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ABSTRACT: We introduce a general formalism combining the coupled oscillator model with the transfer matrix method to
analyze and engineer the phase of the light reflected from a Fano-resonant metasurface. This method accounts for periodicity and
the presence of substrates, and we demonstrate that these factors can be used to tune the reflected phase at will. Utilizing these
effects and adjusting the coupling strength of the underlying unit cell, we achieve zero reflection at the dark resonance of the
metasurface. We show that the resulting phase singularity can dramatically increase the sensitivity of phase-based detection
schemes. The phase bifurcation unveiled in this work can be used to design plasmonic metasurfaces that explore the unusual
phase behavior of light.
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L ight scattering from plasmonic metasurfaces has received
significant attention over the past few years, leading to a

broad range of applications such as wavefront engineering,
molecular identification, spectroscopy, and enhanced nonlinear
generation.1−13 The functionality of a metasurface depends on
both the near-field and far-field responses of the unit cell that
composes it, which usually consists of multipart plasmonic or
dielectric nanostructures. Plasmonic nanoparticles and optical
antennas that support Lorentzian resonances can be modeled as
classical oscillators.14−16 In turn, the response of compound
structures can be described using coupled mode theory for the
harmonic modes.17−21 Although these models have been used
to successfully describe the light intensity spectra, another
fundamental property of light, phase, has not been well
analyzed, especially in the case of periodic structures.
Retrieving both the phase and the amplitude information is

important for applications such as high precision metrology and
ellipsometric sensing.22−26 Techniques based on rapid spatial
phase changes have been achieved in various plasmonic systems
used to improve the performance of optical sensors.27−29

However, frequency-dependent phase variations are correlated
with resonance line widths, and intrinsic losses in metals result
in broad line widths and slow spectral variations.14,30,31 Optical
Fano resonances utilizing dark modes are employed for

reducing the radiative loss of localized surface plasmon
resonances (LSPRs) in both individual nanostructures and
periodic arrays.12,15,20,32−36

When substrate effects are taken into consideration, the
phase is no longer a property of the plasmonic resonances
alone, but also depends on the interference with light reflected
from the interfaces and the resulting asymmetry in the light
propagation direction. For example, the presence of a substrate
has been shown to suppress lattice resonances37,38 and induce
symmetry breaking with Fano resonances.39,40 The substrate
also modifies the spatial distribution of the near-field in the
different media, which maximizes the light−matter interac-
tion41,42 and enhances the sensitivity of biosensors.43−45

In this work, we study the influence of the substrate on the
phase for periodic structures and unveil the phenomenon of
phase bifurcation in a Fano-resonant metasurface, which
enables extremely rapid phase modulation of the reflected
light without having to further reduce the plasmonic losses in
the system. We start by analyzing the reflected light from a two-
dimensional (2D) subwavelength array of dipoles and show
that it exhibits a π/2 phase shift compared to the scattering
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from an individual dipole. The classical oscillator model is
modified to include this phase change. We then generalize it for
a periodic array of nanostructures supporting dark resonances,
by modeling the unit cell as two coupled oscillators. Then we
utilize the transfer matrix method (TMM) to incorporate the
effect of the substrate. We show that zero reflection at the dark
resonance can be achieved by adjusting the coupling strength
and results in a phase bifurcation. Finally, we propose phase-
based sensing near the bifurcation region in order to improve
the detection limit of refractive index changes and achieve
ultrahigh sensitivity.

■ DISCUSSION

Phase Difference in Scattering between Individual

and Periodic Scatterers. We assume the time dependence
e−iωt for the electromagnetic field throughout. Let us first
consider an infinite homogeneous space with permittivity ε and
permeability μ; the scattering from a plasmonic nanostructure
can be calculated in the dipolar approximation using the
Green’s tensor G̅(r,r0).

46 Consider a single dipole at a position
r0 = (0,0,0) that exhibits a dipole moment p = (px,0,0)
oscillating with angular frequency ω. The electric field at the
location r = (0,0,h) with h ≫ λ can be written as
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where k2 = ω2εμ corresponds to the wave vector in the
background medium, and the term eikh denotes the phase
change with propagation.
Now we consider a 2D infinite array consisting of identical

dipoles with dipole moments given by p = (px,0,0) and
subwavelength periodicities in x- and y-directions equal to Γx =
a and Γy = b. We are interested in the total scattered light at the
location r = (0,0,h) with h ≫ a,b,λ. The electric field at this
point is the sum of scattered fields from all the dipoles in the
array,
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where = + +r na mb h( ) ( )2 2 2 is the distance between the

specific dipole and the observation point. As a consequence of
symmetry, the y- and z-components of the field cancel out.
According to the previous assumption h ≫ a,b and in the limit
when h → ∞, the asymptote of the above summation is
equivalent to integration over x and y. In addition, since the
integral is invariant in x, the partial derivative term vanishes.
Then, we perform the polar coordinate transformation and
rewrite the remaining x-component of the field as
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Equation 3 converges only when assuming that there is a small
loss in the space (i.e., k has a small imaginary part),47 and one
can then find the analytical expression for the electric field
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Similar to eq 1, the total scattered field from a 2D array is
described by the multiplication of a propagation term eikh and a
factor depending on the dipole moment. However, the field has
an additional phase of π/2 and a different frequency-dependent
expression compared to the scattered field of a single dipole.
Physically, the effective number of elements that interfere
constructively at a specific point is proportional to the
wavelength. This results in the reduction of the exponent of
the frequency dependence from ω2 in eq 1 to ω in eq 4. The
additional phase shift is also due to the interference of all the
dipoles in the plane.
Figure 1 illustrates such an effect in plasmonic systems. We

simulate a gold nanorod with dimensions 110 × 40 × 40 nm3

excited by an x-polarized plane wave using the surface integral
equation (SIE) either for an individual nanorod48,49 or for an
infinite array of nanorods50 considering a Drude model for the
gold permittivity (ωplasma = 8.95 eV, ε∞ = 9.5, and γ = 0.691
eV).51 The refractive index of the homogeneous surrounding

Figure 1. Schematic of (a) a single nanorod, and (b) an infinite 2D
array of nanorods, showing the illumination condition. Calculated x-
component of the scattered electric field in the yz-plane for (c) the
single nanorod and (d) the periodic array. The field plots are for λ =
740 nm and exhibit a phase difference of π/2 (corresponding to λ/4)
between the two wavefronts.
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medium, n ̅ = (nairnglass)
1/2 = 1.225, corresponds to the

geometric mean of the indices of air and glass. This value is
chosen in order to obtain a similar resonance frequency when
glass substrates are included in the simulation later. For a
wavelength equal to 740 nm, the x-component of the field in
the yz-plane is shown in Figure 1c. Similarly, we simulate a 2D
array of identical nanorods with periodicity Γx = Γy = 400 nm.
The resulting Ex field component in the yz-plane at the same
wavelength is shown in Figure 1d. Comparing panels c and d in
Figure 1, we observe a mismatch of λ/4 between the two
wavefronts, which indicates the additional phase delay of π/2
produced by the periodic structure. This somewhat unexpected
effect has to be considered while designing planar plasmonic
surfaces and must be included in the coupled oscillator model
that will be presented in the following.
Oscillator Model for Plasmonics. In terms of spectral

response, plasmonic resonances exhibit a broad Lorentzian line
shape, which is analogous to that of a classical damped
oscillator. For example, a dipole resonance supported by a
single gold nanorod can be described by the motion of a charge
cloud with intrinsic restoring force and loss, driven by an
external harmonic force.52 The differential equation of the
dynamic motion is

γ ω α̈ + ̇ + = + ⃛ω−x x x E xe i t
0
2

0 (5)

where x is the oscillation amplitude of the charge cloud, ω0 is
the eigenfrequency of the oscillator in the absence of damping,
γ is the internal damping parameter, E0 and ω are the strength
and frequency of the external force, respectively, and αx⃛ arises
from the Abraham-Lorentz force present in plasmonic systems
that describes the radiative loss.17,18 By expressing the solution
in the complex form as x(ω,t) = x0(ω)E0e

−iωt, the complex
amplitude in steady state is given by

ω
ω ω ω γ ω α

=
− − +

x
i

( )
1

( )
0

0
2 2 2

(6)

The dipole moment of the system is proportional to the
amplitude of motion, px = qE0x0(ω). Substituting this into eq 1,
we can express the backscattered far-field at distance h in the
following form

ω ω ω= ϕE A x e e( ) ( )x
gle ikh isin 2

0 (7)

where A is a factor depending on the strength of the driving
field E0 and the observation distance h; the propagation term
eikh is taken into account and an additional phase correction ϕ is
used for future convenience.
In general, disregarding the interband transitions of metals,

this expression describes very well the far-field spectra of
localized plasmonic resonances.17 In Figure 2a, we plot the far-
field amplitude and phase as a function of frequency for the
single nanorod from the previous section. The value of phase is
calculated in a way such that the propagation term eikh is
subtracted. According to eq 7, the fitting curves for both
amplitude and phase (solid lines in Figure 2a) match very well
with the full electromagnetic SIE simulation (circular markers
in Figure 2a): the residual of the least-square fit is as small as 5
× 10−3. The fitting parameters are given in Table 1, and the
phase correction ϕ is found to be zero. The fitting parameters
are obtained using the least-squares solver in Matlab to find
parameters the fit best to the problem, using a tolerance of 1 ×
10−6. The far-field scattering amplitude exhibits a broad
resonance peak and the phase changes from 0 to π on crossing

the eigenfrequency. At the resonance condition when ω = ω0,
the corresponding phase is equal to π/2. In order to provide a
better visualization of the complex electric field, we plot the
complex amplitude as a curve parametrized by the frequency in
the Argand plane (Figure 1d). The curve of the scattered field
lies in the first and second quadrants.
On the other hand, the reflected field at a distance h from a

periodic gold nanorod array can be calculated by substituting px
into eq 4. One can again express the field in a simplified form

ω ω ω= ϕE A x e e( ) ( )x
ikh iarray

0 (8)

where we expect a phase correction ϕ = π/2 for a 2D square
lattice.
Figure 2b shows the spectrum (in circular markers) of the

nanorods array from the previous section and the fitting curve
(in solid lines) using eq 8. The fitting parameters are listed in
Table 1. The values of resonance frequency ω0 and internal
damping γ did not change significantly compared to those of a
single nanorod. Radiative damping α decreases slightly. Most
importantly, the phase correction parameter ϕ is now found to
be 0.5π as expected. Note that the discrepancy at high

Figure 2. Amplitude and phase of the backscattering from (a) a single
gold nanorod, (b) a subwavelength array of gold nanorods, and (c) a
subwavelength array of gold nanodolmens. The schematics of the
simulated systems are shown in the respective insets. (d), (e), and (f)
plot the complex amplitude in the Argand plane for the situations in
(a), (b), and (c), respectively. In all figures, circular markers denote
values from electromagnetic SIE simulations, and the solid lines are
best fits using the model.

Table 1. Fitting Parameters for Single Oscillator and Array
of Identical Oscillators

ω0 (eV) γ (eV) α (eV) ϕ (π)

single nanorod 1.663 0.019 0.055 0.0

periodic nanorods 1.689 0.019 0.034 0.51
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frequency is mainly because the retardation effect becomes
prominent when wavelength decreases, in which case the single
oscillator with constant coupling coefficient approximation
breaks down. In the Argand diagram (Figure 2e), it is clear that
the curve is rotated counterclockwise by 90°. In the dipole
approximation, such a phase correction can be applied to other
periodic systems even when the unit cell has a complicated
geometry, such as the plasmonic analogue of electromagneti-
cally induced transparency (EIT), in which a bright dipole
antenna element is coupled to a dark quadrupole antenna via
near-field interaction.20,21,32,36

In this work we are interested in a metasurface that exhibits
the plasmonic analogy of EIT, specifically, the dolmen
structures shown in Figure 2c. The three nanorods have
dimensions of 110 × 40 × 40 nm3 and the gaps are each 10 nm.
The coupling between the dipolar mode and the quadrupolar
mode is tuned by the lateral displacement s of the dipolar
antenna from the center position with s = 15 nm.53 We first
simulate an array with period Γx = Γy = 400 nm in a
homogeneous surrounding medium. The background refractive
index for this plasmonic layer is again chosen to be n ̅ = 1.225.
With incident polarization along x, the dipolar mode excited on
the center nanorod couples with the quadrupolar mode
supported by the two nanorods on the sides and results in a
Fano-like line shape. Figure 2c shows the amplitude and phase
of the reflected light calculated using SIE simulation. Briefly, the
complex electric field is calculated at a point 50 μm away from
the surface; then the phase is subtracted by removing the
propagation term eikh. A dip in amplitude is observed at 1.62 eV
that corresponds to the energy transfer to the quadrupolar dark
mode. For the phase, the upswing around 1.51 eV is due to the
dipolar resonance of the single nanorod, whereas the variation
around 1.62 eV corresponds to the interference between the
dipolar and quadrupolar resonances. This system can be
described by the following coupled oscillator equations18
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where x1 and x2 are the amplitudes of bright and dark modes,
and κ is the coupling coefficient. By expressing the solution for
the radiative resonance in the form of x1(ω,t) = xb(ω)E0e

−iωt,
the complex amplitude in steady state becomes
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For a periodic array in a homogeneous medium, the far-field is
again shifted by a phase of ϕ = π/2. Similar to eq 8, the
normalized reflection coefficient for such a plasmonic array can
be expressed as

ω ω ω= ϕr A x e e( ) ( )b
ikh i

homo (11)

As shown in Figure 2c,f, eq 11 describes very well both the
amplitude and phase of the normalized reflected field computed
for an array of nanodolmens. The extracted parameters for the
coupled oscillators model are given in Table 2. As expected for
a dark mode, radiative damping coefficients α2 of the second
oscillator are much smaller than those of the first oscillator α1,
corresponding to the bright mode. The π/2 phase correction ϕ
is still necessary since we are dealing here with an array. In the
Argand diagram (Figure 2f), the frequency-dependent trace of
the complex field in this coupled system exhibits an additional
loop. This indicates that there exist two frequencies giving rise
to exactly the same amplitude and phase. The minimum
reflection, corresponding to EIT, occurs between these two
frequencies as the loop approaches the origin (as indicated by
the black star).

Effect of the Substrate. The analysis of mode frequency
and coupling strength in periodic nanoresonators is essential in
order to design metasurfaces with specific functionalities.
Unfortunately, correct extraction of those parameters in
complex optical environment remains difficult using conven-
tional model. As soon as a substrate is introduced, the reflection
spectrum from a metasurface is modified due to the resulting
perturbation of the environment. Not only do the resonance
frequencies shift, the lineshapes can also be different because of
the additional interface. When the system is off-resonance,
scattering from the plasmonic structures is minimal and one
expects to observe the reflected field merely arising from the
bare glass/air interface given by the Fresnel coefficient.54 When
the plasmonic array is on-resonance, the total reflected field is
the summation of the light scattered from the plasmonic
structures and that reflected from the glass/air interface.
Depending on the phase relation between these two fields, the
resonance features can either be enhanced or canceled.
To investigate the effect of the substrate, we simulate an

array of gold dolmens with the same geometry as in the
previous section, but now on a glass substrate with refractive
index nglass = 1.5, as illustrated in Figure 3a. The superstrate is
air. Light is incident normally, first from the glass side, and
excites the bright mode. The SIE calculated reflection
amplitude and phase are shown with circular markers in Figure
3c. The resulting curves are different from the case in Figure 2c.
Compared to the spectrum without substrate, the reflection dip
in the case of a glass substrate is deeper and sharper. The phase
now spans from 0.2π to 1.7π, with a more abrupt variation
across the dark mode at 1.66 eV (without a substrate, the phase
spanned from 0.1π to 0.9π, Figure 2a). The influence of the
substrate is even more pronounced when we consider the
system illustrated in Figure 3b, where the dolmen array is
placed 40 nm above a semi-infinite gold substrate. The
response of the system is shown in Figure 3d, where we now
observe two dips in the reflected spectrum.
In addition to the resonance frequency shift, the substrate

also changes dramatically the line shape and the phase of the
reflection spectrum. In the absence of the substrate, these
quantities could have been modeled very well using the coupled
oscillator model as shown previously. We will show that the

Table 2. Fitting Parameters for Dolmen Arrays without Substrate, on Glass Substrate and on Gold Mirror with a Spacer

ω1 (eV) ω2 (eV) γ1 (eV) γ2 (eV) α1 (eV) α2 (eV) κ (eV2) ϕ (π)

homogeneous medium 1.515 1.625 0.046 0.039 0.055 0 0.255 0.50

glass substrate 1.578 1.660 0.043 0.042 0.055 0 0.224 0.50

metallic backplane 1.486 1.610 0.124 0.048 0.020 0 0.240 0.51
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influence of the substrate can be incorporated by combining the
oscillator model with the transfer matrix method (TMM).55 In
fact, the nanostructures placed in a homogeneous background
that we have just investigated can be considered a special case
of a planar stratified medium with three layers, where the
superstrate and the substrate have the same refractive index and
the plasmonic layer is sandwiched in between. The transfer
matrix and the effective index of the plasmonic metasurface can
be determined according to the reflection and transmission
coefficients computed from the coupled oscillator model.
Furthermore, knowing the effective medium parameters will
allow deriving the reflection and transmission spectra of
metasurfaces in other layered conditions, such as in the
presence of glass or metallic substrates. In the actual model that
we will introduce, it is unnecessary to find the exact effective
index, since more complex layered structures eventually reduce
to multiplying additional transfer matrices with the transfer
matrix that accounts for the plasmonic layer.
Let us first derive the transfer matrix Mhomo in the

homogeneous background case. The system is divided into
three layers: an incident medium with refractive index n1; a
middle layer including the plasmonic structures array
(metasurfaces) with index n2 and a final medium with index
n3, where n1 = n3 = n ̅. The system satisfies mirror symmetry
about the plasmonic layer and one can write the total transfer
matrix as

=
′

′ − ′ ′

− ′
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⎝
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t r r

r
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where the reflection coefficient r′ = rhomo(ω) is given by the
oscillator model according to eq 11, and the transmission

coefficient is the sum of the incident field and the scattered field
t′ = 1 + r′.38

When the substrate is introduced, the incident medium index
now differs from the substrate medium index n ≠ n3, and the
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Let us recall that n ̅ is the background media index used to
compute the plasmonic layer. One can then calculate the total
reflection and transmission coefficients from the system

ω = − =
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r
M
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n r
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det( ) 2 (1 )

( ) ( 2 )22
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(17)

In the case of normal incidence from the glass side, n1 = 1.5 and
n3 = 1, eq 11 does no longer describe the reflected field because
of the presence of the substrate. However, the expression for
the reflected field r(ω) in eq 16 fits exactly with the SIE
simulation results in Figure 3c. The parameters extracted in that
case for the coupled oscillators model are consistent with the
parameters for the homogeneous medium, as shown in Table 2.
The resonance frequencies ω1 and ω2 shift due to the presence
of the substrate,56 but the intrinsic properties such as internal
damping coefficients γ1 and γ2, the radiative damping α1 and α2
and the coupling coefficient κ remain similar. In the Argand
diagram (Figure 3e), the presence of the substrate modifies the
complex reflected field observed for the homogeneous
background in a way such that the entire curve scales up a
little and is displaced toward the right (compare with Figure
2f). The loop becomes closer to the origin and, thus, the dark
resonance dip (ω = 1.66 eV) in the reflection spectrum appears
closer to zero intensity. At off-resonance frequency (ω = 1.2 or

Figure 3. Schematics of a periodic plasmonic array (a) on a glass
substrate with incident light along +z and (b) above a gold substrate
with a spacer of 40 nm and incident light along −z. (c) and (d) show
the amplitude and phase of reflected fields for the situations in (a) and
(b), respectively, and (e) and (f) plot the respective complex
amplitudes in the Argand plane. In all figures, circular markers denote
simulation values, and the solid lines are best fits using the model.
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2 eV), the reflection coefficients remain constant at 0.2 in
Figure 3c, which corresponds to the reflection from the glass/
air interface.
Different substrates induce different effects on the reflection

spectrum and this can be evaluated using the corresponding
transfer matrix. For example, for the system illustrated in Figure
3b, one can derive the transfer matrix for the structure by
considering 4 layers: a superstrate with refractive index n1, a
plasmonic layer, a spacer below with index n3 and a gold
substrate with index nm given by the Drude model. The total
transfer matrix can be written as

= · · · ·
̅ ̅

M M M M M Mn n n n nn /n
interf prop

/
interf

homo /
interf

m3 3 3 1 (18)

with the interface matrices Mn3/nm
interf given by eq 14 and the

propagation matrix Mn3
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where φ = 2πndω/c is the propagation term within the spacer
at normal incidence. For demonstration purpose, we chose n1 =
n3 = 1.5 = ng in the full wave SIE simulation. After
simplification, the reflection coefficient is then found to be
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φ φ
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Equation 20 fits extremely well with the electromagnetic SIE
simulations (Figure 3d,f). The extracted parameters for the
coupled oscillators model are shown in Table 2. These values
do now systematically include the interaction between the
metasurface and the metallic substrate by combining the TMM
and the coupled oscillators model. For example, the presence of
a gold mirror induces an opposite image dipole for each
element in the metasurfaces, thus increasing the resonances
losses. This effect results in a lower radiative damping
coefficient α1 and higher internal damping coefficients γ1 and
γ2.
To further prove the validity of this model, we compare the

transmission and reflection from the nanodolmen array on a
glass substrate for the opposite incident conditions. At normal
incidence from glass to air, the reflected field does not have a
phase change with respect to the incident field, while the
scattered field from the plasmonic array produces a phase shift
of π (π/2 from the resonance condition and π/2 from the 2D
periodic effect). This leads to destructive interference between
the light scattered from the plasmonic structure and the light
reflected from the glass/air interface. Thus, the total far-field in
reflection is reduced to nearly zero at the dark resonance dip.
On the other hand, reflection from air to glass is always
accompanied by a phase flip of π, so that it is in-phase with the
scattered field from the plasmonic structures; the total far-field
intensity is stronger at the resonance in this case. The SIE
simulation is shown as circular markers in Figure 4. The results
have been fitted according to

ω ω ω ω= | | = | |R r T
n

n
t( ) ( ) and ( ) ( )2 3

1

2

(21)

where r(ω) and t(ω) are from eqs 16 and 17, respectively, and
n1 and n3 are the indices of input and output media (fitting
curves are in blue for reflectance and in green for transmittance

in Figure 4). In reflection, the dark resonance dip is not very
pronounced for excitation from the air side (blue line in Figure
4a), while the dark resonance reflectance decreases to nearly
zero at ω = 1.68 eV for excitation from the glass side (blue line
in Figure 4b). Transmittances are identical in Figure 4a,b
because of reciprocity.57 According to energy conservation,
absorption given by A = 1 − R − T is higher when light is
incident from the glass side, since the plasmonic array is placed
in the antinode of the electric field thanks to the zero phase
change at the interface.41

Zero Reflection and Phase Bifurcation. The resulting
near zero reflection in Figure 4b can enable phase flipping
around that singularity frequency. Let us now restrict our study
to the case of the glass substrate with incidence from the glass
side in order to achieve a singular phase. Under this incidence
condition, the phases of the scattered field and the reflected
field from the interface are always opposite near the frequency
of the dark resonance. In order to achieve exact zero reflection
at this frequency, one needs to match the amplitudes of these
two waves as well. One way is to vary the density of the
plasmonic array in order to match the scattering intensity from
the plasmonic array with the light reflected from the glass/air
interface. Unfortunately, a large periodicity may result in higher
diffraction orders and complicate the optical response.21 The
other possibility is to change the coupling strength between the
dipolar mode and the quadrupolar mode, which effectively
controls the intensity at the dark resonance frequency.58

In order to tune the coupling strength, we simulate
nanodolmen metasurfaces with different lateral displacements
of the center nanorod from s = 0 to 40 nm. Figure 5a presents
the series of reflection spectra. When the structure is symmetric
(s = 0), there is no coupling between the dipolar and
quadrupolar modes, and the reflection spectrum exhibits a
broad resonance peak. As the symmetry breaks, a dark
resonance dip arises at 1.67 eV and the amplitude at the dip
decreases with increasing coupling. We observe nearly zero
reflection when s = 20 nm. The corresponding phase in Figure
5b shows an anomalous behavior: unlike the phase variation for
low values of coupling, the phase changes from 0.2 to 3.8π
across the resonances with an abrupt jump of π at 1.67 eV. In
the Argand diagram (Figure 5c), larger nanorod displacements
result in bigger loops since a stronger coupling splits the hybrid
modes more. When s = 20 nm, the loop exactly passes through
the origin, resulting in a phase flip of π. As the electric field
amplitude has a winding number of two in the complex plane,
the maximum phase change can be as large as 4π. The
displacement s = 20 nm gives an optimum coupling strength to

Figure 4. Normalized reflection (blue), transmission (green), and
absorption (red) as a function of frequency for a nanodolmen array on
a glass substrate with incident light from (a) the air side and (b) the
glass side. Circular markers correspond to the SIE simulations and
solid lines correspond to the curves obtained with eqs 16 and 17.
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achieve zero reflection at ω = 1.67 eV. For s = 40 nm, the
system becomes overcoupled and the amplitudes of the field
scattered from the plasmonic layer and the field reflected from
the interface do not match. Not only does the reflectance at the
dip increase again, the phase also now varies smoothly across
the resonance.
To further understand the dependence on coupling, we apply

eq 16 and plot the amplitude of the reflected field as a function
of frequency and coupling strength. The color map in Figure 5d
illustrates the case of two coupled oscillators with intrinsic
properties: ω1 = 1.58, ω2 = 1.66 eV, γ1 = 0.043, γ2 = 0.042 eV
and α1 = 0.055, α2 = 0 eV. These two oscillators form the unit
cell of a plasmonic array placed on a glass substrate. The blue
and purple dashed lines indicate equiphase lines. When the
frequency is ω = 1.67 eV and the coupling strength κ = 0.24
eV2, the amplitude decreases to zero and the phase lines
converge at this dislocation point. Note that the equiphase lines
are discontinuous on the right-hand side of this singularity
point exhibiting the phase jump between lower and higher
coupling strength. In general, for super- and substrates with
sufficient contrast in refractive indices, one can always find an
optimum coupling strength to realize zero reflection and phase
singularity.
Finally, as an application, we propose a sensing method

based on the principle of phase discontinuity in such a
metasurface. We fix the nanodolmens geometry with displace-
ment s = 20 nm since the reflection approaches zero. Then, we
change the refractive index of the superstrate from n = 1.112−
1.12 RIU and probe the optical response. Figure 6a represents
the phase profile around the sharp phase singularity frequency
1.61 eV. As the refractive index increases, not only does the
position of the resonance red-shifts, the phase also exhibits a
discontinuous jump. By fixing the excitation frequency at 1.61
eV, we plot the phase change at this frequency as a function of
environment index in Figure 6b. The phase increases
dramatically within a very small index range around 1.1165

RIU, at which the sensitivity is as high as 135000° RIU−1

(green dashed line in Figure 6b). Compared to other sensors,
this system benefits from the phase singularity and can, in
principle, detect smaller changes.59 This suggests that
metasurfaces supporting dark resonances with both optimized
coupling strength and environment feedback can be utilized to
enhance the performance of sensors based on phase
detection.31 Practically, the coupling strength can be adjusted
by either changing the incident angle or the polarization
direction, depending on the system incorporated.

■ CONCLUSIONS

In conclusion, we have introduced a combined coupled
oscillator/transfer matrix model that incorporates both
periodicity and substrate effects to study the optical response
of periodic plasmonic metasurfaces embedded in arbitrary
stratified backgrounds, including metallic layers. While we have
used the SIE method to retrieve the parameters of the coupled
oscillators, any other numerical technique could have been
utilized for that purpose60 and combined with the TMM in a
similar way. We have used this method to analyze the
amplitude and phase of the reflection spectrum from a Fano-
resonant metasurface and provided new insights into its
dynamics by plotting it in the Argand plane. This method
allows a better physical understanding of the light interaction
within metasurfaces that can support several coupling channels.
By utilizing the phase shifts introduced by the plasmonic
metasurface and the substrates and adjusting the coupling
strength, we have achieved zero reflection at the dark resonance
frequency. This zero-reflection condition results in a spectral
phase bifurcation of the reflected field, which enables high
sensitivity phase-based sensing. Such phase bifurcations hold
tremendous potential for sensing applications based on phase
detection, which can possibly outperform conventional
spectroscopic techniques.
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