
Π̃0

k , (28)

with ṽexc = vexc/vsb and

y(φc) =
φc

1 − φc

.

A closed expression for ṽexc to compute α from eqs. (23)
and (28) is convenient. The depletion zone due to spheri-
cal depletants around any hard, convex body is embedded
within the Connolly surface [57] around the particle of in-
terest with thickness δ. An apparently simple expression is
available for the excluded volume between general, convex
bodies and spheres [31]. The excluded volume between a
superball and a sphere reads

ṽexc = 1 +
1

f(m)

[
1

2
s̃sbq + πc̃sbq2 +

π

6
q3

]
, (29)

where s̃sb = ssb/d2 and c̃sb = csb/d. Equation (29) can
however not be solved analytically (see appendix A for
details on the calculation of s̃sb and c̃sb). Due to the lin-
ear relation between δ and q (δ = qa), ṽexc(λ) is simply
obtained by taking q → λq in eq. (29). Via interpolation
of s̃sb and c̃sb it is possible to obtain a (non-closed) ex-
pression for eq. (28), hence completely defining the grand

potential Ω̃ (eq. (17)). Alternatively, we found that the de-
pletion zone is accurately described by a tilted dampening
sinus function:

ṽexc =
1

f(m)
(454.337 + 216.356p + 308.593q)

+
1

f(m)
exp[−0.005p + 8.178]

× sin(0.0604p + 0.087q − 3.014), (30)

with p = 1 − 2/m. An advantage of eq. (30) over eq. (29)
is that it has a closed form. Furthermore, the deviation
between eqs. (29) and (30) is very small:

100% ∗
∑

[1/B∗

2(m) − 1/B∗,fit
2 (m)]/Npoints = 2.7 · 10−4

(Npoints being the number of points used to fit eq. (30)).
Thus, α is incorporated in our calculations via inserting
eq. (30) into eq. (28). Moreover, the final thermodynamic
properties of superball-polymer mixtures as considered
here do not depend on the approach followed for calcu-
lating ṽexc (see appendix D). All results presented were
computed using Mathematica [58].

3 Results and discussion

In the present section, we first provide the results for the
ensemble of hard superballs in the absence of depletants.
The free-volume fractions for depletants in this system is
then briefly discussed, which provides all components to
understand the phase diagrams of the superball-polymer
mixtures of interest. Based upon these phase diagrams, an
overview of the rich multi-phase coexistences exhibited is
presented in a single, comprehensive plot.

3.1 Phase diagram of hard superballs

The calculated phase diagram for a suspension of pure
hard superballs is presented in fig. 6 (left panel), and
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Fig. 6. Left panel: Predicted phase diagram for a suspension
of superballs in the shape parameter-colloid volume fraction
{m, φc} phase space. Two-phase coexistences take place in the
regions bounded by two single-phase regions as indicated. The
vertical dashed grey line holds for the F-FCC-SC coexistence.
Right panel: phase diagram for hard colloidal superballs from
computer simulations [26].

compared with more evolved simulation results (right
panel). The well-known fluid-FCC coexistence for hard
spheres [11, 59] is recovered at m = 2, and it slightly
shifts to higher densities with increasing m. As can be
appreciated, this is in agreement with computer simula-
tion results [26]. This shift can be attributed to a ther-
modynamically less favourable FCC state with increasing
m. The forbidden region (in grey) simply identifies den-
sities beyond the close packing of the considered phases.
The discontinuity on our phase diagram corresponds to
m = 3, which locates the transition between preferred
FCC to more favourable SC. The thermodynamically pre-
ferred phase is roughly the one with the largest close-
packing fraction, see table 1. However, at intermediate
pressures, crystal structures with lower close-packing frac-
tion may be also stable. We find a triple F-FCC-SC co-
existence at m ≈ 3.71. Triple-phase coexistence for pure
hard superball system has also been reported based upon
Monte Carlo simulation results (right panel of fig. 6) [26].
Between m = 3 and m ≈ 3.71 we find SC-FCC coexis-
tence, which arises due to the different φc-dependencies
of the solid equations of state (for more details, see ap-
pendix B). Above m ≈ 3.71, only F-SC coexistence is
found, which shifts towards lower packing fractions with
increasing m, also in qualitative agreement with simula-
tions [26]. In the cube limit (m = ∞), we find φF

c ≈ 0.36
and φSC

c ≈ 0.54. Simulation studies [29] indicate that for
perfect cubes phase coexistence between a fluid and a cu-
batic liquid crystal takes place at φF

c ≈ 0.47 (a phase
showing high orientational order but no long-range trans-
lational order), while at higher densities a transition into
an SC crystal occurs at φSC

c ≈ 0.58. This points towards
a complex nature of the F-SC phase transition for per-
fect cubes that can not be accounted for with our simple
theory.

The overall topology of the simple, theoretical phase
diagram corresponds to the one found using more evolved
computer simulations (right panel of fig. 6) [26,28,29]. The

Fig. 7. Left panel: free-volume fraction in the fluid phase
(αF) as a function of the packing fraction φc for the shape
parameters m and relative depletant sizes q as indicated. For
q = 0.05 the curves are plot up to the corresponding highest
close-packing fraction. Right panel: relative difference on αF

with respect to spheres with increasing m at a fixed φc = 0.4
for a collection of q values as indicated. Dots denote the max-
imum αF value at each m.

differences can be justified because we do not account for
the same solid phases for superballs as in simulations. Jiao
et al. [25] showed that the optimal packing for superballs
are retained in the C0 (low m values) and C1 (high m val-
ues) crystalline phases. Both the C0 and C1 lattices are
obtained via deformation of the FCC (m = 2) and SC
lattices (m = ∞), respectively. In fact, these solid phases
are accounted for in simulations [26,28]. Not surprisingly,
the triple point from simulations is a fluid-FCC-C1 [26].
Due to the limitations inherent to the simple model de-
veloped, the C0 and C1 phases are not accounted for. The
FCC phase features (and its coexistences) roughly match
those of the plastic FCC. The role played in simulations
by the C1 is mimicked by the SC phase in our simpler
model.

When considering colloidal cuboid-polymer mixtures,
the phase diagrams would only enrich upon refinements of
the method. The liquid-crystalline and crystalline coexis-
tence regions are found in simulations in a broader range
of m values. Based on experimental observations [22, 30],
we expect the depletion attraction to enhance solid phases
where overlap of the depletion zones is maximized (leaving
space for the depletants to fit in the voids of the respective
lattices). Note however that these experimental observa-
tions correspond to colloid-polymer mixtures confined at a
surface, whereas the results here presented holds for bulk
systems.

3.2 Free-volume fraction

We show examples of free-volume fractions for PHSs in a
fluid state of hard superballs (αF) using W as in eq. (30)
in the left panel of fig. 7. It follows that αF only weakly
depends on m. For m > 2 and low q values (q � 0.05)
the free-volume fraction is always slightly smaller as for
the sphere case (m = 2). However, with increasing q the
intricate shape of the depletion zone around a superball
causes αF to be higher than for hard spheres.
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Fig. 8. Free-volume fraction in the solid phases (αS) as a func-
tion of the colloidal volume fraction φc for a few values of the
shape parameter m and relative depletant size q as indicated.
Dashed curves corresponds to the simple cubic (SC) phase
state, whereas solid curves correspond to the face-centred cubic
(FCC) one.

Selected values for the free-volume fraction in the solid
phases (αS) considered are plotted in fig. 8. For m = 3 the
free-volume fraction curves of the FCC phase and of the
SC phase nearly overlap as for this m value φcp,FCC

c =
φcp,SC

c (see table 1). For m = ∞, the solid phase with
the higher αS is the SC one. The sudden vanishing of αS

(clearly observed for all m = 2 and m = ∞ in fig. 8)
corresponds to the close-packing fractions of the FCC and
SC lattice at each m value. Within SPT, the work required
to bring a depletant into a close-packing state is infinitely
large.

3.3 Phase diagrams

Firstly, we consider a superball whose shape is still close
to a sphere. We present phase diagrams of superballs with
m = 2.5 and added depletants for three relative size ratios
q in fig. 9. The depletant-free baselines (φR

d = 0) for the
fluid-FCC coexistence correspond to the densities shown
in fig. 6 (left panel). Upon addition of depletants, the FCC
phase at coexistence gets denser and the coexisting fluid
phase becomes more dilute in order to maximize the total
free volume available for the depletants in the system. At
sufficiently large q values (q = 0.4 and q = 0.6 in fig. 9),
an isostructural colloidal F1-F2 (also termed gas-liquid)
coexistence appears (which is metastable for low q values).
We do not further address metastable coexisting phases.
This F1-F2 coexistence spans until the F1-F2 and the F-
FCC coexistences match: at this φR

d value a triple line is
found (upper panel for q = 0.4), which becomes a region in
the system representation (lower panels of fig. 9). In fact,
an isostructural phase coexistence is always connected to
a triple coexistence when more than one phase identity is
considered. When q increases it can be seen that the F-S
coexistence narrows and the F1-F2 critical point shifts to
higher depletant volume fractions.

The coexistence regions in the system representation
(bottom panels in fig. 9) show that the fluid phase with a
low concentration of superballs has a high concentration of
depletants, whereas the FCC phase has a high concentra-

Fig. 9. Phase diagrams for a mixture of colloidal superballs
for m = 2.5 and PHS depletants for several relative depletant
sizes q as indicated in the reservoir representation (top panels)
and system representation (bottom panels). The F1-F2 critical
point is indicated by a black dot. Triple-phase coexistences are
shown as a horizontal black line in the reservoir representation
and as a coloured area bounded by black lines in the system
representation. All coexisting phases present are indicated in
the reservoir representation. Insets in the system representa-
tion zoom in on the low depletant concentration region, and
some of the coexistence regions are indicated. A few illustrative
tie-lines are shown as dashed grey lines for q = 0.2. Above each
phase diagram, a 2D illustration of the superball (black) and
its depletion zone (grey) are shown, and the m and q values
are indicated.

tion of superballs but a low concentration of depletants.
The incorporation of partitioning of depletants over the
different phases is one of the key elements of FVT [11].
The system representation also shows that for a superball-
depletant mixture a single solid phase (without a coexist-
ing fluid phase) only occurs at nearly imperceptible deple-
tant concentrations. So far we observe no special features
compared to FVT for hard spheres mixed with penetrable
hard spheres [47], even though the colloidal shape con-
sidered is not perfectly spherical. For hard-spheres plus
polymeric depletants, simulation results taking into ac-
count multi-body effects show that the trends predicted
by the simple FVT hold [60].

Next, we show in fig. 10 phase diagrams for m = 3.33,
where FCC-SC coexistence was found for hard superballs
(see fig. 6, left panel). At sufficiently high depletant con-
centration, the FCC phase becomes metastable w.r.t. the
SC phase, as expected because φcp,SC

c > φcp,FCC
c for this

m value: the FCC phase completely disappears, and an
F-FCC-SC triple point is always found. For sufficiently
large q values (q = 0.4 and q = 0.6) two triple-phase coex-
istences are present whenever F1-F2 coexistence is found:
F1-F2-FCC and F-FCC-SC, with the corresponding triple-
point areas in the system representation. This illustrates
the enrichment of the phase diagram topology due to de-
pletion effects.
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Fig. 10. Phase diagrams of superball-polymer mixtures as in
fig. 9, but for m = 3.33.

Fig. 11. Phase diagrams of superball-polymer mixtures as in
fig. 9, but for m = 5.

Phase diagrams for even more cubic particles, m = 5,
are presented in fig. 11, for which only an SC state is
present in the pure hard superballs system (see left panel
of fig. 6). Similar qualitative trends as in fig. 9 are ob-
served, but with the F-SC coexistence playing the role of
the F-FCC equilibrium. For small q values the broaden-
ing of the coexistence lines occurs at lower depletant con-
centrations with respect to the superball-polymer mixture
with m = 2.5 in fig. 9: the overlap of depletion zones is
larger for particles with an increased cubicity, which re-
sults in a stronger depletion attraction. For m = 5 and
q = 0.4, there is no F1-F2 equilibrium phase coexistence,
whereas F1-F2 coexistence was found at this q value for
superballs with m = 2 [47], m = 2.5 and m = 3.33. Due
to the tendency of flat faces to align upon addition of de-
pletant into the system, stable F1-F2 coexistence shifts to
higher q values: longer ranges of attraction are required
for larger m values to induce stable F1-F2 coexistence.

Fig. 12. Isostructural phase coexistence overview for colloidal
superball-PHS mixtures as a function of the shape parame-
ter m and the relative depletant size q. Isostructural coexis-
tences correspond to coloured areas in the state diagram. The
dashed black curve corresponds to the set of system parame-
ters {m, q} along which quadruple F1-F2-FCC-SC coexistence
is found. Additionally, the vertical dashed white line corre-
sponds to the limit of the SC phase (m � 3), whereas the grey
vertical dashed line corresponds to the triple-phase coexistence
of the depletant-free system (m ≈ 3.71), which sets the limit
for the FCC phase (m � 3.71).

3.4 Multi-phase coexistence overview

The rich multi-phase coexistence behaviour hinted at in
the previous section is quantified by calculating the critical
end points (CEP) of all possible isostructural coexistences
as a function of the system parameters m and q. The cal-
culated CEP curves are summarized in fig. 12, which con-
stitute the main result of our investigations on the phase
behaviour of superball-depletant mixtures. The limiting
values of the FCC phase (m � 3.71) and the SC phase
(m � 3) are indicated as vertical dashed lines in fig. 12: for
m ∈ {3, 3.71}, F-FCC-SC coexistence always takes place.
To the left of this m interval the only solid phase found
is FCC, and to the right the only solid state found is the
SC. In fig. 12, the solid curves hold for the CEPs defining
the limiting q values at which (stable) isostructural phase
coexistences are found. For sufficiently high q values, F1-
F2 isostructural coexistence is expected for all m values,
which spans from an F1-F2-FCC triple region or from an
F1-F2-SC triple coexistence as indicated.

To gain insight about the F1-F2 isostructural coex-
istence and the connection with a triple F1-F2-FCC or
F1-F2-SC coexistence we show in fig. 13 phase diagrams
for q = 0.4 and a few selected m values (moving along
a horizontal line in fig. 12). For m = 3.4, an F-FCC-SC
triple coexistence occurs at a higher φR

d than the F1-F2-
FCC triple line (F1-F2-SC coexistence is metastable). On
the other hand, for m = 3.65 the F1-F2-FCC triple point
becomes metastable and an F-FCC-SC triple point arises
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Fig. 13. Phase diagrams of mixtures of superballs plus non-
adsorbing polymers for q = 0.4 and various m values as indi-
cated and only in the reservoir depletant concentration repre-
sentation.

at lower φR
d than the F1-F2-SC isostructural coexistence.

This is explained by the fact that the stability of the
FCC decreases as m increases. The condition at which
the F1-F2-FCC and the F1-F2-SC coexistences merge re-
sults in a quadruple coexistence (F1-F2-FCC-SC). This
four-phase coexistence is present for a range of m val-
ues, and shows an asymptotic behaviour from the CEP of
the quadruple coexistence towards the pure hard super-
ball triple point (see fig. 12). The shift of the QP from
the TP of the depletant-free system towards lower m val-
ues reflects the patchiness of the depletion attraction be-
tween superballs. As a consequence of the enhanced align-
ment of the flat faces upon addition of depletants, F-SC
coexistence takes place at m values below those of the
depletant-free system. Hence, depletion-mediated entropic
patchiness promotes the appearance of the SC phase. We
conclude that quadruple coexistence arising from merg-
ing two isostructural triple-phase coexistences is possi-
ble for superball-polymer mixtures. Recently, we found
that similar quadruple coexistences can appear in platelet-
depletant mixtures [16,61]. In fact, quadruple coexistence
containing isotropic-isotropic coexistence has been exper-
imentally reported for platelet-polymer mixtures [62] and
for a hydrate forming system [49]. As an F-FCC-C1 triple
point is present from simulations for the depletant-free
superball system [26], the corresponding quadruple-phase
coexistence may be found from simulations with the C1

phase instead of the SC phase used here. However, hint-
ing at this rich phase behaviour directly from simulations
may be too demanding without the results provided by
the simple model presented. Four-phase coexistences are
possible in effective two-component systems provided an
extra field variable [61]: in this case, the superball’s shape
parameter m.

A remarkable finding is the appearance of an SC1-SC2

isostructural coexistence found at low q and high m values
(see lower right part of fig. 12). We depict a few illustrative
phase diagrams in fig. 14, where small isostructural SC1-
SC2 coexistence regions appear. The single-phase fluid and
simple cubic regions get smaller upon decreasing q. For
m = 10 the binodals shift towards lower φR

d values with
decreasing q, following the same trend as observed for the
F1-F2, F-FCC and F-SC coexistences (see figs. 9–11). This
solid-solid coexistence is driven by the entropic gain for de-
pletants upon phase separation of the colloids into a dense

Fig. 14. Illustrative phase diagrams of superballs plus free
polymers in which isostructural SC phase coexistences appear.

solid SC phase and a more dilute SC phase. The low q
values at which this coexistence takes place are related to
the low (yet non-zero for cubic enough superballs) free-
volume fraction for depletants available in solid phases
at high colloid concentrations (see fig. 8). As can be ob-
served in the rightmost panel of fig. 14, the m value tunes
the depletant concentration at which SC1-SC2 coexistence
is found: SC1-SC2 equilibria are driven by the alignment
of the flat faces, and thus for more curved particles (de-
creasing m) the SC1-SC2 coexistence requires a higher de-
pletant concentration. This induces the crystal state to
demix into an attractive solid (depletion zones optimally
overlapping) coexisting with a repulsive one, as expected
for short-ranged attractions in colloidal systems [63, 64].
With more accurate models or in experimental systems,
these SC1-SC2 coexistences may be replaced for example
by a C1 coexisting with an SC phase. The absence of a
stable FCC1-FCC2 coexistence can be rationalized by the
non-optimal overlap of depletion zones between the flat
faces of the superballs in an FCC state.

4 Concluding remarks

A simple model for the thermodynamic properties of su-
perballs was presented, where all thermodynamic func-
tions required for the phase diagram calculation are ex-
pressed in closed form. We account for three phase states:
fluid (F), face-centred cubic (FCC) and simple cubic (SC).
Some of the closed expressions provided, such as the ac-
curate fit for the second virial coefficient for hard super-
balls, may be of direct application not only in theoretical,
but also in experimental studies. Despite the assumptions
made, the found phase behaviour of pure hard superballs
semi-quantitatively recovers the trends observed as com-
pared with Monte Carlo (MC) computer simulations. Fur-
ther improvements of the theory developed may be possi-
ble, particularly in the solid phases, but most likely lacking
the simple, closed expressions reported here. The increase
of the excluded volume with increasing particle anisotropy
as well as the tendency for flat faces to align allowed us
to rationalize the phase diagram obtained in terms of the
colloidal packing fraction and the particle shape parame-
ter.

The addition of free, non-adsorbing polymers to a
collection of hard superballs induces effective attractive
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patches: alignment of the less-curved areas of the super-
balls is enhanced. This is clearly reflected in the presence
of F-SC phase coexistences for shape parameters where it
was not stable in the depletant-free system, and also in
the manifestation of SC1-SC2 phase coexistences for suf-
ficiently cubic colloids upon addition of small depletants.
Such solid-solid coexistences may be not only of funda-
mental relevance, but also of relevance for the designing
novel photonic crystals. When the depletion attraction is
sufficiently long-ranged, isostructural F1-F2 coexistence is
found for all shape parameters, which can coexist either
with an FCC or an SC state depending on the superball
shape. The boundary between these two triple points that
included isostructural fluid phases (F1-F2-FCC and F1-
F2-SC) defines a window for quadruple-phase coexistence
(F1-F2-FCC-SC). The main trends were collected in a sim-
ple, comprehensive plot (fig. 12) containing the system
parameters (colloidal shape and relative depletant size)
that summarizes the effectively patchy nature of the de-
pletion attraction in colloidal suspensions of cuboidal par-
ticles. The system parameters at which rich multi-phase
behaviour of hard-superballs polymer mixtures is revealed
with our simple model may guide more accurate computer
simulations, and may serve as a first qualitative guide to
interpret experimental results.
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Appendix A. Superball properties: calculation

Superball properties required for the calculation of the sec-
ond virial coefficient and for the free energy of the solid
phases are detailed in this appendix. The distance r be-
tween the centre of a superball and an arbitrary point on
the surface of the superball is given by [65]

r(θ, φ) = a (| cos φ|m| sin θ|m + | sin φ|m| sin θ|m

+ | cos θ|m)
−1/m

, (A.1)

where θ and φ are the polar angle and the azimuthal an-
gle, respectively. The maximum distance (rmax) between

the centre and the surface of the superball is the distance
from the centre to the corner, as shown in fig. 2 for the
2D superball projection. The angles corresponding to this
maximum distance are θ = π/4 and φ = 0 for a 2D su-

perball and θ = arccos(
√

2/3) and φ = π/4 for a 3D
superball, which leads to a maximum distance given by

r2Dmax = r
(π

4
, 0

)
=

√
2a

(
1

2

)1/m

, (A.2)

r3Dmax = r
(
arcsin

(√
2/3

)
,
π

4

)
=

√
3a

(
1

3

)1/m

. (A.3)

The volume of the superball Vsb is obtained by integration
of eq. (A.1) [65]:

vsb =
8

3

∫ π/2

0

∫ π/2

0

sin(θ)r(θ, φ)3dθdφ, (A.4)

where integration is performed over one octant due to
symmetry. Equation (A.4) can be solved analytically, re-
sulting in [21,26]

vsb = d3f(m), (A.5)

with

f(m) =
[Γ (1 + 1/m)]3

Γ (1 + 3/m)
, (A.6)

with d the diameter of the superball (d = 2a) and Γ the
Euler Gamma-function. Exact equations for the surface
area ssb and for the mean curvature csb of a superball
are not known, but they can be calculated numerically
using the surface integral and the integral of mean curva-
ture [65]:

ssb = 8

∫ π/2

0

∫ π/2

0

dθdφ

∥∥∥∥
∂x

∂θ
× ∂x

∂φ

∥∥∥∥ , (A.7)

csb =
8

4π

∫ π/2

0

∫ π/2

0

dθdφ
{
(xθ · xθ)[(xθ × xφ) · xφφ]

+(xφ · xφ)[(xθ × xφ) · xθθ]

−2(xθ · xφ)[(xθ × xφ) · xθφ]
}

×
{
2(xθ · xθ)(xφ · xφ) − 2(xθ · xφ)2

}−1
, (A.8)

where subscripts denote partial derivatives and x repre-
sents a vector from the centre of the superball to the sur-
face, given by

x = {r(θ, φ) sin θ cos φ, r(θ, φ) sin θ sin φ, r(θ, φ) cos θ}.
(A.9)

An overview of the discussed superball properties as a
function of the shape parameter is shown in fig. 15. Re-
garding the complicated forms of eqs. (A.8) and (A.9), it
is not surprising that formal solutions for the surface and
mean curvature of superballs are not available. For ease
of reproducibility, the expanded expressions for the nor-
malized surface area (s̃sb = ssb/d2) and surface integrated
mean curvature (c̃sb = csb/d) are provided as

see eqs. (A.10) and (A.11) on the next page
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Fig. 15. Dimensionless volume, surface area and mean curva-
ture of a superball as a function of 1− 2/m, with m being the
shape parameter.

Appendix B. Close packing and free volume

of FCC and SC crystals

In this appendix, clarification on the close-packing frac-
tion of the two solid states considered is provided. The
general equation for the close-packing fraction of a super-
ball crystal is given by

φcp
c =

Nucvsb

Vuc,cp
, (B.1)

with Nuc the number of superballs in the crystal unit cell
and Vuc,cp the volume of the unit cell at the close-packing
fraction.

For the FCC crystal, the number of particles inside
the unit cell is 4 and the volume of the unit cell at the
close-packing fraction is given by

V FCC
uc,cp =

[
4r2Dmax sin

(π

4

)]3

= (4a)32−3/m,

which, combined with eq. (B.1), gives the close-packing
fraction of superballs in the FCC crystal (eq. (12)).

For the SC crystal, there is only a single particle inside
the unit cell and the volume of the unit cell at the close-
packing fraction is simply given by

V SC
uc,cp = (2a)3, (B.2)

which results in the close-packing fraction of superballs in
an SC crystal given by eq. (16). In fig. 16 the close-packing
fractions for the FCC and SC superball crystal are shown

Fig. 16. Left: close-packing fraction of superballs for the FCC
and SC crystals as a function of 1 − 2/m. Middle and right:
Normalized free volume of a superball FCC crystal and SC
crystal, respectively, for several m values as a function of the
packing fraction φc.

as a function of the shape parameter m. As the particles
become more cubic, the close-packing fraction of the FCC
lattice decreases, whereas the close-packing fraction of the
SC lattice increases. We also show in fig. 16 the normalized
free volume for the FCC and SC crystal as a function of
the packing fraction. For the FCC crystal, the relative free
volume decreases when m increases, which seems counter-
intuitive since the distance between particles r increases
as a function of m for a constant packing fraction due to
the fact that the size of the particles increases as a func-
tion of m. However, due to the diagonal stacking of the
particles, the free volume per particle decreases as a result
of the increase of r2D

max as a function of m. The opposite
trend is observed for the SC crystal, which is as expected
because the free volume of the SC lattice does not depend
on r2D

max, but decreases as a function of the particle radius
a which does not depend on the m value. These trends
in the free volume are also visible in the 2D projections
of the free volume in the FCC and SC crystals shown in
fig. 4.

Appendix C. SC crystal for perfect cubes

with approximated contribution for rotations

Here, an approximation for the rotational contribution of
cubes (m = ∞) to their free volume in an SC crystal is
discussed beyond the particular choice of the unit cell.
Instead of reducing the free-volume cage by a factor 8,
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Fig. 17. Sketches of the rotation approximation for cubic par-
ticles in an SC crystal in 2D (left) and 3D (right). Dashed lines
indicate the SC unit cells, two nearest neighbours are shown
in black and the free volume is indicated in grey. In the 2D
scheme the minimum distance between two nearest neighbours
(grey line), the angles θ and θ/2 and the distances 2a sin θ and
2a cos θ are also indicated.

as was done in the main text, we rescale the free volume
based on the maximum angle that a cube can rotate with-
out entering the unit cell of a neighbouring particle (see
fig. 17).

The maximum angle that a cube can rotate in one
direction inside its unit cell θ can be found by solving

φ1/3
c ∗ (cos θ + sin θ) = 1, (C.1)

which gives

θ = arccos

⎛
⎝φ

2/3
c +

√
2φ2

c − φ
4/3
c

2φc

⎞
⎠ , (C.2)

The average angle of a cube inside its unit cell is ap-
proximated by θ/2. Note that cuboids can rotate in three
dimensions: here we only consider rotations around one of
their symmetry axes. The free volume is approximated as
two times the minimum distance between two particles,
rotated in one direction with opposite orientation, to the
power of three. Following this approach, the free volume
of a cube in an SC crystal V SC

f is

V SC
f =

[
2a

(
1

φc

)1/3

− 2a

(
sin

θ

2
+ cos

θ

2

)]3

. (C.3)

The maximum angle, the free volume, and the free en-
ergy as a function of the packing fraction are shown in
fig. 18. The angle θ goes from zero at the maximum pack-
ing fraction to π/4 at the situation where cubes freely
rotate in one direction without touching each other (at

φc = 1/(2
√

2)). Note that this is not the same maximum
packing fraction at which cubes in an SC crystal can freely
rotate in all directions, namely φc = 1/(3

√
3). Taking into

account this approximate orientation of the cubes leads

Fig. 18. Left: maximum angle a cube can rotate in one direc-
tion in an SC unit cell θ, centre: free volume Vfree and right:
normalized free energy eF of an SC crystal of cubes, with the
rotation approximation shown in fig. 17 and for an SC state of
perfectly aligned cubes.

Table 2. Quadruple end point (QEP) for the I-I-FCC-SC co-
existence considering different cases.

Case φF
c φFCC

c φSC
c φR

d q m

eq. (29) 0.358 0.583 0.669 0.342 0.305 3.460

eq. (30) 0.354 0.584 0.670 0.348 0.305 3.457

eq. (D.1) 0.352 0.587 0.672 0.255 0.269 3.441

to a reduction of the free volume for all volume fractions.
This free volume is not a monotonically decreasing func-
tion with φc, which shows the intricate of accounting for
rotations even qualitatively.

Following this rough rotation approximation, the F-SC
coexistence densities for hard cubes are found at φF

c ≈ 0.37
and φSC

c ≈ 0.58. These densities are very similar to those
found with the appropriate choice of the unit cell made in
the main text: φF

c ≈ 0.36 and φSC
c ≈ 0.54. Note that even

this simple approach, that only takes an approximated av-
erage particle orientation in two dimensions into account,
may only be analytically resolved for perfect cubes. How-
ever, this simple derivation allowed us to estimate how
much the free-volume cage is reduced due to particle rota-
tions in an SC state: namely about 1/8 of the free volume
for perfectly aligned cubes.

Appendix D. Effect of different depletion

zones on phase stability

Naively, the depletion zone may be considered as having
the same shape as the hard superball but whose radius is
a + δ:

ṽeq.shape
exc = (1 + q)3. (D.1)

Derivation of the free-volume fraction from eqs. (28)
and (23) is straightforward. In table 2 we show the dif-
ferences for the CEP of the quadruple F1-F2-FCC-SC co-
existence. Differences between eq. (29) and eq. (30) are
only in the third decimal place. When the depletion zone
is overestimated (eq. (D.1)) the CEP of the quadruple
coexistence occurs at a lower range of the depletion at-
traction. We finally present in fig. 19 the phase stability
overview. A nearly imperceptible difference is found when
applying eq. (29) or eq. (30), whereas the F1-F2 coexis-
tence occurs at lower q when applying eq. (D.1). As the
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Fig. 19. Same as fig. 12, but comparing different methods for
the depletion zone calculation. Black curves corresponds to the
interpolation of the numerically calculated superball properties
(eq. (29)), the orange dashed curves that practically coincide
with the black ones correspond to the fitting used (eq. (30))
and the gray solid curve correspond to the equal shape approx-
imation for the depletion zone (eq. (D.1)).

SC1-SC2 coexistence only occurs at rather low q values,
it is less sensitive to the particular shape of the depletion
zone considered.

Open Access This is an open access article distributed
under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which
permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

References

1. D. Frenkel, Physica A 263, 26 (1999) (Proceedings of

the 20th IUPAP International Conference on Statistical

Physics).
2. M. Dijkstra, Entropy-Driven Phase Transitions in Col-

loids: From Spheres to Anisotropic Particles, Vol. 156,
(John Wiley & Sons, Inc., 2014) Chapt. 2, pp. 35–71.

3. L. Onsager, Ann. N. Y. Acad. Sci. 51, 627 (1949).
4. G.J. Vroege, H.N.W. Lekkerkerker, Rep. Prog. Phys. 55,

1241 (1992).
5. S. Varga, A. Galindo, G. Jackson, Mol. Phys. 101, 817

(2003).
6. J.A.C. Veerman, D. Frenkel, Phys. Rev. A 45, 5632 (1992).
7. A. Haji-Akbari, M. Engel, A.S. Keys, X. Zheng, R.G.

Petschek, P. Palffy-Muhoray, S.C. Glotzer, Nature 462,
773 (2009).

8. A.P. Gantapara, J. de Graaf, R. van Roij, M. Dijkstra, J.
Chem. Phys. 142, 054904 (2015).

9. S. Asakura, F. Oosawa, J. Chem. Phys. 22, 1255 (1954).
10. S. Asakura, F. Oosawa, J. Polym. Sci. 33, 183 (1958).
11. R. Tuinier, H.N.W. Lekkerkerker, Colloids and the Deple-

tion Interaction (Springer Netherlands, 2011).
12. G. van Anders, N.K. Ahmed, R. Smith, M. Engel, S.C.

Glotzer, ACS Nano 8, 931 (2014).
13. J. Glaser, A.S. Karas, S.C. Glotzer, J. Chem. Phys. 143,

184110 (2015).
14. A.S. Karas, J. Glaser, S.C. Glotzer, Soft Matter 12, 5199

(2016).

15. A.V. Petukhov, R. Tuinier, G.J. Vroege, Curr. Opin. Col-
loid Interface Sci. 30, 54 (2017).
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