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Chaotic attractors are known to often exhibit not only complex dynamics but also a complex

geometry in phase space. In this work, we provide a detailed characterization of chaotic

electrochemical oscillations obtained experimentally as well as numerically from a corresponding

mathematical model. Power spectral density and recurrence time distributions reveal a

considerable increase of dynamic complexity with increasing temperature of the system, resulting

in a larger relative spread of the attractor in phase space. By allowing for feasible coordinate

transformations, we demonstrate that the system, however, remains phase-coherent over the whole

considered parameter range. This finding motivates a critical review of existing definitions of phase

coherence that are exclusively based on dynamical characteristics and are thus potentially sensitive

to projection effects in phase space. In contrast, referring to the attractor geometry, the gradual

changes in some fundamental properties of the system commonly related to its phase coherence

can be alternatively studied from a purely structural point of view. As a prospective example for a

corresponding framework, recurrence network analysis widely avoids undesired projection effects

that otherwise can lead to ambiguous results of some existing approaches to studying phase

coherence. Our corresponding results demonstrate that since temperature increase induces more

complex chaotic chemical reactions, the recurrence network properties describing attractor

geometry also change gradually: the bimodality of the distribution of local clustering coefficients

due to the attractor’s band structure disappears, and the corresponding asymmetry of the

distribution as well as the average path length increase. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4747707]

Chaotic oscillations are a wide-spread phenomenon that
can be observed in many natural and technological sys-
tems.1,2 The complex dynamics of such systems is charac-
terized by an exponential divergence of initially close
trajectories as time proceeds.3–5 As a consequence, long-
term predictions of the amplitudes and phases are not
possible. The degree of dynamical complexity of chaotic
oscillators can be measured in terms of various quantities
from nonlinear time series analysis and complex systems
theory,6,7 such as Lyapunov exponents, fractal dimen-
sions, or entropies and related concepts from information
theory. In addition to these widely applicable concepts,
the phase coherence of chaotic oscillations has been
recently recognized as an important complementary as-
pect. While this feature has been previously considered
based on its manifestation in various nonlinear dynamical
characteristics, in this work, we provide arguments that
phase coherence should rather be viewed as a structural
property of chaotic attractors in phase space. For a well-
studied example of electrochemical chaos, we demon-
strate that complex dynamics emerges without qualitative
changes in attractor geometry related to a loss of phase

coherence. This calls for the development of alternative
geometric criteria for the presence of phase coherence
replacing the present purely dynamics-based perspective.

I. INTRODUCTION

In the last about 15 years, there has been a rising interest

in phase synchronization processes between coupled oscilla-

tory systems.8,9 Studies of such processes are traditionally

based on the consideration of a well-defined quantity /ðtÞ
describing the observed phase dynamics of each individual

system. The existence of such a meaningful phase variable is

closely related to the notion of phase coherence as a key

property of chaotic oscillators. Specifically, the standard ana-

lytical signal approach9 to define a phase from a univariate

observational time series, which is most often used in the lit-

erature, explicitly requires phase-coherent oscillations in the

sense of a well-defined center of oscillations in a two-

dimensional projection of the observed system.10–12 Although

there are alternative approaches allowing to numerically
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characterize phase synchronization also for systems that do

not meet this requirement,10,11,13 there is a persistent interest

in distinguishing whether or not a chaotic system under study

is phase coherent.

While the term phase coherence is usually well-defined

in connection with the analysis of wave-like phenomena in

optics and acoustics, its actual meaning in a dynamical sys-

tems context has remained somewhat ambiguous so far.

Here, the main interest in phase coherence is associated with

the goal of understanding and quantitatively characterizing

different types of complex chaotic dynamics. However, since

it is known that the appearance of attractors can strongly

depend on the variable used for their reconstruction,14 the

presence of phase coherence in the aforementioned sense can

also depend on the particularly chosen observation function

and does not necessarily relate to certain structural properties

of a chaotic attractor. This work is intended to contribute to

a more rigorous discussion of the interrelationships between

phase coherence and attractor geometry, which have been

widely overlooked so far by considering phase coherence

exclusively in the context of dynamics.

As a particular example, we analyze the dynamic prop-

erties as well as structural features of the reconstructed

attractors associated with chaotic electrochemical oscilla-

tions obtained from both experiments and a corresponding

mathematical model. It has already been demonstrated15 that

the dynamical complexity of the considered system strongly

changes as one fundamental control parameter (temperature)

is varied. Here, we investigate the associated variations in

both dynamic complexity and structural organization of the

system in its phase space. By careful analysis, we delineate

whether the previously associated changes in phase coher-

ence could be considered as a result of gradual changes of

the attractor structure, or there exists a major (discontinuous)

qualitative change of the attractor geometry in phase space

that corresponds to a deterioration of phase coherence.

This paper is organized as follows: In Sec. II, we review

existing concepts of phase coherence and show that the

resulting properties strongly depend on the selected observ-

able of the system and can provide misleading results due to

projective effects during attractor reconstruction. This moti-

vates discussing a more general structural point of view on

phase coherence, which is exclusively associated with the

geometric structure of a chaotic attractor in phase space and

does not directly relate to the associated dynamics. As an

example, we discuss implications for the identification of

phase coherence in chaotic electrochemical oscillations in

Sec. III. A detailed characterization of the corresponding

structural attractor properties is presented in Sec. IV by con-

sidering concepts from complex network theory. Finally, the

main conclusions of this work are summarized in Sec. V.

II. DYNAMIC VS. GEOMETRIC VIEWS ON PHASE
COHERENCE

In electromagnetism, optics, or acoustics, the term phase

coherence is commonly used for describing (i) the quality of

a wave to display a well-defined phase relationship in differ-

ent regions of its domain of definition, (ii) the existence of

significant statistical correlations between the phases of two

or more waves, or (iii) the presence of a state in which two

signals maintain a fixed phase relationship with each other or

with a third signal. We emphasize that when identifying the

aforementioned waves with general oscillatory signals

obtained from complex systems (as we will be dealing with

in this work), aspects (ii) and (iii) relate to the concept of

phase synchronization of coupled oscillatory systems.8,9

A. Phase coherence and power spectrum

In a dynamical systems context, the term “phase

coherence” has been originally coined by Farmer et al.16 for

describing the qualitatively different appearances of power

spectra of chaotic systems associated with their respective

mixing behavior. Specifically, a chaotic attractor is consid-

ered phase-coherent if its power spectral density (PSD) is a

superposition of d-functions and a broad background typical

for general chaotic systems. The corresponding phenomenon

has been elsewhere referred to as nonmixing chaos17,18 or

noisy periodicity.19

According to the latter notion of phase-coherent chaos,

it has been conjectured that strange attractors arising from

sequences of period-doubling bifurcations are phase-coher-

ent.19–21 Successful applications include studies of strange

attractors in coupled reaction-diffusion cells,22 the frequency

entrainment of chaotic oscillators subject to periodic forc-

ing,23 and transient chaotic systems with a tunable degree of

phase coherence.24

The characteristic properties of the system’s PSD rele-

vant for the identification of phase coherence are not appro-

priately reflected by traditional measures of nonlinear

dynamics such as the Lyapunov exponent or Kolmogorov

entropy.16 In turn, there are several statistical properties

quantifying the degree of heterogeneity of the PSD (and,

hence, the “degree of phase coherence”) that can be used for

this purpose, including the production of spectral entropy25

or degrees of freedom16,26–28 and conceptually related

measures.

B. Definition of phase variables

The rising interest in the numerical analysis of phase

synchronization phenomena has lead to a conceptually dif-

ferent notion of phase coherence associated with the pres-

ence of a well-defined phase variable /ðtÞ. The existence of

such a phase variable ultimately depends on the structural or-

ganization of the studied system in its phase space. Specifi-

cally, for an oscillatory signal x(t) (no matter whether

regular or chaotic), we require that the associated phase

variable /ðtÞ increases monotonously with time in a phase-

coherent regime. In this spirit, one can use a simple measure

for the monotonicity of /ðtÞ, the so-called coherence index29

CI ¼ lim
T!1

1

T

ð1

0

Hð� _/ðtÞÞ dt; (1)

for quantitatively characterizing the degree of possible non-

phase-coherence associated with a particular /ðtÞ. In the lat-

ter definition, Hð�Þ denotes the Heaviside function.
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There is a variety of possibilities to define a phase vari-

able /ðtÞ.9,30 In general, we consider it as being derived

from a feasible low-dimensional projection ðn1ðtÞ; n2ðtÞÞ of

the system under study as

/ðtÞ ¼ arctan
n2ðtÞ

n1ðtÞ
: (2)

For a scalar observable x(t), a general and widely applied

approach is to define a phase by means of an analytical sig-

nal approach (i.e., the complex continuation of x(t)) by iden-

tifying n1ðtÞ with x(t) and n2ðtÞ with its Hilbert transform

HðxðtÞÞ ¼
1

p
P:V:

ð1

�1

xðtÞ

t� s
ds; (3)

where P:V: denotes Cauchy’s principal value of the integral.
The thus defined variable /ðtÞ increases monotonously with

time if the oscillatory dynamics has a common center of all

rotations at the origin of the complex (x,H(x)) plane. If this

condition is not fulfilled, several authors proposed using an

alternative phase definition based on the local curvature

properties of the analytical signal10–12 by setting n1ðtÞ ¼ _xðtÞ
and n2ðtÞ ¼ _HðxðtÞÞ. The latter approach has demonstrated

its potentials for providing a proper phase definition for cer-

tain non-phase-coherent chaotic oscillators such as the fun-

nel regime of the R€ossler system.31 In turn, it is less efficient

in case of noisy oscillations where other, more sophisticated

approaches are needed for characterizing phase synchroniza-

tion and phase coherence.13,32

A widely used method for characterizing the presence or

absence of phase coherence of chaotic oscillations is based

on concepts from statistical physics. Specifically, under cer-

tain assumptions, the dynamics of the phase variable /ðtÞ
can be approximated by a random walk with a fixed drift

determined by the mean frequency x of oscillations. In this

case, the second-order structure function

F2ðsÞ ¼ h½/ðtþ sÞ � /ðtÞ � 2pxs�2i ’ D/sþ const (4)

of the detrended phase allows estimating the phase diffusion

coefficient D/ of the system under study by means of linear

regression.9,15,33–35 In the case of phase-coherent oscilla-

tions, this quantity should approach 0 in the asymptotic limit,

whereas it is expected to be strictly positive for non-phase-

coherent (or, for short, noncoherent) oscillations. We note,

however, that the proper numerical estimation of D/ can be

a challenging task. Alternatively, one can use the coherence

factor33,36,37

CF ¼ hTi=rT (5)

based on the mean return time hTi of the trajectory with

respect to a certain Poincar�e surface in the ðn1; n2Þ plane and
the associated standard deviation rT . The basic challenge of

the latter approach is the appropriate definition of the

Poincar�e section to be considered.

We emphasize that the notion of phase coherence based

on some specific phase variable /ðtÞ generally characterizes

only a property associated with a particular two-dimensional

projection of the system (e.g., one coordinate x(t) and its Hil-

bert transform, or two selected coordinates), but not neces-

sarily the chaotic attractor as a whole. Under rather general

conditions, this attractor can be topologically equivalently

reconstructed from a single coordinate x(t) by means of

time-delay embedding.38,39 (Note that the definition of the

Hilbert phase does not incorporate this technique). In this

spirit, chaotic oscillators are always characterized by differ-

ent degrees of freedom, i.e., different dynamically relevant

variables. Depending on the choice of observable, the recon-

structed attractor may exhibit different structural proper-

ties.14 Therefore, using different coordinates can also lead to

phase variables with different monotonicity properties.

We give a simple example: If a given scalar signal x(t)

is not properly centered around 0 (i.e., we do not have that

all local minima are located at x < 0 and all local maxima at

x > 0), the Hilbert transform approach leads to a phase vari-

able with a non-monotonous behavior. However, if there is

some x0 6¼ 0 such that all local maxima have x > x0, and all

local minima x < x0 (i.e., all oscillations of the system are

centered at x0), a simple translation x0 ¼ x� x0 provides a

new coordinate which has the desired property of a monoto-

nous Hilbert phase. More general, there can be transforma-

tions of the system’s coordinates that leave the dynamics

invariant, but lead to a coherent Hilbert phase. In this

respect, notions of phase coherence relating to either the con-

sideration of power spectra or specific phase variables are

always based on certain projections of the system rather than

the overall structural organization of the attractor.

C. Phase coherence as a structural attractor property

Besides the aforementioned conceptual limitations, both

previous notions of phase coherence suffer from the addi-

tional problem that there is no simple statistics that clearly

distinguishes between phase coherent and non-phase-coher-

ent chaotic oscillations. This statement especially applies to

the characterization of phase coherence based on the power

spectrum, particularly regarding the variance of the underly-

ing estimator (e.g., the periodogram) and the possible pres-

ence of significant observational noise in case of

experimental data. In turn, for the Hilbert phase and related

approaches, the correct estimation of measures such as the

phase diffusion coefficient or coherence factor—particularly

from experimental time series—can also be a challenging

task.29 This suggests that in the case of experimental applica-

tions, one should compare various definitions of phase coher-

ence and carefully discuss which measure is the most

appropriate in practice.

Following the previous considerations, we propose con-

sidering the structural phase coherence of chaotic oscillators

as the existence of a coordinate transformation that allows

deriving a monotonously increasing phase variable (e.g., by

means of the standard Hilbert transform method). That is,

there exists a two-dimensional (linear or nonlinear) projec-

tion of the attractor under which it takes an approximately

toroidal shape, i.e., the attractor has the shape of a smeared

limit cycle. Note that this notion of structural phase coher-

ence is more general than the (projective) phase coherence
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relating to the dynamical attractor properties captured in its

PSD or phase diffusion properties.

D. Examples

As already mentioned above, in many situations, a linear

transformation (i.e., translation or rotation) of the (recon-

structed) attractor leads to a coordinate with a coherent Hil-

bert phase. However, this is not always possible.

A prominent example for a chaotic system with truly non-

coherent dynamics is the funnel attractor of the R€ossler system.

Here, the chaotic attractor undergoes fundamental structural

changes accompanying a transition between phase-coherent

and noncoherent dynamics due to a collision of the growing

chaotic attractor with some homoclinic orbit of the system,

which is reflected by a sharp transition in the associated dy-

namical as well as geometric properties.13,29 As a result, there

is no simple linear transformation (or projection) of the sys-

tem’s coordinates that leads to rotations with a well-defined

center. We conjecture that such an abrupt change is typical for

a chaotic system with missing structural phase coherence.

As an example for a chaotic system whose oscillations

are noncoherent with respect to some of the original coordi-

nates, but phase-coherent after a sophisticated nonlinear

coordinate transformation, consider the Lorenz system40

_x ¼ 10ðy� xÞ;
_y ¼ xð28� zÞ � y;
_z ¼ xy� 8=3z

(6)

at the canonical parameter values (see Fig. 1(a)). Letellier

and Aguirre14 argued that due to the symmetry of the system

(6), time-delay embedding of x- and y-coordinates leads to

double-scroll attractors, whereas using the z-coordinate natu-

rally leads to a phase-coherent single-scroll attractor. By a

coordinate transform ðx0; y0; z0Þ ¼ ðx2 � y2; 2xy; zÞ, one

obtains the proto-Lorenz equations,14,41,42 for which the

projection into the ðy0; z0Þ plane obeys a well-defined

center of rotations. Alternatively, introducing a new coordi-

nate u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

(Ref. 9) (i.e., the Euclidean norm in the

(x,y) plane) also maps the two scrolls of the chaotic attractor

onto each other in the (u,z) plane (Fig. 1(b)). In this spirit,

the Lorenz system (with the canonical parameters) is consid-

ered structurally phase-coherent. Even more, unlike the orig-

inal x-coordinate, consideration of the transformed variable

u also reveals different other features typical for the estab-

lished notions of phase coherence, such as a peak in the PSD

indicating the presence of a natural frequency (Fig. 1(d)),

and a low variance of the linearly detrended Hilbert phase

indicating a low phase diffusion coefficient (Fig. 1(h)).

III. EXPERIMENTALTIME SERIES

A. Experimental setup

As an example of real-world chaotic oscillations, we

consider data obtained from chemical experiments with Ni

electrodissolution in 4.5mol/l sulfuric acid. At eight temper-

atures in the range of 2 �C�30 �C, time series of the electric

current have been recorded at conditions that produce

chaotic oscillations. A typical data file consisted of about

1250 oscillations with 185 data points per cycle. Further

details on the experimental conditions have been given in a

previous publication.15

B. Preprocessing of the data

From the measured scalar time series, we reconstruct the

underlying chaotic attractor in phase space by means of

time-delay embedding.38,39 Specifically, we select an embed-

ding dimension m¼ 3 and determine appropriate values for

the embedding delay s by considering the decorrelation time

(i.e., the time lag after which the autocorrelation function of

the signal has fallen below 1/e). We emphasize that our par-

ticular choice of m presents a trade-off between properly rep-

resenting the underlying dynamics (which could eventually

take place in a higher-dimensional phase space) and the pos-

sibility of visualizing the results of our analysis in the recon-

structed phase space. However, independent analyses with

higher values of m yield results (not shown) which are quali-

tatively similar to those described in the following, indicat-

ing the actual presence of low-dimensional chaos.

FIG. 1. Effect of different projections of the Lorenz system (6) based on its

x- (left panels) and u-variable (right panels): (a) (x,z)- and (b) (u,z)-projec-

tions, ((c) and (d)) periodograms as estimates of the PSD for the (c) x- and

(d) u-coordinates, ((e) and (f)) Hilbert transforms (after correcting for the

mean values), and ((g) and (h)) resulting time evolution of the detrended Hil-

bert phases.
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In order to avoid potential transient effects in the begin-

ning of all experimental runs, the first 1000 data points have

been removed from all records. Moreover, since the experi-

mental time series have been sampled at very high rates, all

records have been downsampled by a factor of five.

C. Dynamical characteristics: Two examples

Before systematically discussing the influence of chang-

ing experimental conditions on dynamics and attractor ge-

ometry associated with the property of phase coherence of

the observed chaotic oscillations in some detail, we first

describe the extreme cases observed in this study corre-

sponding to low (case I, 2 �C) and high temperatures (case II,

30 �C), respectively. In order to obtain a feasible visualiza-

tion of the respective attractors, we have considered the fol-

lowing embedding delays: s1 ¼ 75 (375ms) and s2 ¼ 30

(30ms, note the different data acquisition rate in both experi-

ments). Note again that the results of our analyses described

in the following do not differ markedly if these embedding

parameters are altered within acceptable limits.

In order to visually highlight the different appearances

of the chaotic electrochemical oscillations observed in this

study, Fig. 2 displays the corresponding attractor structure in

a two-dimensional projection of the reconstructed phase

space for the considered experimental settings. In both sce-

narios, we find a distinct center of oscillations, which how-

ever becomes narrower (i.e., less well-expressed) in the

high-temperature case II. Although the reported phase diffu-

sion coefficient of the chaotic process is enhanced by a

factor of 18,15 the qualitative similarity of the general

appearance of the attractors in the reconstructed phase space

indicates that the experimental conditions do not exhibit a

transition to a structurally noncoherent chaotic attractor. In

contrast, the dynamic complexity (characterized by concepts

such as Lyapunov exponent or information dimension)

rises considerably with increasing temperature.15 We further

illustrate these findings by considering three additional char-

acteristics of the chaotic dynamics: the PSD, recurrence time

distributions, and 2nd-order R�enyi entropy.

The PSD (Figs. 3(a) and 3(b)) reveals a broad continuum

of frequencies contributing to the observed dynamics, which

is typical for chaotic oscillations. In the low-temperature

case (Fig. 3(a)), we find a distinct set of frequencies with

enhanced spectral power (note the logarithmic axis) corre-

sponding to the dominating instantaneous frequencies of the

chaotic oscillator. In contrast, such marked spectral peaks

are less obvious in the high-temperature case (Fig. 3(b)).

Beyond the PSD describing only linear statistical prop-

erties of the observed time series, we further utilize two sta-

tistical characteristics based on the evolution of the systems’

recurrence properties in phase space. It is known that recur-

rences capture important aspects of the dynamics of the asso-

ciated complex system,43,44 particularly including

information on its nonlinear characteristics. For convenience,

their temporal pattern is encoded in recurrence plots (RPs)

associated with a single recorded time series or trajec-

tory.45,46 Here, a RP is the visual representation of the recur-

rence matrix of binary neighborhood relationships between

all pairs of observed state vectors ~xi ¼~xðtiÞ; i ¼ 1;…;N
(which can combine either the individual components of a

multivariate time series, or the dynamically relevant modes

reconstructed from a univariate signal by means of time-

delay embedding), defined as

Ri;jðeÞ ¼ Hðe� k~xi �~xjkÞ; (7)

where Hð�Þ is again the Heaviside function, k � k is a norm

(e.g., Euclidean, Manhattan, or maximum norm) in the con-

sidered phase space, and e is a prescribed maximum distance

for defining the neighborhood of individual state vectors.

The appearances of RPs distinctively differ between qualita-

tively different types of dynamic behavior.46

For the quantitative assessment of RPs, several distinct

approaches can be distinguished: First, RPs allow directly

estimating the values of certain dynamical invariants such as

the correlation dimension D2 and the 2nd-order R�enyi en-

tropy K2 of the system under study.47–49 Second, a variety

of additional complexity measures characterizing different

FIG. 2. Projections of the reconstructed attractors for (a) case I and (b)

case II.

FIG. 3. ((a) and (b)) Periodogram as an estimator of the PSD, ((c) and (d))

recurrence time distributions pðsÞ (zooms for short times and low frequen-

cies), and ((e) and (f)) estimated 2nd-order R�enyi entropy K2 for different

values of RR for the chaotic electrochemical oscillations in ((a), (c), (e))

low-temperature case I and ((b), (d), (f)) high-temperature case II.
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aspects of the dynamical behavior of the system (such as the

degrees of determinism and laminarity) is provided by the so-

called recurrence quantification analysis (RQA).50–53 Third,

recurrence time statistics (i.e., the analysis of the distribution

pðsÞ of time differences between the system leaving and re-

entering the neighborhood of a specific state vector) allows

distinguishing different types of dynamic behavior.54–56

Finally, e-recurrence networks (RNs) provide a graph-

theoretical framework for quantifying various aspects of the

underlying attractor’s geometry.29,57–67

In the following, we will use pðsÞ and K2 for further

characterizing the dynamical complexity of the observed

electrochemical oscillations. For this purpose, we will

restrict our attention to the first N¼ 10 000 points of the em-

bedded time series in order to keep the computational efforts

at an acceptable level. The corresponding recurrence rate

RRðeÞ ¼
P

i 6¼jRi;jðeÞ=ðNðN � 1ÞÞ will be kept fixed at

RR¼ 0.03 (i.e., the value of e is adaptively chosen accord-

ingly) for the recurrence time statistics, but considered vari-

able for the estimation of K2.
46,47

In comparison with the PSD, the recurrence time distribu-

tions pðsÞ (Figs. 3(c) and 3(d)) reveal even stronger differences

between low- and high-temperature regimes: At low tempera-

tures, the distribution is characterized by regularly spaced peaks

at multiples of a basic recurrence period (Fig. 3(c)), whereas it

appears much more irregular in the high-temperature regime

with a variety of incommensurable frequencies contributing to

the dynamics (Fig. 3(d)). This qualitative behavior indicates

marked differences in the distribution of periods of unstable

periodic orbits (UPOs) densely embedded in the chaotic attrac-

tors present in both regimes. Specifically, the two recurrence

time distributions closely resemble those obtained for the

standard (phase-coherent) R€ossler system and the associated

(non-phase-coherent) funnel attractor.29

Finally, we study the 2nd-order R�enyi entropy K2 com-

puted from the RPs for different values of RR (see Ref. 46, for

details on the used estimator). We clearly observe that in the

low-temperature regime, the recorded dynamics of the electro-

chemical oscillations is by far less complex (lower K2) than at

higher temperatures (plateau values in Figs. 3(e) and 3(f) for

sufficiently large RR). This finding is consistent with the less

complex pattern of the recurrence time distribution as well as

the more pronounced spectral peaks at lower temperatures.

D. Phase definition and projective effects on phase
coherence analysis

As already discussed in great detail, a meaningful study

of phase coherence properties first requires a suitable selec-

tion of a specific observable in order to be able to define a

proper phase variable. In the following, we will demonstrate

for the two example cases of chaotic electrochemical oscilla-

tions discussed above how this choice can result in inappro-

priate conclusions on the presence of phase coherence. For

simplicity, we will restrict our attention here to linear (affine)

coordinate transformations, i.e., ~x0 ¼ A~x þ~x0, particularly

translations and rotations, of the original observable x.

In a previous paper,15 estimates of D/ based on the cur-

vature method (i.e., derivatives of x(t) and its Hilbert trans-

form) have been used to conclude that only in the low-

temperature case I, phase-coherent oscillations are unambi-

gously present, whereas the dynamical characteristics of the

high-temperature case II resemble those of noncoherent

oscillations (cf., Sec. III C). However, even in the latter re-

gime, phase-coherent oscillations could be present when

considering our more general perspective. In order to clarify

the extent by which the observed changes in the dynamical

characteristics actually originate from changing phase coher-

ence properties, we will next examine the geometric struc-

ture of the strange attractor reconstructed from the recorded

chaotic oscillations x(t) (see Fig. 4) in more detail.

Following a standard procedure of phase synchroniza-

tion analysis, we start by removing the mean of the original

time series as

yðtÞ ¼ xðtÞ � hxðtÞi (8)

with hxðtÞi � 1:18 in the high-temperature regime (cf. Fig.

2(b)). Next, we reconstruct the chaotic attractor by time-

delay embedding with the embedding parameters described

above. By means of visual inspection of a two-dimensional

projection of the thus embedded series (Fig. 4(a)), we iden-

tify well-expressed rotations which, however, do not always

contain the origin of the reconstructed coordinate system (cf.

the corresponding marker). Specifically, the observed chaotic

oscillations sometimes have local minima at values y > 0

(Fig. 4(c)), so that the computation of the Hilbert transform

reveals rotations with a marked center in the (y,H(y)) plane

(Fig. 4(e)), which do not always include the origin. As a con-

sequence, the Hilbert phase /ðtÞ based on these coordinates

does not monotonously increase in time, and we observe a

relatively large variance of the detrended phase (Fig. 4(g))

giving rise to non-zero values of the phase diffusion

coefficient.

Relating to our conceptual idea of structural phase co-

herence, the offset of the well-defined center of rotations in

the two-dimensional projection ðyðtÞ; yðtþ sÞÞ calls for a

proper redefinition of the corresponding coordinates by

means of a linear transformation of the reconstructed attrac-

tor. Figure 4(b) displays the coherence index CI for the Hil-

bert phase of the rotated coordinate

yoptðtÞ ¼ cosw yðtÞ þ sinw yðtþ sÞ; (9)

as a function of the rotation angle w in the ðyðtÞ; yðtþ sÞÞ
plane. For certain values of w, the coherence index becomes

zero, indicating that the Hilbert phase for the thus obtained

new variable (Fig. 4(d)) is a monotonous function of time in

the respective range of w. (A similar result can also be found

after a suitable translation of y.) Hence, the oscillations in the

ðyoptðtÞ;HðyoptðtÞÞÞ plane have a well-defined center, and all

rotations include the origin of the transformed coordinate sys-

tem (Fig. 4(f)). As a consequence, the resulting detrended

phase has a variance which is by about one order of magni-

tude smaller than that originally computed for y(t) (Fig. 4(h))

(in fact, the phase dynamics associated with the rotated

coordinates much more resembles a diffusion process than

that obtained from the original coordinate). However,

from our conceptual perspective, the dynamics is structurally
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phase-coherent, even though the phase diffusion coefficient

estimated from the finite time series does still take non-

zero values due to the high dynamic complexity (cf. the

corresponding values of K2 in Sec. III C). To put it differently:

given Fig. 4(h) alone, it would remain ambiguous whether or

not the studied process is phase-coherent. In turn, Fig. 4(f)

clearly displays the qualitative picture one typically has in

mind when speaking of phase-coherent chaotic oscillations.

The above example demonstrates the importance of pro-

jection effects on the outcomes of phase coherence analysis.

Following our considerations, an improper choice of obser-

vation function could even destroy the signature of the

clearly phase coherent low-temperature regime (case I) in

measures based on the Hilbert transform.

E. Phase coherence of experimental electrochemical
oscillations

In Ref. 15, it has already been demonstrated that the cha-

otic electrochemical oscillations under study undergo gradual

changes towards a higher degree of complexity as the temper-

ature increases. In the spirit of our previous considerations,

we now systematically examine how this is reflected in the

phase coherence properties of the underlying attractor. For

this purpose, we choose the reference variable yoptðtÞ similar

to the way described above for the high-temperature regime.

Specifically, in all considered experimental runs, a simple

translation of the observable allows defining a feasible coordi-

nate for which the two-dimensional projection of the recon-

structed attractor displays a well-defined center of rotations

around the origin. (Additional rotations are not required here.)

Figure 5(a) shows that the increasing dynamic complex-

ity of the system is accompanied by an increasing variety of

points in some Poincar�e section of the system. At the same

time, the associated coherence factor CF decreases (Fig.

5(b)) due to the increasing variation of associated return

times. However, being able to properly define the Poincar�e

surface according to our coordinate transformation, we can

conclude that in all considered experimental settings, the

system is phase coherent (i.e., CF � 1). These observations

indicate an increasing spread of unstable periodic orbits em-

bedded in the chaotic attractor and, hence, a larger

“dispersion” of the attractor itself, which is consistent with

the qualitative appearance in Fig. 2 and the more complex

dynamics previously reported. Next, we will further quantita-

tively characterize the corresponding subtle variations of the

structural properties of the attractor.

IV. STRUCTURAL ATTRACTOR CHARACTERIZATION

As a further extension of the previous discussions on

changes of the dynamical complexity with increasing tem-

perature, in the following we will provide complementary

results relating to the structural properties of the attractor in

phase space. For this purpose, we utilize the concept of

RNs.57,58,61 For computational reasons, we will again restrict

ourselves to networks constructed from N¼ 10 000 state vec-

tors in the considered reconstructed phase space and a fixed

recurrence rate of RR¼ 0.03. Specifically, for the experimen-

tal data, we can consider ensembles of randomly drawn state

vectors, since RN analysis only requires a reasonable spatial

sampling of the attractor, but no time information.58,61

A. Recurrence network analysis

In order to construct a RN from an observed time series

of a dynamical system, we remove the main diagonal of the

FIG. 4. Phase coherence analysis in the high-temperature case II (cf. Fig.

2(b)): (a) Parts of the trajectory projected onto the ðyðtÞ; yðtþ sÞÞ plane of

the reconstructed phase space. (b) Variation of the coherence index CI (Eq.

(1)) in dependence on the rotation angle w in the considered plane. ((c) and

(d)) Parts of the trajectory of the original (y) and optimized (yopt) coordinate.

The latter one has been obtained by rotating the ðyðtÞ; yðtþ sÞÞ plane about

an angle of w0 ¼ 2. ((e) and (f)) Reconstructed oscillations in the (y,H(y))

plane for the original and rotated coordinate. ((g) and (h)) Dynamics of the

linearly detrended phase obtained from the original and reconstructed

coordinate.

FIG. 5. (a) Shannon entropy H of Poincar�e intersection points through the

surface yopt ¼ 0; _yopt < 0 (estimated using a histogram of 80 equi-sized

bins), for experimental runs at different temperatures. (b) Coherence factor

CF as a measure of phase coherence.
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recurrence matrix Ri;j to obtain the adjacency matrix Ai;j of

an undirected complex network, i.e.,

Ai;jðeÞ ¼ Ri;jðeÞ � di;j; (10)

where di;j is the Kronecker delta. The vertices of the RN can

be identified with state vectors on the sampled trajectory; the

connectivity is established according to the mutual proximity

of these vectors in phase space. The considered definition

provides a generic way for studying geometric properties of

chaotic attractors by means of complex network meth-

ods.29,58,64 In turn, the properties of RNs do not capture the

dynamics on the attractor.

It is important to point out that a RN is an approximation

of an underlying continuous graph with uncountably many

vertices and edges associated to the attractor in the corre-

sponding phase space.65 Specifically, RNs are random geo-

metric graphs, the properties of which are fully determined

by the system’s continuous invariant density pð~xÞ. Hence,
the RN characteristics studied in the following are discrete

estimators of some (continuous) attractor properties. There-

fore, pð~xÞ needs to be properly sampled in space for con-

structing the RN (i.e., the sampled state vectors must largely

cover the attractor63). Note that this requirement is distinc-

tively different from the typical sampling considerations in

the time domain, although the resulting effects might be the

same for a chosen trajectory of an ergodic system. As a

result, the computed global and local properties of the RN

are reasonable estimates of the associated attractor properties

reflecting spatial scales �e. This is, the smaller e, the higher

the spatial resolution, but the more sampled state vectors

need to be taken into account for obtaining proper estimates

of the RN characteristics. Since we consider here randomly

sampled state vectors from very long trajectories including

many oscillations of the observed system, we argue that the

above considerations are very well met in our case. Specifi-

cally, we can practically exclude the presence of sojourn

points representing spatial signatures of trivial temporal

auto-correlations (i.e., subsequent observations) in the RN

that could eventually lead to some bias in the resulting quan-

titative network properties. As a consequence, our sampling

strategy yields qualitatively and quantitatively robust results.

The interpretations of global as well as local RN proper-

ties in terms of attractor geometry, as well as their depend-

ence on network size,65 embedding,60 sampling,61,68 and

other factors have already been studied elsewhere. In this

work, we will use a complementary set of RN characteris-

tics69–71 that have already demonstrated their capabilities to

distinguish qualitatively different types of dynamics based

on structural attractor properties29,57,63

1. The local clustering coefficient Cv quantifies the relative

amount of closed triangles centered at a given vertex v

(i.e., at the associated point~xv in phase space).

2. Betweenness centrality bv quantifies the fraction of short-

est paths in the network that contain a given vertex v.72 In

a RN, vertices with high bv correspond to regions of phase

space with low density of the attractor that are located

between higher density regions, so that bv yields informa-

tion about the local fragmentation of the attractor.58,60 For

convenience, we will consider logbv as a characteristic

measure in the following.

3. The global (Watts-Strogatz) clustering coefficient C
(Ref. 73) gives the arithmetic mean of the local clustering

coefficient Cv taken over all vertices v.

4. Network transitivity T (Refs. 74 and 75) globally charac-

terizes the linkage relationships among triples of vertices

in the entire network (i.e., the probability of a third edge

within a set of three vertices given that the two other

edges are already known to exist). Sometimes, this mea-

sure is referred to as the (Barrat-Weigt) clustering coeffi-

cient, since it captures a similar property as C.
5. The average path length L gives the average shortest

graph distance between all possible pairs of vertices.

6. The assortativity coefficient R (Ref. 76) measures the

correlations between the numbers of connections at both

ends of the same edge taken over the whole network.

We emphasize that both local RN properties (Cv and

logbv) are sensitive to the presence of unstable periodic

orbits (especially UPOs of lower periods),60 which form the

geometric backbone of chaotic attractors. Since the spatial

distribution and repulsivity of the individual UPOs are re-

sponsible for the emergence of distinct peaks in the PSD

associated with a chaotic oscillator, they play an important

role for the presence or absence of phase coherence in both

the (statistical) dynamical and structural senses.

B. Example cases

In order to gain first insights into structural differences

between the chaotic attractors at high and low temperatures,

we reconsider the two regimes already discussed in Sec. III C

with respect to their dynamical characteristics. Figure 6 shows

the spatial patterns of the local RN measures Cv and logbv.

We note that the overall patterns are qualitatively similar for

both situations, although the underlying attractor experiences

a successive deformation when increasing the temperature as

the fundamental control parameter of the system. This defor-

mation is reflected in the fine-structure of the corresponding

spatial distribution of RN vertex characteristics.

FIG. 6. Color-coded representations of the local RN properties ((a) and (b))

Cv and ((c) and (d)) logbv) for the experimental data of electrochemical

oscillations in ((a) and (c)) low-temperature (case I) and ((b) and (d)) high-

temperature regime (case II).
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In contrast to the general qualitative spatial pattern,

the empirical distributions of Cv and logbv clearly differ

qualitatively between high and low temperatures (Fig. 7).

This result is consistent with the findings for the PSD and

recurrence time distributions discussed in Sec. III C. From

the geometric perspective, the attractor at low temperatures

is more bundled in phase space, while the observed

states fill a larger part of phase space more homogeneously

(with a much stronger fragmentation) at higher tempera-

tures (cf. Fig. 5(a)). Specifically, Figs. 2 and 3 show that

the chaotic attractor at low temperatures has a clearly visi-

ble band structure. This fact is also manifested in the two

distinct peaks in the probability density functions of Cv

and bv at low temperatures, which are missing at high

temperatures (compare Figs. 7(a) and 7(c) with Figs. 7(b)

and 7(d)).

In order to understand the bimodality of the distributions

of Cv and logbv at low temperatures, we note that since bv is

based on shortest paths on the network, the existence of rela-

tively large gaps between the individual bands of the attrac-

tor (Fig. 2(a)) leads to two clusters of paths between vertices

at low and high values of x that are characterized by different

expected lengths. In turn, if these bands are sufficiently close

(i.e., <OðeÞ, Fig. 2(b)), shortest paths can cross these gaps

instead of taking “detours,”58 resulting in a continuum of

shortest path lengths without distinct preferred values. In a

similar way, vertices on narrow “isolated” bands on the cha-

otic attractor are likely to have larger values of Cv due to

geometric reasons,58,64 which leads to the distinct secondary

peak of pðCvÞ at Cv > 0:7 in the low-temperature regime

(Fig. 7(a)) that is missing at higher temperatures (Fig. 7(b)).

In this spirit, the observed bimodality for the considered

experiments is closely related to the emergence of the cha-

otic attractor due to period-doubling bifurcations.77 We note

that this specific route to chaos actually gives rise to phase-

coherent oscillations in the classical viewpoint based on the

PSD.19–21 The distinct behavior of Cv and bv additionally

confirms our previous statement that both measures provide

complementary aspects of the local fragmentations of the

systems’ attractor.60 In fact, both characteristics display sig-

nificant anti-correlations (Figs. 7(e) and 7(f)) that do not dif-

fer markedly between both cases.

Next, we study the behavior of selected statistics of the

distributions of local network properties, such as standard

deviation and skewness, in addition to the global network

characteristics to obtain values characterizing structural dif-

ferences in attractor geometry. From the quantitative point of

view, we note that the different “degrees” of structural com-

plexity can be well distinguished by all considered local as

well as global RN measures (Table I). As the latter increases

from low- to high-temperature case, the transitivity-based

network measures decrease, which is consistent with the

interpretation of local clustering coefficient as well as global

network transitivity as measures for the effective (local and

global) dimensionality of the system.64 Thus, T , C, and rC
show the behavior that is to be expected (i.e., lower values

for more complex dynamics) as long as the network structure

is not dominated by secondary geometric effects such as the

presence of homoclinic points (as it is the case in, e.g., in the

R€ossler system29). At the same time, the obtained values of

the average path length consistently decrease, which is also

consistent with previous results on the behavior of global re-

currence network measures.63

C. Changes in attractor geometry

As seen in Sec. III, the formerly reported enhanced

phase diffusion at high temperatures mainly results from a

gradual increase of dynamical complexity of the chaotic

attractor and does not reflect qualitatively different structural

FIG. 7. Probability distribution functions of the local RN properties ((a) and

(b)) Cv and ((c) and (d)) logbv for the experimental data of electrochemical

oscillations in the ((a) and (c)) low-temperature and ((b) and (d)) high-

temperature regimes. Panels ((e) and (f)) display the associated scatter plots

(Cv vs. logbv) as well as the values of the rank-order correlation coefficient

qs (Spearman’s Rho) between both measures.

TABLE I. Mean values and standard deviations (in brackets) of different

RN characteristics for the experimental cases I and II, obtained from 100 in-

dependent samples of N¼ 10 000 state vectors randomly selected from the

embedded time series. Note that all measures allow a discrimination

between both cases with high confidence.

I II

C 0.6653 (0.0015) 0.6227 (0.0011)

T 0.6752 (0.0034) 0.6223 (0.0017)

L 9.2418 (0.0691) 6.8445 (0.0397)

R 0.8420 (0.0068) 0.8100 (0.0067)

rC 0.0842 (0.0010) 0.0745 (0.0009)

rlogb 0.7292 (0.0071) 0.6888 (0.0050)

cC 0.1095 (0.0399) 0.8415 (0.0396)

clogb �1.1864 (0.0302) �1.0321 (0.0277)

033130-9 Zou et al. Chaos 22, 033130 (2012)

Downloaded 26 Nov 2012 to 158.132.161.52. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



properties. Hence, although the electrochemical oscillations

undergo a clear transition from low to higher complexity as

the temperature increases, the structural phase coherence

remains conserved. As Fig. 8 demonstrates, this is reflected

by the structural attractor properties captured by RN analysis

that do not change abruptly, but gradually with increasing

temperature, which supports previous findings on the dynam-

ical characteristics.15

Regarding the behavior of the different RN measures,

we observe a consistent negative trend of C and T with

increasing temperature. This observation can be interpreted

as an increase in the number of degrees of freedom of the

system or, to put it differently, its effective dimensionality.64

Since such a higher dimensionality is typically reflected by

an enhanced dynamical complexity, the corresponding

results are consistent with those obtained when characteriz-

ing the system’s nonlinear dynamics. Moreover, the decrease

in L is also a typical feature associated with a larger relative

spread of the chaotic attractor in phase space (because of

the emergence of geometric “shortcuts” in the RN between

distant points on the attractor58), which is often observed

(for conserved recurrence rate RR) as the dynamical com-

plexity of the system increases.63 With the exception of cC
indicating a rising asymmetry of the distribution of local

clustering coefficients of the RNs, the statistics associated

with vertex properties of the RNs—as well as the assortativ-

ity R—show a more ambiguous behavior that cannot be eas-

ily interpreted.

D. Mathematical model

In order to further support our findings for the experi-

mental time series, we additionally apply RN analysis to

simulated trajectories of a corresponding mathematical

model introduced by Haim et al.78 for describing the dynam-

ics of anodic Ni dissolution processes. This model contains

three relevant dynamical variables: the total surface coverage

of NiOHþNiO, h, the surface coverage of NiO, g, and the

electrode potential, e. Considering a potentiostatic mode of

cell operation, these variables are nonlinearly coupled and

display a dynamics approximately described by the follow-

ing ordinary differential equations (ODEs)

de

dt
¼

v� e

r
� iFðh; gÞ

C1

dh

dt
¼

expð0:5eÞ

1þ ChexpðeÞ
ð1� hÞ � bChgexpðeÞ

aC2

dg

dt
¼ expð2eÞðh� gÞ � cChgexpðeÞ

(11)

with the Faradic current

iF ¼
Chexpð0:5eÞ

1þ ChexpðeÞ
þ aexpðeÞ

� �

ð1� hÞ; (12)

which we will use as our “macroscopic observable” in the fol-

lowing. v¼ 60.8 is the dimensionless circuit potential, r¼ 50

is the dimensionless resistance, and Ch ¼ 1200, a¼ 0.3,

b ¼ 6	 10�5, c¼ 0.001, C1 ¼ 0:01, and C2 ¼ 0:8 are fixed

parameters.15 The ODEs are solved numerically applying a

fourth-order Runge-Kutta method with the fixed step size

h¼ 0.01 and a sampling time dt ¼ 0:2. Note that the model

does not have full temperature dependency for all parameters,

however, it does reproduce the experimentally observed

temperature-dependent increase of complexity during the

metal dissolution process (for further details, see Ref. 15).

For consistency with recent work,15 we restrict our

attention to parameter values a 2 ½1:0; 1:344� for which the

system is in a chaotic oscillatory state. Repeating our RN

analysis with trajectories obtained from numerical simula-

tions of the above model, we find that the results are widely

consistent with those obtained from the experimental data

(Fig. 9). In particular, all four global network characteristics

(L; T ; C, and R) clearly display a decreasing trend with an

increasing value of the model parameter a, which corre-

sponds to an increasing temperature in experiments. In con-

trast, standard deviation and skewness of the local clustering

coefficient show an increase with rising a (the latter again

being consistent with the experimental findings), whereas the

skewness of the betweenness centrality distribution displays

FIG. 8. Behavior of RN-based characteristics for the electrochemical oscil-

lations in dependence on the temperature as the unique control parameter

varied in the experimental campaign (RR¼ 0.03): (a) global clustering coef-

ficient C, (b) network transitivity T , (c) average path length L, (d) assortativ-
ity coefficient R, ((e) and (f)) standard deviation, and ((g) and (h)) skewness

of the local clustering coefficient and logarithmic betweenness centrality

(rC; rlogb; cC , and clogb, respectively). Error bars indicate the mean values

and standard deviations from 100 independent realizations of the RN

obtained from N¼ 10 000 state vectors randomly selected from the whole

embedded time series.
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a more ambiguous behavior. This suggests that higher-order

statistical characteristics of the distributions of local RN

properties have a more limited power for characterizing

changes in the underlying system’s structural complexity,

i.e., the results obtained for the experimental data are not a

simple effect of different noise levels in individual measure-

ments. In contrast, the corresponding mean values and stand-

ard deviations as well as the global RN properties provide

consistent and interpretable results.

V. CONCLUSIONS

We have reconsidered the problem of distinguishing

between phase coherent and non-phase-coherent chaotic oscil-

lations from experimental records. In particular, we have com-

pared various definitions of phase coherence and discussed in

detail the use of an alternative geometric viewpoint for char-

acterizing phase coherence, which appears more generally ap-

plicable under real-world conditions. Specifically, we have

shown that the standard approach of computing the Hilbert

phase directly from a measured signal can lead to pitfalls if

the underlying chaotic attractor has a strongly asymmetric

shape in phase space. The reason for this is that depending

on the selected observable (or observation function) the attrac-

tor’s (two-dimensional) projection in the reconstructed phase

space can take very different shapes. In turn, within the frame-

work of the Hilbert phase approach, a system is identified as

phase-coherent if and only if its two-dimensional projection

has the shape of a smeared limit cycle with rotations obeying

a well-defined center at the origin of the considered coordinate

system. The latter can crucially depend on the choice of the

reference coordinate, a fact that has already been described in

many dynamical systems such as the Lorenz and R€ossler

oscillators.

We have argued that the potentially severe dependence

on the chosen projection is an intrinsic disadvantage of the

classical Hilbert transform approach to phase coherence

analysis. This problem can be solved by allowing for feasible

(linear or nonlinear) coordinate transformations before

applying the Hilbert transform. However, finding an appro-

priate transformation could be challenging task on its own in

case of systems with a very complex geometric shape of the

attractor.

As a consequence, we suggest that phase coherence

should be understood as a structural (rather than dynamic)

feature, which could be characterized by measures explicitly

describing the geometric shape of the system’s attractor in

its phase space without the necessity of any particular lower-

dimensional projection. Among other approaches, recurrence

network analysis provides a prospective framework for this

purpose.29 Specifically, it has been recently shown in Ref. 29

that there is a manifestation of true transitions between

phase-coherent and noncoherent chaotic dynamics as

observed in some well-studied complex systems (e.g., the

R€ossler and Mackey-Glass systems) in several characteristics

of recurrence networks. However, at present it is not possible

to use this knowledge for predicting a transition point

between both regimes, or giving some critical values as

potential discriminators between the two types of behavior.

In contrast, we conjecture that such critical values are most

likely system-dependent, since they reflect the specific struc-

tural organization of the chaotic attractor under study.

In general, we emphasize that in comparison with the

use of dynamical characteristics, a purely geometric charac-

terization of phase coherence has the additional advantage of

being more robust in the presence of observational noise

than traditional dynamics-based approaches. For example,

noise can hide peaks in the power spectrum of a time series,

whereas recurrence network analysis and related geometric

methods can conserve the basic attractor properties such as a

torus-like shape even in the presence of moderate noise lev-

els.66,79 Hence, it can be challenging to decide about the

presence of phase coherence using dynamical characteristics

such as power spectral density, recurrence time distribution,

or phase diffusion coefficient even after an appropriate

coordinate transformation (see above) in case of noisy exper-

imental data. These problems are partially avoided by con-

sidering the geometric viewpoint.

As a particular example, we have studied chaotic electro-

chemical oscillations based on experimental time series as

well as a corresponding mathematical model. Our results dem-

onstrated that the system’s dynamics undergoes a gradual

change towards more complex behavior as the temperature as

FIG. 9. As in Fig. 8 for realizations of the numerical model for Ni

dissolution.78
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the fundamental control parameter of the system increases.

However, the system remains (from a structural perspective)

phase-coherent over the entire considered parameter range,

even though the changes in many dynamical properties resem-

ble observations traditionally attributed to noncoherent chaotic

oscillations. In this respect, in the considered example the

apparent absence of phase coherence reflected in the dynami-

cal properties has been a projection effect that can be resolved

by allowing for simple linear transformations of the recon-

structed attractor. We propose that similar findings could also

apply to other experimental data with an apparent absence of

phase coherence.

Finally, we emphasize that our corresponding consider-

ations are closely related to the problem of finding an opti-

mal phase definition for a chaotic system.80–84 Achieving a

better understanding of the linkage between both geometric

and optimal phase approaches will be a subject of future

research.
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