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The counting and control of optical cycles of light has become common with modelocked 

laser frequency combs [1, 2]. But even with advances in laser technology [3], modelocked 

laser combs remain bulk-component devices that are hand-assembled.  In contrast, a 

frequency comb based on the Kerr-nonlinearity in a dielectric microresonator [4, 5] will 

enable frequency comb functionality in a micro-fabricated and chip-integrated package 

suitable for use in a wide-range of environments. Such an advance will significantly 

impact fields ranging from spectroscopy and trace gas sensing [6-8], to astronomy [9], 

communications [10, 11], atomic time keeping [12, 13] and photonic data processing. Yet 

in spite of the remarkable progress shown over the past years [14-18], microresonator 

frequency combs (“microcombs”) have still been without the key function of direct f-2f 

self-referencing [2] and phase-coherent frequency control that will be critical for enabling 

their full potential.  Here we realize these missing elements using a low-noise 16.4 GHz 

silicon chip microcomb that is coherently broadened from its initial 1550 nm wavelength 

and subsequently f-2f self-referenced and phase-stabilized to an atomic clock.  With this 

advance, we not only realize the highest repetition rate octave-span frequency comb ever 

achieved, but we highlight the low-noise microcomb properties that support highest 

atomic clock limited frequency stability.  
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Focused research on microcombs has led to their realization in a growing range of materials and 

platforms [4, 5, 14, 19-26].  Together with the device development, there has been work aimed 

at the frequency control of microcombs [13, 17, 27-29], which is critically needed for many 

applications. To date, however, full frequency stabilization of a self-referenced microcomb has 

not been demonstrated. Detection of microcomb offset frequencies has been problematic and 

could only be achieved using an additional reference frequency comb [27, 30] or 2f-3f detection 

with transfer lasers [17]. Self-referencing is of particular importance because it provides direct 

measurement and control of the offset frequency of the microcomb, and is the key to forming a 

straightforward microwave-to-optical link. This is most simply implemented with an octave-

spanning spectrum and a nonlinear f-2f interferometer to compare long and short wavelengths 

of the comb [31]. Our work highlights coherent spectral broadening to an octave bandwidth to 

demonstrate f-2f self-referenced stabilization of the microcomb offset frequency and its mode-

spacing at levels provided by state-of-the-art atomic clocks.  

Figure 1a shows the experimental setup for self-referencing of a microcomb. A tunable external 

cavity diode laser is amplified to ~100 mW and coupled into a fused silica microdisk resonator 

via a tapered optical fibre [32]. The microdisk resonator [33] has a diameter of ~4 mm and a 

corresponding free spectral range of 16.4 GHz. The coupled linewidth of the resonator mode 

family for comb generation is 1.7 MHz, which yields a quality factor of 𝑄 = 1.1 × 108 at the 

pump laser wavelength of 1550 nm. The microresonator generates a phase locked microcomb 

[34, 35] with part of the comb light being detected by a fast photodiode to measure the 

repetition rate. The rest of the comb light is optimized in phase and amplitude using a liquid 

crystal based spatial light modulator [22, 36] in order to generate the shortest possible pulse at 

the input of a highly nonlinear fibre (HNLF 1 in Fig 1a, input power ~150 mW). Note that this 

phase and amplitude optimization could be removed when using a single soliton microcomb 

generator as demonstrated in Si3N4 and MgF2 [16, 41]. After another step of quadratic 

dispersion compensation and amplification to a ~4 W average optical power, the 16.4-GHz 

pulse train of <200 fs pulses is sent into a second hybrid nonlinear optical fibre [37] that 
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broadens the optical spectrum to an octave (Fig 1b). The octave spanning spectrum is sent to an 

f-2f interferometer for generation of the carrier envelope offset beat note [31, 38]. The f-2f 

interferometer includes a variable time delay for the long wavelength part of the spectrum in 

order to achieve a temporal overlap with the short wavelength end of the spectrum. Nonlinear 

frequency doubling of the 2.22 μm spectral region to 1.11 μm is achieved in a 10 mm long 

periodically poled lithium niobate crystal. Both the measured repetition rate 𝑓𝑟𝑒𝑝 and carrier 

envelope offset frequency 𝑓𝑐𝑒𝑜 are referenced to a hydrogen maser frequency reference. 

Feedback to power and frequency of the pump laser allows stabilization of both 𝑓𝑐𝑒𝑜 and 𝑓𝑟𝑒𝑝 of 

the microcomb. Figure 1c shows a photograph of the 4-mm-diameter fused silica disk with 

tapered optical fibre that has been used in this experiment. 

 

Figure 1 | Experimental setup for f-2f self-referencing of a microcomb. a. The 

microcomb is generated by an amplified external cavity diode laser (ECDL) and phase 

optimized for the generation of Fourier limited pulses shorter than 200 fs. Subsequent 

amplification and broadening in highly nonlinear fibre (HNLF) generates an octave 

spanning comb spectrum and enables the measurement of the carrier envelope offset 

frequency (𝑓𝑐𝑒𝑜) using an f-2f interferometer. Repetition rate 𝑓𝑟𝑒𝑝 and carrier envelope 

offset 𝑓𝑐𝑒𝑜 of the microcomb can be stabilized to an atomic clock (hydrogen maser). 

Amp: erbium doped fibre amplifier, PD: photodiode, PID: proportional-integral-

derivative controller, “Shaping”: liquid-crystal-based spatial light modulator, SHG: 

second harmonic generation. b. Octave spanning microcomb spectrum after nonlinear 

broadening. c. Photograph of the 4-mm-diameter SiO2 disk used in the experiment. 
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Figure 2a shows the microcomb spectrum around 1.11 μm wavelength together with 

the frequency doubled light from 2.22 μm measured with an optical spectrum analyser 

at a resolution bandwidth of 5 GHz. This resolution bandwidth allows to resolve the 

modes of the microcomb and gives an estimate of the carrier envelope offset frequency 

of 7.5 GHz (frequency spacing between modes at 1.11 μm and frequency doubled 

modes). The corresponding carrier envelope offset beat note (𝑓𝑐𝑒𝑜) detected by 

interfering the fundamental and doubled light on a fast photodiode is shown in Fig 2b, 

exhibiting 30 dB signal to noise at a resolution bandwidth of 100 kHz. Figure 2c shows 

a 25 minute recording of the carrier envelope offset frequency and the corresponding 

Allan deviation. The microcomb 𝑓𝑐𝑒𝑜 is stable at the 1% level over many weeks (when 

using the same pump mode and similar comb states). Significantly, we note that the 

free-running fractional stability of the microcomb 𝑓𝑐𝑒𝑜 is comparable to the best solid 

state laser frequency combs, even with no special attention given to environmental 

isolation at this point.   

 

 

Figure 2 | Carrier envelope offset frequency measurement. a. Measurement of 

microcomb modes around 1.11 μm wavelength together with frequency doubled comb 

modes originating from 2.22 μm wavelength. The carrier envelope offset frequency of 
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~7.5 GHz can be resolved as offset between the fundamental and frequency doubled 

comb modes (spectrum analyser resolution bandwidth ~5 GHz). b. Electronic 

spectrum of the carrier envelope offset beat note with signal to noise >30 dB.  c. Time 

series measurement of the free running carrier envelope offset frequency. The drift is 

attributed to lab temperature fluctuations and pump laser power/frequency drifts. The 

inset shows the Allan deviation of  𝑓𝑐𝑒𝑜 normalized to the 16.4 GHz repetition rate. 

 

In order to verify the measurement of the actual carrier envelope offset frequency of the 

microcomb, we compare the frequency of the pump laser with an independent measurement 

using a self-referenced Er:fiber frequency comb. The optical frequency of the pump laser is 

determined from the microcomb’s repetition rate 𝑓𝑟𝑒𝑝 and carrier envelope offset frequency 𝑓𝑐𝑒𝑜  𝑓𝑝𝑢𝑚𝑝1 = 𝑓𝑐𝑒𝑜 + 𝑛 × 𝑓𝑟𝑒𝑝   ,       (1) 

with 𝑛 being an integer number corresponding to the mode number of the pump laser. In 

addition, the pump laser frequency measured with the Er:fiber frequency comb with carrier 

envelope offset frequency 𝑓𝑐𝑒𝑜𝐹𝐶 and repetition rate 𝑓𝑟𝑒𝑝𝐹𝐶 yields: 𝑓𝑝𝑢𝑚𝑝2 = 𝑓𝑐𝑒𝑜𝐹𝐶 +𝑚 × 𝑓𝑟𝑒𝑝𝐹𝐶 + 𝑓𝑏𝑒𝑎𝑡   .     (2) 

Here, 𝑚 is the mode number of the closest fibre comb mode to the pump laser and 𝑓𝑏𝑒𝑎𝑡 is the 

measured beat note frequency between the pump laser and the closest fibre comb mode. Figure 

3 shows an illustration of the measurement and a plot of the measured differences between 𝑓𝑝𝑢𝑚𝑝1 and 𝑓𝑝𝑢𝑚𝑝2. Note that this measurement was acquired with microcomb repetition rate 

and carrier envelope offset frequency free running. The microcomb’s carrier envelope offset 

frequency has been measured using the peak finder function of a Maser-referenced electronic 

spectrum analyser. This allowed us to measure a carrier envelope offset frequency beat note 

with very small signal to noise (< 5 dB) with a measurement rate exceeding 100 samples per 

second at a resolution bandwidth of 20 kHz in FFT mode (long term direct 𝑓𝑐𝑒𝑜 counting 

measurements were too unreliable because of insufficient signal to noise). Note that the scatter 

of ~160 kHz of the frequency measurement is due to the timing synchronization between 
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measuring the free running 𝑓𝑐𝑒𝑜 and 𝑓𝑟𝑒𝑝 of the microcomb. The agreement between the 

measurements of the pump laser frequency with the microcomb and the fibre laser comb is 670 

Hz +/- 1.4 kHz, limited by the measurement time. Stabilization of the microcomb significantly 

improves the measurement accuracy, which is shown in the remaining part of the paper. 

 

 

Figure 3 | Absolute optical frequency measurement and out-of-loop validation. a. 

Setup diagram. The free running pump laser frequency is determined by measuring the 

microcomb carrier envelope offset frequency and repetition rate. Simultaneously it is 

measured with a conventional fibre laser frequency comb. b. Histogram showing the 

agreement of the free running pump laser frequency measurements at a measurement 

time limited level of 670 Hz +/- 1.4 kHz. 

 

Figure 4 shows a block diagram of a setup that is used to stabilize the carrier envelope offset 

frequency of the microcomb. The initial carrier envelope offset beat note at 7.5 GHz is 

amplified and mixed down to ~640 MHz using a hydrogen maser referenced synthesizer. In a 

next step, the signal is divided by 64 and phase locked to a maser-referenced 10 MHz signal. 

The error signal for the phase locked loop is generated in a digital phase comparator and fed 

into a PID controller. Control of the carrier envelope offset frequency is achieved by actuating 

on the power (via Amp1, Fig 1a) or frequency of the pump laser. Both these actuators change 

the intracavity power and detuning between the microresonator mode and pump laser. This 

effectively changes both comb spacing and carrier envelope offset frequency via fast thermal 

effects and Kerr effect [27]. Figure 4b,c show in-loop measurements of the stabilized carrier 

envelope offset frequency beat notes (after mixing down to 640 MHz and dividing by 64) for 



 

7 

stabilization via pump power and pump frequency respectively. The sharp carrier peaks indicate 

phase-locked control relative to the 10 MHz maser signal. 

 

 

Figure 4 | Carrier envelope offset frequency stabilization. a. Block diagram of the 

electronic setup for microcomb carrier envelope offset stabilization. Panel b,c show the 

stabilized carrier envelope offset beat note using pump power (b) and pump frequency 

(c) as actuator. 

 

A full stabilization of the microcomb is achieved by using the pump laser frequency to control 

the comb spacing and the pump power to control the carrier envelope offset frequency (this 

configuration has been chosen in order to minimize cross-talk between the actuators). Figure 5a 

shows a simultaneous frequency counter measurement of both 𝑓𝑐𝑒𝑜/64 and 𝑓𝑟𝑒𝑝 compared to 

their setpoints. Note that the employed phase locked microcomb state only allowed for a limited 

variation in pump power and pump frequency, which leads to a limited “capture-range” of the 

phase locked loop (this could be improved by better environmental control and by using more 

robust comb states). Nevertheless, we were able to stabilize both degrees of freedom of the 

microcomb simultaneously to a sub-Hertz residual noise level (at 1 second gate time). Based on 

these measurements we calculate the absolute pump laser stability with a standard deviation of 

620 Hz at a 100 ms gate time, which is consistent with the stability of the employed hydrogen 

maser references. Figure 5c shows the Allan deviation for 𝑓𝑐𝑒𝑜, 𝑓𝑟𝑒𝑝 and the pump laser 

frequency calculated as 𝑓𝑝𝑢𝑚𝑝 = 𝑓𝑐𝑒𝑜 + 11709 × 𝑓𝑟𝑒𝑝. It shows that the pump laser stability is 
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mostly limited by repetition rate fluctuations due to the large multiplicative factor. At 1 second 

gate time the carrier envelope offset frequency is stabilized to a sub-Hz-level and only 

contributes at the 10-14 level to the optical carrier stability. Figure 5d,e show the stabilized and 

maser-referenced beat notes of 𝑓𝑐𝑒𝑜/64 and 𝑓𝑟𝑒𝑝, respectively. Notice that the carrier envelope 

offset frequency exhibits additional side lobes at a frequency offset of ~80 kHz, which arise 

from cross-talk with the repetition rate phase locked loop. 

 

Figure 5 | Stabilizing a self-referenced microcomb to a hydrogen maser frequency 

reference. a. Simultaneous stabilization of carrier envelope offset frequency and 

repetition rate. Plotted are the counted in-loop signals of 𝑓𝑐𝑒𝑜 64⁄  and 𝑓𝑟𝑒𝑝. In order to 

maintain stable comb generation the actuation range is reduced leading to a limited 

“catch range” of the frequency lock. b. Histogram of the measured pump laser 

frequency with a standard deviation of 620 Hz at 100 ms gate time. c. Allan deviations 

of 𝑓𝑐𝑒𝑜, 𝑓𝑟𝑒𝑝, and 𝑓𝑝𝑢𝑚𝑝. The pump laser frequency measurement is limited by the 

repetition rate stabilization, which is multiplied by the pump laser mode number of 

~12000. The red dashed line is a least squares fit of the pump laser Allan deviation. d. 

Stabilized carrier envelope offset frequency beat note after mixing down and dividing 

by 64. e. Stabilized repetition rate beat note. 
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In conclusion, we have demonstrated f-2f self-referencing of a microresonator-based 

optical frequency comb at a repetition rate of 16.4 GHz. The carrier envelope offset 

frequency is controlled via the pump laser power and frequency. Moreover, we 

simultaneously stabilize the carrier envelope offset frequency and repetition rate to a 

hydrogen maser based atomic clock frequency reference. A self-referenced measurement of 

the pump laser frequency with an out-of-loop comparison with a conventional frequency 

comb confirms the viability of microcombs for metrology applications. Looking forward, 

our demonstration of external broadening of the microcomb spectrum can take advantage 

of chip-integrated highly nonlinear waveguides [39, 40] to realize microphotonic self-

referenced optical frequency comb systems. Taken together with progress in the generation 

of low-noise soliton states [16, 41], advanced dispersion engineering [42-44, 24, 18],  and 

octave-span dispersive wave generation [45], these results highlight the future direction of 

chip-integrated microcombs as phase coherent microwave-to-optical links. 
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