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Animal aggregations are visually striking, and as such are popular examples of collective behavior
in the natural world. Quantitatively demonstrating the collective nature of such groups, however,
remains surprisingly difficult. Inspired by thermodynamics, we applied topological data analysis to
laboratory insect swarms and found evidence for emergent, material-like states. We show that the
swarms consist of a core ‘condensed’ phase surrounded by a dilute ‘vapor’ phase. These two phases
coexist in equilibrium, and maintain their distinct macroscopic properties even though individual
insects pass freely between them. We further define a pressure and chemical potential to describe
these phases, extending theories of active matter to aggregations of macroscopic animals and laying
the groundwork for a thermodynamic description of collective animal groups.

Collective behavior of social animals is ubiquitous in
the natural world [1]. Birds [2, 3], fish [4, 5], insects [6, 7],
and many other species [8] routinely and spontaneously
form aggregations that appear to possess an identity dis-
tinct from that of the underlying individuals, so that they
are sometimes termed ‘super-organisms’ [9]. However,
descriptions of this kind are largely qualitative, and em-
pirical characterizations of true emergent properties of
animal groups are sparse [10–12]. Indeed, calling such
groups ‘collective’ at all makes tacit assumptions about
their nature, and suggests that the group as a whole is
somehow ‘more’ than, or at least different from, the sum
of its individuals. But, to paraphrase Williams [13], one
must take care to distinguish between a ‘fleet herd of
deer’ and a ‘herd of fleet deer’; or, put another way, be-
tween ‘emergent’ properties of the group that have no
meaning at the individual level and ‘aggregate’ properties
that are simple statistical averages over the individuals
[14]. In some special cases, it is straightforward to argue
for collectivity; the social insects, for example, cannot
survive and reproduce outside a colony [15]. But in gen-
eral, demonstrating true collective, emergent behavior is
surprisingly difficult.

It is often assumed that animal groups outperform in-
dividuals in accomplishing tasks due to the group dynam-
ics [16]. Thus, one way to show collectivity would be to
demonstrate this superior performance. Proving such en-
hancement, however, is subtle and difficult [17, 18], and
requires accurate knowledge of the task that is being op-
timized [19]. An alternative route would be to follow the
prescriptions of condensed matter physics and directly
define emergent properties that describe the group as a
whole and are independent of the precise participants
[20]. This is the approach taken, for example, in thermo-
dynamics, where state variables such as pressure, temper-
ature, and chemical potential or response functions like
viscosity or elastic moduli can be defined and related for
bulk materials without direct appeal to a molecular de-
scription. Although such ideas have recently begun to be
applied to collective behavior in animals [10–12], there is
not yet a unified ‘thermodynamic’ theory.

In this Letter, we develop such a description for lab-
oratory mating swarms of the non-biting midge Chi-

ronomus riparius. From three-camera video measure-
ments of swarms of various sizes, we extracted the three-
dimensional time-resolved trajectories of each midge in
the swarm [6, 21], as well as their velocities and accel-
erations. Our methodology and the details of this data
set have been described previously [6, 10, 22]. Using per-
sistent homology, a topological data analysis method, we
study the structure of the swarms, and find that they
can be segmented into two distinct regions that we argue
can be thought of as a condensed phase surrounded by a
vapor phase. Although these phases have distinct macro-
scopic properties, midges move freely between them, sug-
gesting that they are true collective, emergent states.
Our results suggest powerful new ways of thinking about
collectivity in animal groups, and help to bring macro-
scopic animal groups into the purview of theories of active
matter.

Since we seek global features of the swarms rather than
a detailed microscopic picture, we turned to topologi-
cal data analysis, since topology naturally captures gross
structure. Specifically, we used persistent homology [23–
25]. This method treats a collection of points, such as the
midge locations, as a discrete sampling of an underlying
object. To quantify the topological structure of this ob-
ject, we create a simplicial complex [24] from the discrete
data points by associating each one with a sphere of ra-
dius ǫ/2, where ǫ is known as the proximity parameter.
ǫ is a free parameter; but one seeks topological features
that persist over a range of ǫ, as such features are likely to
be meaningful. Simplicial complexes can be quantified in
terms of their Betti numbers bi, where b0 gives the num-
ber of connected components in the complex, b1 the num-
ber of holes, b2 the number of topological circles, and so
on. Here, we focus only on b0, the number of connected
components. We note that in practice there are many
slightly different algorithmic ways to construct simplicial
complexes. Here, we used the Matlab implementation of
javaPlex [26] to construct Vietoris-Rips complexes from
our swarm data and analyze their Betti numbers.
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FIG. 1. Topological analysis of swarm structure. (a)
Time-averaged zeroth Betti number 〈b0〉 normalized by the
number of insects in the swarm N for swarms with N =
18, 22, 26, 30, 34, 38, and 42, as a function of the proximity
parameter ǫ. The standard error of the mean of the indi-
vidual curves is less than 2%. Data from different swarms
collapse when ǫ is scaled by its value ǫI at the curve’s in-
flection point, indicating that the topological structure of the
swarms is preserved for different swarm sizes. (b) The num-
ber of individuals per connected component Nc for the largest
(black) and second-largest (red) components as a function of
ǫ/ǫI . As ǫ/ǫI increases, the largest component grows at the
expense of the others. Solid lines indicate the mean (over
time) of the component size, and dotted lines the standard
deviation. (c) A snapshot from a single swarm with N = 38
individuals showing the largest connected component (in red)
computed for ǫ = 1.5ǫI (corresponding to about 3 to 4 times
the typical nearest-neighbor distance), which we also use for
all subsequent calculations. This connected component lies
in the center of the swarm. For ǫ = 1.5ǫI , about half the
midges typically lie in the largest cluster; our subsequent re-
sults, however, do not qualitatively depend on this choice.

When ǫ is very small, all the insects will appear to
be isolated; thus, in that limit b0 = N , where N is the
number of individuals in the swarm. Likewise, when ǫ
is very large, all the insects will appear to be part of
the same connected component, and so b0 = 1. In be-
tween, b0 varies smoothly with ǫ with a shape that is in-
dependent of N (Fig. 1a). As b0 decreases, however, the
sizes of the connected components do not uniformly in-
crease. Instead, we typically observe a single large cluster
surrounded by small unconnected components (Fig. 1b).
Unsurprisingly, this large cluster lies in the middle of the
swarm (Fig. 1c), where the number density of midges
tends to be somewhat higher. These results are insen-
sitive to the particular value of ǫ chosen. And while b0
fluctuates in time, we find that it is statistically station-
ary and so focus on time-averaged quantities here.

Persistent homology thus identifies a topological struc-
ture in the swarm, suggesting that the core of the swarm
and its outer reaches are different. It cannot, however,
tell us how to interpret this structure. For that, we turn
to a statistical analysis of the physical variables. One
might expect, for example, to see a kinematic difference
between insects in the central cluster and the outer re-
gion. However, both velocity and acceleration statistics
are indistinguishable in the two regions (Fig. 2a,b). But
when we consider the number density and volume, the
picture changes. The number density n is significantly
larger in the central cluster than in the outer region
(Fig. 2c); and, moreover, conditional statistics show that
the number density in the central cluster is independent
of the volume of the outer region, and vice versa (Fig. 2c).
In addition, the volume V occupied by the central clus-
ter depends on the number of midges in it, while the
volume of the outer region does not (Fig. 2d). Similar
results for other swarms are shown in Supplemental Ma-
terial [27]. Taken together, these results suggest that the
central cluster and the outer region are distinct entities,
since their properties are statistically independent, and
that their properties are independent of the constituent
insects, since the kinematic statistics are the same. Since
in addition the volume of the central cluster depends on
the number of constituent midges while the volume of
the outer region does not but simply adjusts to fill the
available space, we borrow terminology from thermody-
namics and call the central cluster a ‘condensed phase’
and the outer region a ‘vapor phase.’ We note here, and
discuss further below, that we observe a continual ex-
change of individual insects between these two phases,
just as one would expect at a liquid/vapor interface; the
vapor phase, however, does not fill the entire midge en-
closure, but instead occupies a smaller, and apparently
self-regulated, region of space [6, 22].

Thermodynamic phases are determined by more than
just their density or volume; other state variables are
needed to specify them completely. Defining such state
variables cannot in general be done from first principles
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FIG. 2. Statistical characterization of the central cluster and outer region. (a) Probability density functions (PDFs) of midge
speed v for the inner region (red circles) and outer region (blue diamonds) for the same swarm shown in Fig. 1c. (b) PDFs
of the midge accelerations for the inner and outer region. These kinematic statistics are nearly indistinguishable for the two
regions. (c) Conditional averages of the number density n on the volume V as a function of V for four combinations of variables:
〈nin|Vin〉 (red circles), 〈nout|Vout〉 (blue diamonds), 〈nin|Vout〉 (magenta squares), and 〈nout|Vin〉 (black triangles). Note that
using conditional medians rather than conditional averages leads to nearly identical results. We define the volume Vin as the
volume of the convex hull of the midges in the central cluster; the volume Vout is then the difference between the volume of the
convex hull of the entire swarm and Vin. n is much larger in the inner region than the outer; and while n for each region depends
on the volume of that region, it is nearly independent of the volume of the other region. (d) Conditional averages of volume
V on the number of midges N in each region for the corresponding combinations 〈Vin|Nin〉 (brown stars), 〈Vout|Nout〉 (green
circles), 〈Vin|Nout〉 (cyan diamonds), and 〈Vout|Nin〉 (purple squares). Vin depends strongly on the number of insects in the
swarm, while any dependence of Vout on number is much weaker. Similar results for other swarms are shown in Supplemental
Material [27].

for active systems like insect swarms, due to the lack of
conservation laws and knowledge of the microscopic inter-
actions between individuals. We can, however, construct
analogous quantities that play the same role. Starting
from the virial relation, which we have shown holds for
swarms [28], we define a pressure (per unit mass) as

Π =
1

NV

N
∑

i=1

(

1

3

(

v
2

i + ai · ri

)

)

, (1)

where V is the volume of the phase, N is the number
of constituent individuals, vi is the velocity of insect i,
ai is its acceleration vector, and ri is its distance from
the swarm center. The acceleration term is motivated
by our earlier observations that insects in the swarm be-
have as if they are trapped in a harmonic potential well
[6, 28], and captures the work done (assuming the same
mass for each insect) by a midge as it accelerates in this
potential. We note that this formulation distinguishes

our pressure from the classical definition as the stress ex-
erted by a material on its confining walls [29], since our
swarms, like most aggregations of macroscopic animals,
are unconfined; rather, it is conceptually akin to the re-
cently proposed idea of ‘swim pressure’ [30, 31]. Just as
with number density and volume, the condensed and va-
por phases are clearly distinguishable by their pressure
statistics (Fig. 3a); and, as one would expect, the va-
por phase exists at a much lower pressure. This pressure
depends on the midge number density n, but in differ-
ent ways for the two phases. In the condensed phase, the
pressure is well fit by Π = An+Bn2 for constant A and B
(Fig. 3b and Supplemental Material [27]), consistent with
a second-order virial expansion along an isotherm. In the
vapor phase, we observe behavior consistent with power-
law scaling, and least-squares fits of the form Π = Cnξ to
vapor-phase data for many swarms suggest that ξ ≈ 1/2
(Fig. 3b and Supplemental Material [27]).

Following further prescriptions of thermodynamics to
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FIG. 3. Pressure statistics. (a) PDFs of the pressure scaled
by its standard deviation σΠ for the condensed (red circles)
and vapor (blue diamonds) phases. The shape of the pres-
sures PDFs is qualitatively different in the two phases. (b)
Conditional averages of the absolute value of the pressure as
a function of number density for each phase. The dashed
lines are fits of Π = Cn1/2 (with constant C) for the vapor
phase and Π = An + Bn2 (with constant A and B) for the
condensed phase. Data for additional swarms are shown in
Supplemental Material [27].

define other state variables via conservation of energy
is not possible, since energy is not conserved in active
systems. But we can, at least quasistatically, appeal to
conservation of mass, since the number of insects in the
whole swarm changes very slowly compared with any dy-
namical time scale. We can thus define a chemical po-
tential µ via [31]

n
∂µ

∂n
= (1 − φ)

∂Π

∂n
, (2)

where φ is the volume fraction of midges. Our swarms are
very dilute, with φ ≪ 1; that condition combined with
the measured dependence of Π on n allows us to integrate
eq. 2 for each phase and calculate ∆µ, the chemical po-
tential difference between the two phases, though only
up to a constant. In thermodynamics, two phases are
considered to be in equilibrium when the chemical poten-
tial is uniform across the interface. In this case, since we
only know the chemical potentials up to a constant, phase

0 20 40 60 80 100
t (s)

5000

6000

7000

8000

 (
m

m
2 /s

2 )

(a)

0 500 1000 1500

Transfer rate (s-1)

10-6

10-4

10-2

P
ro

ba
bi

lit
y 

de
ns

ity

(b)

FIG. 4. Evidence for equilibrium phase coexistence. (a) Time
series of the chemical potential difference ∆µ between the va-
por and condensed phases. The red dashed line is the tem-
poral mean. (b) PDFs of the instantaneous transfer rate (in
number of midges per second) from vapor to condensed (black
triangles) and condensed to vapor (magenta squares) phases
computed over the full recording time for a single swarm. The
two PDFs are indistinguishable, demonstrating detailed bal-
ance.

equilibrium would be indicated by a constant-in-time ∆µ.
Consistently, we find that ∆µ fluctuates about a constant
value with no temporal drift (Fig. 4a). A more stringent
condition for phase equilibrium at the microscopic level
is detailed balance; in detailed balance, the likelihood of
an individual midge moving from the condensed to the
vapor phase would be the same as the likelihood of mov-
ing from the vapor to the condensed phase. When we
measure the probability density functions of the trans-
fer rates between phases, we find that detailed balance is
indeed satisfied (Fig. 4b).
Our measurements provide strong evidence for two dis-

tinct ‘thermodynamic’ phases in our swarms that coex-
ist in equilibrium. These phases are true emergent phe-
nomena, as they are not defined based on differences in
the individual constituent midges and because individ-
ual midges pass freely across the phase boundary without
changing the macroscopic properties of the phases. From
a physical standpoint, these results provide a link for con-
necting recent theoretical work on active microparticles
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[29, 31] to groups of macroscopic animals, and give us a
framework for describing collective animal groups in non-
trivial terms. Connecting collective behavior to thermo-
dynamics also provides new evidence for the possibility
of describing different kinds of group morphologies and
dynamics as simply different phases of some underlying
unified framework, an idea that has been suggested previ-
ously [32] but has lacked a strong theoretical foundation.
Key next steps toward this goal will be the proper defi-
nition of a temperature-like variable for collective groups
(which is often fraught in nonequilibrium systems [33])
and the construction of constitutive relations for different
kinds of animals. Finally, our results may also have bi-
ological implications. The distinct and stable properties
of the swarm core and outer region may provide a mecha-
nism for the regulation of the swarm edge: an individual
midge may be able to recognize that it has crossed the
phase boundary, and that it is therefore time to turn
around to remain in the swarm.

This work was supported by the U.S. Army Research
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