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Abstract

We introduce two criteria to regularize the optimization

involved in learning a classifier in a domain where no an-

notated data are available, leveraging annotated data in a

different domain, a problem known as unsupervised domain

adaptation. We focus on the task of semantic segmentation,

where annotated synthetic data are aplenty, but annotat-

ing real data is laborious. The first criterion, inspired by

visual psychophysics, is that the map between the two im-

age domains be phase-preserving. This restricts the set of

possible learned maps, while enabling enough flexibility to

transfer semantic information. The second criterion aims

to leverage ecological statistics, or regularities in the scene

which are manifest in any image of it, regardless of the char-

acteristics of the illuminant or the imaging sensor. It is

implemented using a deep neural network that scores the

likelihood of each possible segmentation given a single un-

annotated image. Incorporating these two priors in a stan-

dard domain adaptation framework improves performance

across the board in the most common unsupervised domain

adaptation benchmarks for semantic segmentation.1

1. Introduction

Unsupervised domain adaptation (UDA) aims to lever-

age an annotated “source” dataset in designing learning

schemes for a “target” dataset for which no ground-truth is

available. This problem arises when annotations are easy to

obtain in one domain (e.g., synthetic images) but expensive

in another (e.g., real images), and is exacerbated in tasks

where the annotation is laborious, as in semantic segmen-

tation where each pixel in an image is assigned one of K

labels. If the two datasets are sampled from the same distri-

bution, this is a standard semi-supervised learning problem.

The twist in UDA is that the distributions from which source

and target data are drawn differ enough that a model trained

on the former performs poorly, out-of-the-box, on the latter.

Typical domain adaptation work employing deep neu-

∗These two authors contributed equally. Please send correspondence to

yanchao.yang@cs.ucla.edu and dong.lao@kaust.edu.sa.
1Code available at: https://github.com/donglao/PCEDA

Figure 1. Semantic content is mainly carried by the phase com-

ponent of the Fourier Transform. Replacing the amplitude com-

ponent of the image depicting a panda by the amplitude from other

images within a wide range, will not prevent us from recognizing

a panda in the images generated by the inverse Fourier Transform.

ral networks (DNNs) proceeds by either learning a map

that aligns the source and target (marginal) distributions,

or by training a backbone to be insensitive to the domain

change through an auxiliary discrimination loss for the do-

main variable. Either way, these approaches operate on the

marginal distributions, since the labels are not available in

the target domain. However, the marginals could be per-

fectly aligned, yet the labels could be scrambled: Trees in

one domain could map to houses in another, and vice-versa.

Since we want to transfer information about the classes, ide-

ally we would want to align the class-conditional distribu-

tions, which we do not have. Recent improvements in UDA,

for instance cycle-consistency, only enforce the invertibility

of the map, but not preservation of semantic information

such as the class identity, see Fig. 2. Since the problem is

ill-posed, constraints or prior have to be enforced in UDA.

We introduce two priors or constraints, one on the map

between the domains, the other on the classifier in the target

domain, both unknown at the outset.

For the map between domains, we know from visual psy-

chophysics that semantic information in images tends to be

associated with the phase of its Fourier transform. Changes

in the amplitude of the Fourier transform can significantly

alter the appearance but not the interpretation of the image.
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This suggests placing an incentive for the transformation

between domains to be phase-preserving. Indeed, we show

from ablation studies that imposing phase consistency im-

proves the performance of current UDA models.

For the classifier in the target domain, even in the ab-

sence of annotations, a target image informs the set of pos-

sible hypotheses (segmentations), due to the statistical reg-

ularities of natural scenes (ecological statistics, [3, 11]).

Semantic segments are unlikely to straddle many bound-

aries in the image plane, and their shape is unlikely to be

highly irregular due to the regularity of the shape of objects

in the scene. Such generic priors, informed by each sin-

gle un-annotated images, could be learned from other (an-

notated) images and transfer across image domains, since

they arise from properties of the scene they portray. We use

a Conditional Prior Network [42] to learn a data-dependent

prior on segmentations that can be imposed in an end-to-end

framework when learning a classifier in the target domain in

UDA.

These two priors yield improvement in UDA bench-

marks. We conduct ablation studies to quantify the effect

of each prior on the overall performance of learned classi-

fiers (segmentation networks).

In the next section, we describe current approaches to

UDA and then describe our method, which is summarized

in Sect. 2.5, before testing it empirically in Sect. 3.

1.1. Related Work

Early works on UDA mainly focus on image classifica-

tion [15, 12, 1], by minimizing a discrepancy measure be-

tween two domains [14]. Recent methods apply adversarial

learning [13, 39] for classification, by instantiating a dis-

criminator that encourages the alignment in feature space

[33, 23, 35]. Unfortunately, none of these methods achieves

the same success on semantic segmentation tasks.

Recent progress in image-to-image transformation tech-

niques [46, 25] aligns domains in image space, with some

benefit to semantic segmentation [20, 19]. [20] is the

first UDA semantic segmentation method utilizing both

global and categorical adaptation techniques. CyCADA

[19] adapts representations in both image and feature space

while enforcing cycle-consistency to regularize the image

transformation network. [32] also applies image alignment

by projecting the learned intermediate features into the im-

age space. [45] proposes curriculum learning to gradually

minimize the domain gap using anchor points. [41] reduces

domain shift at both image and feature levels by aligning

statistics in each channel of CNN feature maps in order to

preserve spatial structures. [16] generates a sequence of in-

termediate shifted domains from source to target to further

improve the transferability by providing multi-style transla-

tions. [26] introduces a category-level adversarial network

to prevent the degeneration of well-aligned categories dur-

ing global alignment. [21] conditions on both source images

and random noise to produce samples that appear similar to

the target. Despite the difficulty in training the domain dis-

criminators, generally, the alignment criteria provided by

the domain discriminators do not guarantee consistency of

the semantic content between the original and transformed

images. In addition to cycle-consistency, [24, 8] propose

using the segmentation network on the target domain to

encourage better semantic consistency. However, this will

make the performance depend highly on the employed sur-

rogate network.

In psychophysics, [28] demonstrates that certain phase

modifications can hinder or prevent the recognition of vi-

sual scenes. [27] shows that many important features of

a signal can be preserved by the phase component of the

Fourier Transform, and under some conditions a signal can

be completely reconstructed with only the phase. Moreover,

[17] shows psychophysically that the Fourier phase spec-

trum plays a critical role in human vision. The concurrent

work [43] shows that swapping the amplitude component

of an image with one from the other domain preserves the

semantic content while aligning the two domains. With all

these observations, we propose to use phase to provide an

effective semantic consistency constraint that does not de-

pend on any surrogate networks.

Besides discriminators applied to the image or in fea-

ture space, [37, 38] find that adaptation on the structured

output space is also beneficial for semantic segmentation.

[7] proposes spatially-aware adaptation along with target

guided distillation using activation supervision with a pre-

trained classification network. Further, [6] proposes a ge-

ometrically guided adaptation aided with depth in a multi-

task learning framework. [4] extracts the domain invariant

structure from the image to disentangle images into domain

invariant structure and domain-specific variations. [47] per-

forms iterative class-balanced self-training as well as refine-

ment of the generated pseudo-labels using a spatial prior. A

similar strategy is also applied in [24, 38]. [40] approaches

UDA for semantic segmentation by entropy minimization

of the pixel-wise predictions. An adversarial loss on the en-

tropy map is also used to introduce regularity in the output

space. However, none of them explicitly models the scene

compatibility that regularizes the training of the target do-

main segmentation network.

2. Method

We first describe general image translation for unsuper-

vised domain adaptation (UDA) and how it is used in se-

mantic segmentation. We point to some drawbacks as in-

spiration for the two complementary constraints, which we

introduce in Sect. 2.3 and 2.4, and incorporate into a model

of UDA for semantic segmentation in Sect. 2.5, which we

validate empirically in Sect. 3.
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Image Cycle Consistency Phase Consistency

Figure 2. Cycle consistency does not guarantee semantic con-

sistency, but phase does. Note the sky is transformed to trees

(1st row), the cloud is transformed to a mountain (2nd row), and

the buildings are also transformed to trees (3rd row) even if cycle

consistency is enforced. Phase consistency enforces the seman-

tic information to be preserved and provides enough flexibility to

align the two domains.

2.1. Preliminaries: Image Translation for UDA

We consider two probabilities, a source P s and a target

P τ , which are generally different (covariate shift), as mea-

sured by the Kullbach-Liebler divergence KL(P s||P τ ). In

UDA, we are given ground-truth annotation in the source

domain only. So, if x 2 R
H×W×3 are color images,

and y 2 [1, . . . ,K]H×W are segmentation masks where

each pixel has an associated label, we have images and

segmentations in the source domain, Ds = {(xs
i , y

s
i ) ⇠

P s(x, y)}Ns

i=1 but only images in the target domain, {xτ

i ⇠

P τ (x)}Nτ

i=1. The goal of UDA for semantic segmentation

is to train a model φτ , for instance a deep neural network

(DNN), that maps target images to estimated segmentations,

xτ 7! ŷτ = argmaxy φ
τ (xτ )y , leveraging source domain

annotations. Because of the covariate shift, simply apply-

ing to the target data a model trained on the source gen-

erally yields disappointing results. As observed in [2], the

upper bound on the target domain risk can be minimized

by reducing the gap between two distributions. Any in-

vertible map T between samples in the source and target

domains, for instance xs 7! T (xs) induces a (pushfor-

ward) map between their distributions P s 7! T∗P
s where

T∗P
s(xτ ) = P s(T−1(xτ )). The map can be implemented

by a “transformer” network, and the target domain risk is

minimized by the cross-entropy loss, whose empirical ap-

proximation is:

Lce(φ
τ , T ;Ds) =

X

(xi,yi)∈Ds

� log[φτ (T (xi))]yi
(1)

where T maps data sampled from the source distribution to

the target domain. The gap is measured by KL(P τ ||T∗P
s),

and can be minimized by (adversarially) maximizing the

domain confusion, as measured by a domain discriminator

θ that maps each image into the probability of it coming

from the source or target domains:

LD(θ, T ;xs
i ) = � log[θ(T (xs

i ))]. (2)

Ideally, θ returns 1 for images drawn from the target P τ ,

and 0 otherwise.

2.2. Limitations and Challenges

Ideally, jointly minimizing the two previous equations

would yield a segmentation model that operates in the target

domain, producing estimated segmentations yτ = φ(xτ ).
Unfortunately, a transformation network T trained by min-

imizing Eq. (2) does not yield a good target domain classi-

fier, as T is only asked by Eq. (2) to match the marginals,

which it could do while scrambling all labels (images of

class i in the source can be mapped to images of class j in

the target). In other words, the transformation network can

match the image statistics, but there is nothing that encour-

ages it to match semantics. Cycle-consistency [46, 19] does

not address this issue, as it only enforces the invertibility of

T :

Lcyc(T, T
−1;xs

i ) = kxs
i � T−1 � T (xs

i )k1. (3)

Even after imposing this constraint, buildings in the source

domain could be mapped to trees in the target domain, and

vice-versa (Fig. 2). Ideally, if φs is a model trained on the

source, and φτ the one operating on the target, we would

like:

φs(xs
i ) = φτ (T (xs

i )), 8i. (4)

Unfortunately, training φτ would require ground-truth in

the target domain, which is unknown. We could use φs as a

surrogate, apply φs on the target domain, and penalize the

discrepancy between the two sides in Eq. (4) with respect

to the unknowns. Absent any regularization, this yields the

trivial result where T (x) = x and φτ = φs. While Eq. (4) is

useless in providing information on T and φτ , it can be seen

as a vehicle to transfer prior information from one (e.g., T )

onto the other (e.g., φτ ). In the next two sections we discuss

additional constraints and priors that can be imposed on T

(Sect. 2.3) and φτ (Sect. 2.4) that make the above constraint

non-trivial, and usable in the context of UDA.

2.3. Phase Consistency

It is well known in perceptual psychology that manipu-

lating the spectrum of an image can lead to different effects:

Changes in the amplitude of the Fourier transform alters the

image but does not affect its interpretation, whereas altering

the phase produces uninterpretable images [22, 28, 27, 17].

This is illustrated in Fig. 1, where the amplitude of the

Fourier transform of an image of a panda is replaced with

the amplitude from an image of a bear, a tourist landmark

and a landscape, yet the reconstructed images portray a

panda. In other words, it appears that semantic information
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is included in the phase, not the amplitude, of the spectrum.

This motivates us to hypothesize that the transformation T

should be phase-preserving.

To this end, let F : RH×W ! R
H×W×2 be the Fourier

Transform. Phase consistency, for a transformation T , for a

single channel image x, is obtained by minimizing:

Lph(T ;x) = �
X

j

hF(x)j ,F(T (x))ji

kF(x)jk2 · kF(T (x))jk2
(5)

where h, i is the dot-product, and k ·k2 is the L2 norm. Note

that Eq. (5) is the negative cosine of the difference between

the original and the transformed phases, thus, by minimiz-

ing Eq. (5) we can directly minimize their difference and

increase phase consistency. We demonstrate the effective-

ness of phase consistency in the ablation studies in Sect. 3.

2.4. Prior on Scene Compatibility

While target images have no ground-truth labeling, not

all semantic segmentations are equally likely at the outset.

Given an unlabeled image, we may not know what classes

{1, . . . ,K} may interest a user, but we do know that objects

in the scene have certain regularities, so it is unlikely that

photometrically homogeneous regions are segmented into

many pieces, or that a class segment straddles many image

boundaries. It is also unlikely that the segmented map is

highly irregular. These characteristics inform the probabil-

ity of a segmentation given the image in the target domain,

Q(φ(x)|x). Q can be thought of as a function that scores

each hypothesis φ(x) based on the plausibility of the result-

ing segmentation given the input image x. The function can

be learned using images for which the ground-truth segmen-

tation is given, for instance the source dataset Ds, and then

used at inference time as a scoring function. Such a scoring

function can be implemented by a Conditional Prior Net-

work (CPN) [42]. However, note that Ds = {(xs
i , y

s
i )} is

sampled from P s(x, y). Simply training a CPN with Ds

will make Q(y|x) approximate P s(y|x)2, making the exer-

cise moot. The CPN would capture both the domain-related

unary prediction term and the domain irrelevant pairwise

term that depends on the image structure. To make this point

explicit, we can decompose P s(y|x) as follows:

P s(y|x) ⇡
Y

j

P s(yj |x)
Y

m<n

P (ym = yn|x) (6)

where we omit higher-order terms for simplicity. The unary

terms P s(yj |x) measure the likelihood of the semantic la-

bel of a single pixel given the image; e.g., pixels in a white

region indicate sky in the source domain, which depends

highly on the domains. The pairwise terms P (ym = yn|x)

2We abuse the notation and use y to indicate both the class and the

soft-max (log-likelihood) vector that approximates its indicator function.

Figure 3. CPN Architecture. To reconstruct the segmentation

map that is encoded into a narrow bottleneck, the decoder needs to

leverage structural information from the image. The CPN recon-

structs better the prediction φ(x) with higher compatibility with x.

Labels are randomly permuted during training to avoid overfitting

to the domain dependent unary prediction terms in Eq. (6).

measure the labeling compatibility between pixels, which

would depend much less on the domain; e.g., pixels in a

white region may not be sky in the target domain, but they

should be labeled the same. Absent at least binary terms, the

unary terms would lead to overfitting the source domain. To

prevent this, we randomly permute the labels in ys accord-

ing to a uniform distribution:

ys |ys=i = PMK(i) (7)

where PMK is a random permutation of the class ID’s for K

classes, and we denote the permuted semantic segmentation

masks as ŷs, which scales the original dataset up in size

by a factor of K!. We denote the new source dataset with

permuted ground-truth masks as D̂s, which will render the

conditional distribution invariant to the domain-dependent

unaries, i.e.:

P̂ s(y|x) ⇡
Y

m<n

P (ym = yn|x) (8)

Note, P̂ s(y|x) only evaluates the compatibility based on the

segmentation layout but not the semantic meanings. Thus,

we train a CPN Q using the following training loss [42] with

an information capacity constraint:

min
Q

ExKL(P̂ s(y|x), Q(y|x)) + βI(y,Qe(y)) (9)

where I denotes the mutual information between y and its

CPN encoding Qe(y). Then, we obtain a compatibility

function

Q(y|x) ⇡
Y

m<n

P (ym = yn|x) (10)

The proposed CPN architecture is illustrated in Fig. 3

and the training details, including the encoding metric, is

described in Sect. 3. We now summarize the overall train-

ing loss, that exploits regularities implied by each con-

straint.
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mIoU

A 88.2 41.3 83.2 28.8 21.9 31.7 35.2 28.2 83.0 26.2 83.2 57.6 27.0 77.1 27.5 34.6 2.5 28.3 36.1 44.3

A X 91.4 47.2 82.9 29.2 22.9 31.4 33.3 30.2 80.8 27.8 81.3 59.1 27.7 84.4 31.5 40.9 3.2 30.2 24.5 45.3

A X 91.2 46.1 83.9 31.6 20.6 29.9 36.4 31.9 85.0 39.7 84.7 57.5 29.6 83.1 38.8 46.9 2.5 27.5 38.2 47.6

A X X 91.3 48.2 85.0 39.4 26.1 32.4 37.4 40.7 84.9 41.9 83.0 59.8 30.2 83.6 40.0 46.1 0.1 31.7 43.3 49.7

B 86.4 39.5 79.2 27.4 24.3 23.4 29.0 18.0 80.5 33.2 70.1 47.2 18.1 75.4 20.6 23.3 0.0 16.1 5.4 37.7

B X 86.0 39.9 80.6 32.3 21.9 21.6 29.5 23.9 83.1 37.5 75.9 53.2 24.4 79.3 22.8 32.4 0.9 13.9 18.9 40.9

B X 89.2 40.9 81.2 29.1 19.2 14.2 29.0 19.6 83.7 35.9 80.7 54.7 23.3 82.7 25.8 28.0 2.3 25.7 19.9 41.3

B X X 90.1 44.7 81.0 29.3 26.4 20.9 33.7 34.3 83.4 37.4 71.2 54.0 27.4 79.9 23.7 39.6 1.1 18.5 22.6 43.1

C 79.1 33.1 77.9 23.4 17.3 32.1 33.3 31.8 81.5 26.7 69.0 62.8 14.7 74.5 20.9 25.6 6.9 18.8 20.4 39.5

C X 89.1 41.4 81.2 22.2 15.3 34.0 35.0 37.1 84.8 32.1 76.2 61.7 12.5 82.1 20.8 25.2 7.3 15.6 18.9 41.7

Table 1. The learned Scene Compatibility improves segmentation accuracy. Training the segmentation model with the learned scene

compatibility Q improves segmentation accuracy under all experimental settings, with different network backbones: A: ResNet-101, B:

VGG-16, C: DRN-26. SSL: Self-supervised Learning. Note that whenever Q is added in the training loss while the other terms are fixed,

the overall semantic segmentation performance gets improved.

2.5. Overall Training Loss

Combining the adversarial losses and our novel con-

straints for both phase consistency and scene compatibil-

ity, we have the overall training loss for the proposed do-

main adaptation method for training the image transforma-

tion networks T, T−1 and the target domain segmentation

network φτ :

L(φτ , T, T−1; θs, θτ , xs
i , y

s
i , x

τ

i ) =

λD(LD(θτ , T ;xs
i ) + LD(θs, T−1;xτ

i ))

+ λcyc(Lcyc(T, T
−1;xs

i ) + Lcyc(T
−1, T ;xτ

i ))

+ λph(Lph(T ;x
s
i ) + Lph(T

−1;xτ

i ))

Lce(φ
τ , T ;xs

i , y
s
i )� λcpn log[Q(φτ (xτ

i )|x
τ

i )] (11)

with λ’s the corresponding weights on each term (hyperpa-

rameters), whose values will be reported in Sect.3. Note

when training φτ using Eq. (11), we do not permute its out-

put to evaluate the scene compatibility term. And the scene

compatibility Q is fixed after it is trained using Eq. (9). We

follow the standard procedure in [19, 24] to train the domain

discriminators.

3. Experiments

We evaluate the proposed UDA method on synthetic-to-

real semantic segmentation tasks, where the source images

(GTA5 [9] and Synthia [31]) and corresponding annota-

tions are generated using graphics engines, and the adapted

segmentation models are tested on real-world images. We

use average intersection-over-union score (mIoU) across se-

mantic classes as the evaluation metric in all experiments.

Moreover, the frequency weighted IoU (fwIoU), which is

the sum of the IoUs of different classes but weighted by how

frequent a certain class appears in the dataset, is calculated

and compared in the GTA5-to-Cityscapes experiments.

We first describe the data used for training and the im-

plementation details, followed by a comprehensive abla-

tion study demonstrating the effectiveness of each proposed

component in our method. Then we show quantitative and

qualitative comparisons against the state-of-the-art meth-

ods, using networks with different backbones, on the GTA5-

to-Cityscapes and Synthia-to-Cityscapes benchmarks.

3.1. Datasets

Cityscapes [9] is a real-world semantic segmentation

dataset containing 2975 street view training images and 500

validation images with original resolution 2048 ⇥ 1024,

which is resized to 1024 ⇥ 512 for training. The images

are collected during the day in multiple European cities and

densely annotated. We train the image transformation net-

work and the adapted segmentation network using the train-

ing set, and report the result on the validation set.

GTA5 [29] contains 24966 synthesized images from the

Grand Theft Auto game with resolution 1914 ⇥ 1052. It

exhibits a wide range of variations including weather and

illumination. We resize the images to 1280 ⇥ 720 and use

the 19 compatible classes for the training and evaluation.

Synthia [31] is a synthetic dataset focusing on driv-

ing scenarios rendered from a virtual city. We use the

SYNTHIA-RAND-CITYSCAPES subset as source data,

which contains 9400 images with the resolution of 1280 ⇥
760 for training the 16 common classes with Cityscapes,

and we evaluate the trained network using both the 16

classes or a subset of 13 classes following previous works

[37, 24, 10].

3.2. Implementation Details

Image Transformation Network: We adapt the public

CycleGAN [46] framework, and use the “cycle gan” model

therein. We set λD = 1.0, λcyc = 10.0 and λph = 5.0 for

training the image transformation networks T, T−1. Images

9015



Method Surrogate Output Space mIoU

CyCADA [19]
X 43.5

X X 43.1

AdaptSegNet [37]

36.6

X 39.3

X X 42.4

BDL [24]

X 41.1

X* X 42.7

X† X 44.4

Ours
X 44.8

45.3

Table 2. Phase consistency (ours) achieves better performance.

Note our model trained only with the phase consistency outper-

forms other methods that utilize a surrogate network to impose

semantic consistency (Surrogate), or employ output space regu-

larization (Output Space). * and †: first and second round of

improved image transformation using a self-trained surrogate net-

work.

from source and target domains are resized to 1024 ⇥ 512
and then cropped to 452 ⇥ 452 before feeding into the net-

work. We set the batch-size to 1.0 and use “resnet 9blocks”

as the backbone.

Conditional Prior Network: We adopt the standard

UNet [30] architecture, and add the segmentation encoder

branch. We instantiate 6 convolutional layers, whose chan-

nel numbers are {16, 32, 64, 128, 256, 256}, to encode the

image. Each of the first five layers is followed by 2 ⇥ 2
max pooling, similarly, for semantic segmentation maps.

Encoded image and segmentation are stacked at the bottle-

neck, then passed through a 6-layer decoder with channel

numbers {512, 256, 128, 64, 32, 16}, followed by a fully

connected layer for class prediction. Skip connections are

enabled between the image encoder and the decoder. The

network is trained with batch size four by ADAM optimizer

with initial learning rate 1e-4. The learning rate is reduced

by a factor of 10 after every 30000 iterations.

During training, the network aims at reconstructing the

encoded ŷs, which is the randomly permutated ground-truth

segmentation, by utilizing image information, leading to the

training loss:

Lcpn(Q; ŷs, xs) = NLL(Q(ŷs|xs), ŷs) (12)

where NLL denotes the negative log likelihood loss derived

from the KL-divergence term in the CPN training loss Eq.

(9). Lower indicates better scene compatibility i.e. higher

Q(y|x). Note the information capacity constraint in Eq. (9)

is implemented by a structural bottleneck as in [42].

Semantic Segmentation Network: We experiment with

different segmentation network backbones. Due to memory

constraint, we choose to train the segmentation network af-

ter the transformation networks are trained. We first train

from scratch the segmentation network using transformed

source images and the corresponding annotations using Eq.

(11). We fix λcpn = 0.5 for all the experiments. Fi-

Image w/o CPN w/ CPN Ground-truth

Figure 4. The learned scene compatibility prior imposes regu-

larity on the predictions. When the scene compatibility is added,

the segmentation network yields predictions better aligned with

object boundaries, and are more consistent within the objects.

nally, we apply the self-supervised training technique as in

[24, 38] to further improve the performance on the target

domain. We accept the high confidence (> 0.9) predictions

as the pseudo labels. All networks are trained using the

ADAM optimizer, with learning rate 2.5e-4, 1e-5, and 1e-4

for ResNet-101, VGG-16, and DRN-26, respectively.

3.3. Ablation Study

Here we carry out an ablation study to investigate the

effectiveness and robustness of the proposed priors.

Phase Consistency: Here we train the segmentation net-

work Deeplab-V2 [5] on the transformed source dataset

with phase consistency. To make the comparison fair, all

competing methods also use the same segmentation net-

work as ours. The results of [37] and [24] are reported

by the original papers. We retrain [19] and report its best

performance with hyperparameter tuning. The result is pre-

sented in Tab. 2. Without any surrogate semantic consis-

tency provided by a surrogate semantic segmentation net-

work, our segmentation model achieves higher accuracy.

Note that introducing surrogate semantic consistency for

regularizing the transformation networks will also incur

more memory cost. Moreover, several rounds of training to

improve the performance of the surrogate network can also

be time-consuming. However, our phase consistency can be

implemented at low computational overhead (see Sect. 3.5).

Interestingly, output space regularization, which aligns

the marginal distributions of the segmentations, occasion-

ally leads to worse performance in some settings, including

[19] and ours. This is somewhat reasonable since align-

ing the marginal distributions does not guarantee the condi-

tional alignment given the observations.

Scene Compatibility: To better understand the perfor-

mance gain from the scene compatibility prior, we compare

to competing methods on the same transformed source im-

ages. We collect the scores for all the other methods using

the same setting as ours, if needed, we retrain their model.

9016



Method A
rc

h
it

ec
tu

re

ro
ad

si
d

ew
al

k

b
u

il
d

in
g

w
al

l

fe
n

ce

p
o

le

li
g

h
t

si
g

n

v
eg

et
at

io
n

te
rr

ai
n

sk
y

p
er

so
n

ri
d

er

ca
r

tr
u

ck

b
u

s

tr
ai

n

m
o

to
rc

y
cl

e

b
ic

y
cl

e

m
Io

U

fw
Io

U

AdaptSegNet [37] A 86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4 75.5

DCAN [41] A 85.0 30.8 81.3 25.8 21.2 22.2 25.4 26.6 83.4 36.7 76.2 58.9 24.9 80.7 29.5 42.9 2.5 26.9 11.6 41.7 76.2

CyCADA [19] A 88.3 40.9 81.4 26.9 19.7 31.3 31.8 31.9 81.6 22.3 77.1 56.3 25.1 80.8 33.4 38.6 0.0 24.6 35.5 43.6 77.9

SSF-DAN [10] A 90.3 38.9 81.7 24.8 22.9 30.5 37.0 21.2 84.8 38.8 76.9 58.8 30.7 85.7 30.6 38.1 5.9 28.3 36.9 45.4 79.6

BDL [24] A 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5 81.1

Ours A 91.0 49.2 85.6 37.2 29.7 33.7 38.1 39.2 85.4 35.4 85.1 61.1 32.8 84.1 45.6 46.9 0.0 34.2 44.5 50.5 82.0

AdaptSegNet [37] B 87.3 29.8 78.6 21.1 18.2 22.5 21.5 11.0 79.7 29.6 71.3 46.8 6.5 80.1 23.0 26.9 0.0 10.6 0.3 35.0 74.9

CyCADA [19] B 85.2 37.2 76.5 21.8 15.0 23.8 22.9 21.5 80.5 31.3 60.7 50.5 9.0 76.9 17.1 28.2 4.5 9.8 0.0 35.4 73.8

DCAN [41] B 82.3 26.7 77.4 23.7 20.5 20.4 30.3 15.9 80.9 25.4 69.5 52.6 11.1 79.6 24.9 21.2 1.3 17.0 6.7 36.2 72.9

SSF-DAN [10] B 88.7 32.1 79.5 29.9 22.0 23.8 21.7 10.7 80.8 29.8 72.5 49.5 16.1 82.1 23.2 18.1 3.5 24.4 8.1 37.7 76.3

BDL [24] B 89.2 40.9 81.2 29.1 19.2 14.2 29.0 19.6 83.7 35.9 80.7 54.7 23.3 82.7 25.8 28.0 2.3 25.7 19.9 41.3 78.4

Ours B 90.2 44.7 82.0 28.4 28.4 24.4 33.7 35.6 83.7 40.5 75.1 54.4 28.2 80.3 23.8 39.4 0.0 22.8 30.8 44.6 79.3

CyCADA [19] C 79.1 33.1 77.9 23.4 17.3 32.1 33.3 31.8 81.5 26.7 69.0 62.8 14.7 74.5 20.9 25.6 6.9 18.8 20.4 39.5 72.7

Ours C 90.7 49.8 81.9 23.4 18.5 37.3 35.5 34.3 82.9 36.5 75.8 61.8 12.4 83.2 19.2 26.1 4.0 14.3 21.8 42.6 79.7

Table 3. Quantitative Evaluation on the GTA5-to-Cityscapes benchmark. Our method achieves the best mIoU and fwIoU using

different segmentation architectures: A (ResNet-101), B (VGG-16), C (DRN-26).
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AdaptPatch [38] A 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 40.0 46.5

AdaptSegNet [37] A 84.3 42.7 77.5 - - - 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 - 46.7

SSF-DAN [10] A 84.6 41.7 80.8 - - - 11.5 14.7 80.8 85.3 57.5 21.6 82.0 36.0 19.3 34.5 - 50.0

BDL [24] A 86.0 46.7 80.3 - - - 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 - 51.4

Ours A 85.9 44.6 80.8 9.0 0.8 32.1 24.8 23.1 79.5 83.1 57.2 29.3 73.5 34.8 32.4 48.2 46.2 53.6

AdaptSegNet [37] B 78.9 29.2 75.5 - - - 0.1 4.8 72.6 76.7 43.4 8.8 71.1 16.0 3.6 8.4 - 37.6

AdaptPatch [38] B 72.6 29.5 77.2 3.5 0.4 21.0 1.4 7.9 73.3 79.0 45.7 14.5 69.4 19.6 7.4 16.5 33.7 39.6

DCAN [41] B 79.9 30.4 70.8 1.6 0.6 22.3 6.7 23.0 76.9 73.9 41.9 16.7 61.7 11.5 10.3 38.6 35.4 41.7

BDL [24] B 72.0 30.3 74.5 0.1 0.3 24.6 10.2 25.2 80.5 80.0 54.7 23.2 72.7 24.0 7.5 44.9 39.0 46.1

Ours B 79.7 35.2 78.7 1.4 0.6 23.1 10.0 28.9 79.6 81.2 51.2 25.1 72.2 24.1 16.7 50.4 41.1 48.7

Table 4. Quantitative Evaluation on the Synthia-to-Cityscapes Benchmark. mIoU and mIoU* are the mean IoU computed on the 16

classes and the 13 subclasses respectively (* excluded). Our method achieves the best performance using different segmentation network

backbones: A (ResNet-101), B(VGG-16).

In Tab. 1, we show that under all experimental settings,

scene compatibility prior improves accuracy for most of

the semantic classes as well as the overall average. The

performance gain is preserved during self-supervised learn-

ing. We present qualitative comparisons in Fig. 4, show-

ing that the scene compatibility prior provides strong spatial

regularity to align segmentation to the object boundaries.

Incorporating the scene compatibility prior into the train-

ing process significantly improves the overall segmentation

smoothness and integrity, resulting in more consistent label

prediction within each object.

3.4. Benchmark Results

To recall, feature space alignment has been explored by

DCAN [41] and CyCADA [19]. CyCADA also applies im-

age level domain alignment by training cross-domain cycle

consistent image transformation. Output space alignment

methods include AdaptSegNet [37], AdaptPatch [38] and

SSF-DAN [10], in which various ways of adversarial learn-

ing to the segmentation output are applied for better domain

confusion. BDL [24] propagates information from seman-

tic segmentation back to the image transformation network

as semantic consistent regularization.

We apply ResNet-101 [18] based Deeplab-V2 [5] and

VGG-16 [36] based FCN-8s [34] for the segmentation net-

work to compare with [37, 41, 24, 40, 10] under the same

experimental setting. To better understand the robustness to

different neural network settings, We also apply our method

to the retrain the DRN-26 [44] model from [19].

The result on the GTA5-to-Cityscapes benchmark is

summarized in Tab. 3. Our method achieves state-of-the-

art performance with all network backbones in terms of

mIoU and fwIoU. Moreover, across different settings, our

method achieves the best score for most of the classes, in-

dicating that the proposed priors improve the segmentation

accuracy consistently across different semantic categories.

We also present a qualitative comparison in Fig. 5. Our

proposed method outputs more spatially regularized predic-

tions, which are also consistent with the scene structures.

We relatively achieve 4.1% and 8.0% improvement over
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Figure 5. Qualitative comparison with state-of-the-art methods. Our method outputs more spatially regularized segmentations align

well with the underlying scene structure. All visualized models are based on DeepLab-V2 with ResNet-101 under the same setting. Phase:

trained with phase consistency only; Full: our full model.

the second-best method with the backbone ResNet-101 and

VGG-16, respectively.

The result on the Synthia-to-Cityscapes benchmark can

be found in Tab. 4. The mIoUs of either 13 or 16 classes are

evaluated according to the evaluation protocol in the litera-

ture. Our method outperforms competing methods on both

sets. It also achieves the best result on most of the semantic

categories. Again, we relatively achieve 4.3% and 5.4% im-

provement over the second-best using different backbones.

3.5. Computational Cost

All networks are trained using a single Nvidia Titan Xp

GPU. Enforcing the phase consistency will incur a <0.001s

overhead for a 1024⇥512 image, which is negligible. Train-

ing the CPN for scene compatibility takes 2.5 seconds to

process a batch of 4 images, given the images are cropped

to 1280⇥ 768. Incorporating CPN into segmentation train-

ing adds 1.5 seconds overhead to each iteration. Note that

CPN is not required at the time of inference to segment tar-

get images.

4. Discussion

It is empirically shown in Sect. 3 that the proposed pri-

ors improve UDA semantic segmentation accuracy under

different settings, however, how to impose semantic consis-

tency and ecological statistics priors to general UDA tasks

besides semantic segmentation remains an open problem.

Analysis of the CPN is another unsolved task. Currently,

the capacity of the CPN bottleneck is chosen empirically.

In order to estimate the optimal bottleneck capacity for spe-

cific tasks, quantitative measurement of the information that

CPN leverages from the image is necessary, which requires

future exploration.

Unsupervised domain adaptation is key for semantic seg-

mentation, where dense annotation in real images is costly

and rare, but comes automatically in rendered images. UDA

is a form of transfer learning that hinges on regularities and

assumptions or priors on the relationship between the distri-

butions from which the source and target data are sampled.

We introduce two assumptions, and the corresponding pri-

ors and variational renditions that are integrated into end-

to-end differential learning. One is that the transformations

mapping one domain to another only affect the magnitude,

but not the phase, of their spectrum. This is motivated by

empirical evidence that image semantics, as perceived by

the human visual system, go with the phase but not the mag-

nitude of the spectrum. The other is a prior meant to cap-

ture the ecological statistics, that are characteristics of the

images induced by regularities in the scene, and therefore

shared across different imaging modalities and domains.

We show that the resulting priors improve performance in

UDA benchmarks, and quantify their impact through abla-

tion studies.

Acknowledgements

Research supported by ARO W911NF-17-1-0304 and

ONR N00014-19-1-2066. Dong Lao is supported by

KAUST through the VCC Center Competitive Funding.

9018



References

[1] Mahsa Baktashmotlagh, Mehrtash T Harandi, Brian C

Lovell, and Mathieu Salzmann. Unsupervised domain adap-

tation by domain invariant projection. In Proceedings of the

IEEE International Conference on Computer Vision, pages

769–776, 2013.

[2] Shai Ben-David, John Blitzer, Koby Crammer, Alex

Kulesza, Fernando Pereira, and Jennifer Wortman Vaughan.

A theory of learning from different domains. Machine learn-

ing, 79(1-2):151–175, 2010.

[3] Egon Brunswik and Joe Kamiya. Ecological cue-validity

of’proximity’and of other gestalt factors. The American

journal of psychology, 66(1):20–32, 1953.

[4] Wei-Lun Chang, Hui-Po Wang, Wen-Hsiao Peng, and Wei-

Chen Chiu. All about structure: Adapting structural infor-

mation across domains for boosting semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 1900–1909, 2019.

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected crfs. IEEE transactions on pattern

analysis and machine intelligence, 40(4):834–848, 2017.

[6] Yuhua Chen, Wen Li, Xiaoran Chen, and Luc Van Gool.

Learning semantic segmentation from synthetic data: A geo-

metrically guided input-output adaptation approach. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 1841–1850, 2019.

[7] Yuhua Chen, Wen Li, and Luc Van Gool. Road: Reality ori-

ented adaptation for semantic segmentation of urban scenes.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 7892–7901, 2018.

[8] Yun-Chun Chen, Yen-Yu Lin, Ming-Hsuan Yang, and Jia-

Bin Huang. Crdoco: Pixel-level domain transfer with cross-

domain consistency. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2019.

[9] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In Proc.

of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016.

[10] Liang Du, Jingang Tan, Hongye Yang, Jianfeng Feng, Xi-

angyang Xue, Qibao Zheng, Xiaoqing Ye, and Xiaolin

Zhang. Ssf-dan: Separated semantic feature based domain

adaptation network for semantic segmentation. In The IEEE

International Conference on Computer Vision (ICCV), Octo-

ber 2019.

[11] James H Elder and Richard M Goldberg. Ecological statistics

of gestalt laws for the perceptual organization of contours.

Journal of Vision, 2(4):5–5, 2002.

[12] Basura Fernando, Amaury Habrard, Marc Sebban, and Tinne

Tuytelaars. Unsupervised visual domain adaptation using

subspace alignment. In Proceedings of the IEEE interna-

tional conference on computer vision, pages 2960–2967,

2013.

[13] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain

adaptation by backpropagation. In International Conference

on Machine Learning, pages 1180–1189, 2015.

[14] Bo Geng, Dacheng Tao, and Chao Xu. Daml: Domain adap-

tation metric learning. IEEE Transactions on Image Process-

ing, 20(10):2980–2989, 2011.

[15] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain

adaptation for large-scale sentiment classification: A deep

learning approach. In Proceedings of the 28th international

conference on machine learning (ICML-11), pages 513–520,

2011.

[16] Rui Gong, Wen Li, Yuhua Chen, and Luc Van Gool. Dlow:

Domain flow for adaptation and generalization. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2477–2486, 2019.

[17] Bruce C Hansen and Robert F Hess. Structural sparseness

and spatial phase alignment in natural scenes. JOSA A,

24(7):1873–1885, 2007.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. 2016 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 770–778, 2015.

[19] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,

Phillip Isola, Kate Saenko, Alexei Efros, and Trevor Dar-

rell. Cycada: Cycle-consistent adversarial domain adap-

tation. In International Conference on Machine Learning,

pages 1989–1998, 2018.

[20] Judy Hoffman, Dequan Wang, Fisher Yu, and Trevor Darrell.

Fcns in the wild: Pixel-level adversarial and constraint-based

adaptation. arXiv preprint arXiv:1612.02649, 2016.

[21] Weixiang Hong, Zhenzhen Wang, Ming Yang, and Junsong

Yuan. Conditional generative adversarial network for struc-

tured domain adaptation. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

1335–1344, 2018.

[22] Dorian Kermisch. Image reconstruction from phase informa-

tion only. JOSA, 60(1):15–17, 1970.

[23] Abhishek Kumar, Prasanna Sattigeri, Kahini Wadhawan,

Leonid Karlinsky, Rogerio Feris, Bill Freeman, and Gregory

Wornell. Co-regularized alignment for unsupervised domain

adaptation. In Advances in Neural Information Processing

Systems, pages 9345–9356, 2018.

[24] Yunsheng Li, Lu Yuan, and Nuno Vasconcelos. Bidirectional

learning for domain adaptation of semantic segmentation. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 6936–6945, 2019.

[25] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised

image-to-image translation networks. In Advances in neural

information processing systems, pages 700–708, 2017.

[26] Yawei Luo, Liang Zheng, Tao Guan, Junqing Yu, and Yi

Yang. Taking a closer look at domain shift: Category-level

adversaries for semantics consistent domain adaptation. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2507–2516, 2019.

[27] Alan V Oppenheim and Jae S Lim. The importance of phase

in signals. Proceedings of the IEEE, 69(5):529–541, 1981.

9019



[28] Leon N Piotrowski and Fergus W Campbell. A demon-

stration of the visual importance and flexibility of spatial-

frequency amplitude and phase. Perception, 11(3):337–346,

1982.

[29] Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen

Koltun. Playing for data: Ground truth from computer

games. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max

Welling, editors, European Conference on Computer Vision

(ECCV), volume 9906 of LNCS, pages 102–118. Springer

International Publishing, 2016.

[30] O. Ronneberger, P.Fischer, and T. Brox. U-net: Convolu-

tional networks for biomedical image segmentation. In Med-

ical Image Computing and Computer-Assisted Intervention

(MICCAI), volume 9351 of LNCS, pages 234–241. Springer,

2015. (available on arXiv:1505.04597 [cs.CV]).

[31] German Ros, Laura Sellart, Joanna Materzynska, David

Vazquez, and Antonio Lopez. The SYNTHIA Dataset: A

large collection of synthetic images for semantic segmenta-

tion of urban scenes. In CVPR, 2016.

[32] Swami Sankaranarayanan, Yogesh Balaji, Arpit Jain, Ser

Nam Lim, and Rama Chellappa. Learning from synthetic

data: Addressing domain shift for semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3752–3761, 2018.

[33] Ozan Sener, Hyun Oh Song, Ashutosh Saxena, and Silvio

Savarese. Learning transferrable representations for unsuper-

vised domain adaptation. In Advances in Neural Information

Processing Systems, pages 2110–2118, 2016.

[34] Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

39:640–651, 2014.

[35] Rui Shu, Hung H Bui, Hirokazu Narui, and Stefano Ermon.

A dirt-t approach to unsupervised domain adaptation. In

Proc. 6th International Conference on Learning Represen-

tations, 2018.

[36] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014.

[37] Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Ki-

hyuk Sohn, Ming-Hsuan Yang, and Manmohan Chandraker.

Learning to adapt structured output space for semantic seg-

mentation. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 7472–7481,

2018.

[38] Yi-Hsuan Tsai, Kihyuk Sohn, Samuel Schulter, and Manmo-

han Chandraker. Domain adaptation for structured output via

discriminative patch representations. In Proceedings of the

IEEE International Conference on Computer Vision, pages

1456–1465, 2019.

[39] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Dar-

rell. Adversarial discriminative domain adaptation. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 7167–7176, 2017.

[40] Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Matthieu
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