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Measurements of the phase of two-photon matrix elements are presented for resonant and an-
tiresonant two-color ionization of helium. A tunable, narrow-bandwidth, near-infrared (NIR) laser
source is used for extreme ultra-violet (XUV) high-harmonic generation (HHG). The 15th harmonic
of the laser is used within (1+1’) XUV+NIR two-photon ionization, and tuned in and out of reso-
nance with members of the 1snp 1P1 (n = 3, 4, 5) Rydberg series, covering a broad spectral range
with high spectral resolution. The technique allows to observe characteristic rapid changes in the
phase of the two-photon matrix elements around the resonances and, previously unobserved, at the
antiresonances between the resonances. Similar effects are observed for (1+2’) XUV+NIR three-
photon ionization. The experimental results are compared to a perturbative model and to numerical
solutions of the time-dependent Schrödinger equation (TDSE) in the single active electron (SAE)
approximation, elucidating the origin and dependences of the observed phenomena.

Multi-photon absorption [1] is a fundamental non-
linear response of materials to intense laser radiation,
and a key aspect of a wide range of applications of lasers
that include four-wave mixing [2, 3] and HHG [4, 5], as
well as non-linear microscopy techniques such as Two-
Photon-Excited Fluorescence microscopy [6]. According
to perturbation theory, the efficiency of multi-photon ab-
sorption processes is enhanced by the occurrence of inter-
mediate state resonances. On the contrary, between two
resonances the excitation amplitudes cancel out, lead-
ing to the antiresonant minimum in efficiency. Since the
antiresonance condition depends on the precise cancella-
tion of amplitudes, its study allows to measure properties
of resonances without exciting them. The antiresonant
phase is well explored in e.g. mechanical systems [7] or
cavity-coupled quantum systems [8, 9]. It provides valu-
able insight in and characterization of strongly correlated
and coupled systems. However, in the domain of multi-
photon ionization of atoms and molecules the study of an-
tiresonances have so far been hindered by the difficulties
in precise determination of the amplitude minimum [10].
Reconstruction of attosecond beating by interference of
two-photon transitions (RABBITT [11]) has been suc-
cessfully used to measure resonant two-photon ioniza-
tion phases [12–15], but the discussion of the antireso-
nant phase has so far been absent in this context, due to
either limited resolution or insufficient spectral range. In
this work, we have extended the well-established broad-
band RABBITT technique to study antiresonances. We
employed narrow bandpass filters to select spectrally nar-
row laser pulses and tune their central wavelength over
the entire broadband spectrum of our laser source. This
allowed us to extract RABBITT phases with high spec-
tral resolution and observe antiresonance phase jumps in
helium.

The phase of the resonant excitation was elegantly in-
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vestigated by Dudovich et al. [16], who demonstrated
that the resonance-enhanced two-photon transition am-
plitude can be described by a sum of two terms, one
describing resonant excitation of an intermediate state
in the course of the multi-photon transition, and one de-
scribing a near-resonant enhancement mediated by this
state. For two-color, XUV+NIR ionization, this gives:

a
(near)res
g→f =

∑
n

µfnµng

h̄2

(
− πEXUV(ωng)ENIR(ωfg − ωng)

+ i PV

∫ ∞
−∞

dω
EXUV(ω)ENIR(ωfg − ω)

ωng − ω

)
,

(1)

where ωng, ωfg are transition frequencies connecting the
ground and an intermediate state, and the ground and
the final state, respectively. µng and µfn are the transi-
tion dipole moments between these states, and EXUV (ω)
and ENIR(ω) are the XUV and NIR spectral ampli-
tudes, respectively. PV denotes the Cauchy Principle
Value integral. For the derivation of this expression
from time-dependent perturbation theory [17] see SM. In
this expression, the first term describes resonant XUV
absorption from the ground to an intermediate state
(g → n), utilizing a photon with frequency ωng, followed
by an NIR-induced transition to the final state (n→ f),
by means of absorption of a photon with a frequency
ωfg − ωng. The second term, containing the Cauchy
Principal Value integral, describes a near-resonant tran-
sition utilizing all combinations of XUV and NIR photons
whose energy adds up to the energy difference between
the ground and final state. An important difference be-
tween the two terms is the fact that the first term describ-
ing the resonant amplitude is real, whereas the term de-
scribing the near-resonant amplitude is imaginary, lead-
ing to a difference in phase of the (complex) transition
amplitude depending on the frequency-dependent weight
of the two terms. If the XUV frequency is tuned to an in-
termediate state resonance, the first term (real) in Eq. (1)
is dominant and the phase of the transition amplitude

arg
[
a
(near)res
g→f

]
= π. In contrast, above and below the
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resonance the second term (imaginary) in Eq. (1) is dom-
inant, which is positive when ω < ωng and negative when

ω > ωng. It follows that the phase of a
(near)res
g→f behaves

as:

arg
[
a
(near)res
g→f

]
→ π

2 , ω < ωng (2a)

arg
[
a
(near)res
g→f

]
→ 3π

2 , ω > ωng. (2b)

Approximately midway between two intermediate
state resonances, the dominant intermediate state n in

the sum in Eq. (1) changes and the phase of a
(near)res
g→f

promptly changes from being described by Eq. (2a) to
that of Eq. (2b). This is the antiresonance.

Multi-photon interferometry plays an essential role in
the recently developed field of attosecond science. One
of the most popular techniques in attosecond science is
RABBITT, which is used to characterize the time struc-
ture of attosecond pulse trains (APTs) [18, 19], as well
as photoionization phases of atoms [12, 13, 20, 21] and
molecules [22–25] that are exposed to such an APT. In
RABBITT, XUV ionization in the presence of an NIR
field leads to the formation of sidebands (SB) in the
photoelectron spectrum (PES), where the total absorbed
photon energy is (q + 1)ωNIR (with q + 1 being even),
described by

I
(
(q + 1)ωNIR, τ

)
=
∣∣∣a(+)
g→f

(
qωNIR

)
eiωNIRτ

+ a
(−)
g→f

(
(q + 2)ωNIR

)
e−iωNIRτ

∣∣∣2, (3)

where the two-color, two-photon ionization amplitude

a
(+)
g→f (a

(−)
g→f ) describes absorption of an XUV harmonic

q (q + 2) accompanied by the absorption (emission) of
an NIR photon of frequency ωNIR. Coherence of the two

pathways a
(+)
g→f and a

(−)
g→f leads to interference in the final

state. The result of the interference (i.e. constructive or
destructive) depends on the one-photon dipole phase, the
continuum-continuum transition phase, the atto-chirp of
the harmonics [26], and the delay-dependent phase of the
NIR field (ωNIRτ). The maximum sideband intensity oc-
curs for delays where

arg[a
(−)
g→f ]− arg[a

(+)
g→f ]− 2ωNIRτ = 2π · n (4)

When harmonic q is (near-)resonant with an excited

state, a
(+)
g→f (ω) is given by the expression for a

(near)res
g→f

in Eq. (1). Consequently, it is expected that the side-
band signal allows to determine whether resonant multi-
photon absorption as described by the first term in
Eq. (1) or near-resonant absorption as described by the
second term is dominant.

An experimental setup previously described in de-
tail [3, 27, 28] was adapted to measure RABBITT signals
from (anti)resonant two-photon ionization of helium. To
selectively probe resonances at a range of harmonic wave-
lengths, interferometric bandpass filters were used to ex-
tract a narrow spectral region from the broad spectral

output of a commercial laser amplifier (1 kHz repetition
rate, 28 fs FWHM duration pulses, 790 nm central wave-
length). The central wavelength of the selected spectral
region was varied by rotating the angle of incidence of the
bandpass filter. To achieve a broad range, three differ-
ent bandpass filters were used (two 10 nm FWHM band-
pass filters, 810 nm and 790 nm central wavelength at
normal incidence, and one 5 nm FWHM bandpass filter,
808 nm central wavelength). In this manner, the central
wavelength could be varied from 770 nm to 806.5 nm in
roughly 1 nm steps. The spectral narrowing of the pulses
led to an elongation of the pulse duration. A wide delay-
range RABBITT scan (measured with the 810 nm filter
tuned to 790 nm) showed a cross-correlation duration of
the NIR and XUV pulse of 114 fs (FWHM). The beam
pointing after the bandpass filter was actively stabilized
by a proportional-control loop feeding back deviations of
focused and unfocused beam positions, imaged by digital
cameras, to two motorized mirror mounts. It was fur-
thermore passively stabilized by focusing the beam into
an evacuated hollow-core fiber waveguide. The filtered
narrow bandwidth NIR pulses (with pulse energies vary-
ing from 1 mJ to 1.5 mJ) were separated into two arms
of a Mach-Zehnder type interferometer by a beamsplitter
mounted on a motorized piezo-stage. One part was used
to generate high harmonics by focusing the NIR pulses
into an argon cell inside the vacuum system. The gen-
erated XUV APT was separated from the driving NIR
pulses by a thin aluminium filter (200 nm thickness).
The APT was recombined with a time-delayed replica
of the NIR pulse from the second arm of the interferom-
eter, using a holey-mirror. A CW-laser co-propagated
through the interferometer and was separately recom-
bined under a small tilt angle. The resulting sheer in-
terferometery fringes were imaged by a digital camera.
The delay-dependent fringe pattern was used to gener-
ate a feedback signal onto the piezo-motorized stage be-
neath the beamsplitter to control and stabilize the time-
delay in the interferometer. The intensity of the replica
NIR pulse was attenuated by a fixed-size iris (2.8 mm
diameter), leading to an NIR intensity in the experimen-
tal region of approximately 1011 W/cm2, thereby limit-
ing the influence of the AC Stark shift and higher-order
NIR processes. After XUV-NIR recombination, the two-
color laser field was re-focused by a grazing-incidence
toroidal mirror into a velocity-map imaging spectrom-
eter (VMIS) [29, 30]. There, the laser beam intersected
a jet of helium atoms from a pulsed gas source. Photo-
electrons resulting from two-color XUV±NIR ionization
were imaged onto a microchannel-plate (MCP) + phos-
phor screen combination and the resulting images were
recorded by a digital camera.

To calculate the photoelectron kinetic energy distribu-
tion, an inverse Abel transformation was performed using
the BASEX algorithm [31]. PES were obtained by inte-
grating along the polar-angle between −π/4 and 0, as
well as between 0 and π/4. To determine the phase of
the RABBITT signal, the time delay between the XUV
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FIG. 1. Delay-dependent PES for two-color XUV±NIR ion-
ization of He, using a fundamental wavelength of (a) 795 nm
and (b) 784 nm. Alternating sideband contributions (SB) and
harmonic contributions are observed, the lowest one being
that of SB16 (denoted by arrow). When H15 is in (near-
)resonance with an excited state of the 1snp series, as is the
case in (b), a pronounced resonant-enhancement of the SB16
intensity can be observed.

and NIR pulses was varied over a range of 20 fs around
zero delay, in 200 as steps. Typical delay-dependent PES,
recorded with an NIR spectrum centered at 795 nm are
shown in Figure 1(a). The contributions from single-
photon ionization by the harmonics and from the two-
color XUV±NIR sidebands are readily visible, starting
with sideband 16 (SB16) at 0.2 eV kinetic energy, up
to the 25th harmonic (H25) at 15 eV. As expected in
a RABBITT experiment(see Eqs. (3, 4)), the intensities
of the harmonic and SB photoelectron signals oscillate
with XUV-NIR time delay, with one full oscillation oc-
curring in half an NIR optical period (1.3 fs). When H15
is resonant with a Rydberg state, a resonance enhance-
ment of SB16 can be observed, which can then become
the dominant contribution to the PES (see Figure 1(b),
ωNIR = 784 nm). By contrast, in the absence of a nearby
resonance, the amplitude of SB16 is comparable to that
of SB18 and SB20 (see Figure 1(a)). To avoid damage
to the phosphor screen and saturation of the camera, the
gain of the MCP detector and the exposure time were
adjusted for different filter positions.

A Takeda-type algorithm [32] was employed to cal-
culate the phase of the sideband and harmonic oscilla-
tions: the delay-dependent PES were spectrally filtered
in Fourier domain by using a Gaussian filter centered
at twice the (positive) fundamental frequency (2ωNIR)
and RABBITT phases (i.e. the phases of the oscillations
of chosen sidebands and harmonic peaks) were then cal-
culated from the complex-valued back-transformation of
the filtered Fourier spectrum (at an arbitrary point of
the delay-axis).

Since variations in the intensity of the NIR driving
field can cause shifts in the photon energy of the harmon-
ics [33], an effective driver laser frequency was calculated
by evaluating the first moment of the peak in the PES
associated with SB16, H17, SB18 and H19. For each
filter position the delay scan was repeated four times.
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FIG. 2. Measured and calculated wavelength dependence of
the phase difference between RABBITT oscillations at the
energies corresponding to (a) SB16 and SB18 and (b) H17
and H19, respectively, revealing the influence of resonances in
(1+1’) and (1+2’) XUV+NIR ionization. The points corre-
spond to experiments performed with different bandpass fil-
ters: λ = 810 nm (blue), 808 nm (green) and 790 nm (orange).
TDSE simulations are shown as a solid black curve. Vertical
grey bars indicate fundamental wavelengths for which H15 is
resonant with members of the 1snp 1P1 series of He [34]. The
SAE-potential leads to a lower resonant fundamental wave-
length for the TDSE (dashed light grey) The errorbars indi-
cate the standard deviation over several measurements (see
main text). For comparison, the previously published results
of Swoboda et al. [12] are shown as red dots in (a).

Moreover, the entire measurement was performed two
times for the 810 nm/10 nm filter and three times for the
790 nm/10 nm and 808 nm/5 nm filter. Due to a slight
alignment deviation of the VMIS, only the upper half of
the photoelectron momentum distribution was evaluated,
for which the best spectral resolution could be achieved.
By independently evaluating the upper left and upper
right quadrant, 24 distinct RABBITT phase determina-
tions were obtained (16 in the case of the 810 nm/10 nm
filter), which permit an estimation of the confidence in-
tervals (CI) of the effective driver laser frequency and
RABBITT phase.

In Figure 2(a) the measured difference between the
RABBITT phase of SB16 and SB18 is shown as a func-
tion of the effective driver laser wavelength. This phase
difference was evaluated, since the amplitude of the
H15+NIR ionization cannot be measured without its in-
terference with the H17-NIR amplitude, and moreover
since the precise zero time-delay between XUV and NIR
pulses is not available from the experiment. A change
in phase of about π is observed around wavelengths
for which H15 is resonant with one of the 1snp 1P1

(n = 3, 4, 5) states (grey vertical lines in Figure 2(a)).
The results are consistent with phase measurements for
wavelengths above 799 nm, which were previously ob-
tained by Swoboda et al. [12] (red dots in Figure 2(a)).
In addition to the phase changes at the resonance po-
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FIG. 3. Comparison of the SB16 phase (a) and the H17 phase
(b) calculated by solving the TDSE (red) and by the pertur-
bative model (green). (a) Two pathways contribute to the
SB16 signal in the perturbative model, namely the H15+NIR
(dashed blue) and the H17+NIR (dashed orange) pathway.
(b) Similarly, the phase of the H17 signal is determined by
two pathways, namely a three-photon pathway including H15
(dashed blue) and the direct one-photon ionization by H17
(dashed orange). When the continuum-continuum transition
phase is omitted from the three-photon pathway (dashed pur-
ple), the smooth wavelength-dependence of the H17 phase
between two resonances is no longer observed.

sitions, a second set of pronounced phase changes can
be observed approximately midway between two reso-
nances, indicative of antiresonant behavior. The wave-
length dependence of these changes are consistent with
the simple perturbative model described in Eq. (1) and
Eq. (3). Note that (by convention) the (near-)resonant
two-photon excitation phase enters the RABBITT phase
in the experiment with its sign inverted (see Eq. (4)). An
increase in the CI is observed at wavelengths where the
signal contrast is diminished, either due to a geometrical
limit of the bandpass filter angle or due to resonant en-
hancement of (1+1’) XUV+NIR photoionization, which
required a reduced gain and led to an increase in back-
ground signal. In contrast, close to antiresonance, the
RABBITT signal can be measured with high contrast
and therefore narrow CI.

To further corroborate these results and to connect
measured relative phases to predictions of the perturba-
tive model, TDSE simulations were performed using code
described in Ref. [35]. The TDSE was solved in single-
active electron approximation (SAE) on a 2D grid (radial
distance and angular momentum). Detailed parameters
of the calculation can be found in the SM. An underesti-
mation of the 1s3p resonant energy in the SAE potential
led to a deviation of the observed resonant phase in Fig-
ure 2.

The phases of the numerical PES were evaluated with
the same method that was applied to the experimental
results (see above). For the analysis, the PES were in-
tegrated over all angles. The wavelength dependence of
the phase difference between SB18 and SB16 from the
TDSE calculation is shown in Figure 2(a). A good agree-
ment with the experimental results is observed above a
wavelength of 780 nm. Since the zero XUV-NIR time-
delay is known for the TDSE results, absolute RAB-
BITT phases of SB16 and SB18 can be extracted, and
are shown in Figure 3(a), supporting that the observed
wavelength-dependence in Figure 2(a) originates exclu-
sively from the SB16 phase. Figure 3(a) also contains
predictions for the SB16 phase from the perturbative
model in Eq. (1). Transition wavelengths were taken from
literature values [34] and dipole moments were calculated
using several analytical approximations [36–38]. Calcula-
tions were limited to the dominating angular-momentum
channels [39, 40]. Details of the model calculation can be
found in the SM.

The resulting SB16 phase, as well as phases for the
H15+NIR and the H17-NIR pathway are compared in
Figure 3(a). They show good agreement with results
from TDSE calculations. The largest deviations are
observed at the antiresonance between two resonances.
These deviations can be rationalized in terms of different
strengths of the transition dipole moments as used in the
perturbative model, to which the antiresonant condition
is highly sensitive [10]. Note that the H17-NIR path-
way includes an NIR-driven continuum-continuum (cc)
transition. RABBITT measurements are typically con-
ducted to determine the phase difference between two
adjacent harmonics which each are energetic enough to
ionize, leading to two cc contributions [41, 42]. In the ex-
periment described here, however, the cc transition only
contributes to the H17-NIR pathway, thus providing di-
rect experimental access to the magnitude of this phase.
The model predicts that the one-photon dipole and cc
transition phase combined, i.e. the phase of the H17-
NIR pathway, add a phase of ≈ 5

4π to the SB16 RAB-
BITT phase (see Figure 3(a)), while the contribution of
the cc phase alone increases from ≈ 3

4π to ≈ π (between
λNIR = 765 nm and 806 nm, not shown).

A wavelength-dependent phase can additionally be ob-
served in the signal corresponding to H17 absorption.
Photoelectrons directly emitted by H17 interfere with
those from H15+2NIR three-photon ionization, leading
to a delay-dependent RABBITT signal. In Figure 2(b)
the phase difference between the oscillations in the H17
and the H19 signal is shown for experimental results and
TDSE calculations. Again, a good agreement is observed
for wavelengths larger than 780 nm. The data once more
reveal the clear influence of (near)-resonant enhancement
of the pathway involving H15. Compared to the SB16
signal, a smoother transition of the RABBITT phase
is observed between two resonances. The perturbative
model is further developed for the H17 phase (see SM)
and the result shown in Figure 3(b). While the pertur-
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bative model qualitatively reproduces the wavelength de-
pendence of the H17 phase, it shows a slight offset of
≈ 0.2π compared to the TDSE calculation. The per-
turbative model shows that the smoother wavelength-
dependence is due to the cc transition phase. The com-
plex cc transition dipole moment leads to a small addi-
tional real part to the otherwise purely imaginary near-
resonant transition amplitude, as was previously the case
in the H15+NIR pathway. As the wavelength crosses the
antiresonance, the amplitude never becomes exactly zero
owing to this small real part. Consequently the phase
does not experience a jump, but smoothly transitions
from the π

2 to 3π
2 values that are seen close to the res-

onances. Indeed, omission of the continuum-continuum
transition phase in the perturbative modeling for the H17
phase leads to the same abrupt change of phase that was
previously observed for SB16 (see Figure 3(b)).

The phase jumps at antiresonances observed in this
work are reminiscent of the antiresonances studied for
single-atom cavity QED in Ref. [8]. In this work the
authors tuned the excitation laser wavelength across the
antiresonance between the atomic resonance and the cav-
ity resonance. They observed the phase behavior similar
to that shown in Fig. 2. They were able to modify the
system parameters affecting the phase shape at the an-
tiresonance and thus could study the properties of the
strongly-coupled (atom-cavity) system without exciting
it, i.e. non-destructively. We propose, that the method
and observations presented here can be applied to nat-
urally strongly coupled resonances in atomic and molec-
ular systems opening a new non-destructive method to
study their non-adiabatic and light-induced coupling of
states. In conclusion, we have developed a highly tunable
RABBITT-scheme, which allows to observe the phase of

wavelength-dependent two-photon ionization of a multi-
level system. The variation of the fundamental wave-
length allows to characterize RABBITT phases over a
broader range of photon energies as in previous experi-
ments [12, 14, 15]. The approach may be seen as comple-
mentary to the recent development of RAINBOW RAB-
BITT [13, 43, 44]. The combination of both approaches
has the potential to increase the spectral resolution or to
reduce requirements on the spectrometer resolution. Two
regions could be identified where the RABBITT phase
rapidly changes as a function of wavelength, namely one
region where a change occurs in the dominance of the
resonant, respectively near-resonant pathway, and a sec-
ond region in between two resonances, where the ampli-
tudes from two neighboring near-resonant pathways can-
cel out and leads to the antiresonance. One advantage
of measuring the antiresonant phase is clear from our re-
sults: The absence of a resonant-enhanced background
from (1+1’) XUV+NIR photoionization leads to a re-
duced uncertainty on the measured phase. By choosing
high-harmonic energies which are close to the ionization
threshold, we could furthermore study the role of the
continuum-continuum phase in RABBITT. Similar pho-
toionization phases close to the ionization threshold have
recently been measured by Sansone et al. [45]. Further
development of our method would allow to measure the
RABBITT phase across the ionization threshold, as re-
cently proposed by Kheifets and Bray [46].
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I. SUPPLEMENTARY MATERIAL

A. Parameters of TDSE calculations

For solving the TDSE, the grid was composed of two dimensions, with one grid dimension corresponding to the dis-
tance between the (photo)electron and the He+ core (r = 0..9000 a.u. in 0.15 a.u. steps), and one to the (photo)electron
orbital angular momentum (l = 0..9). The central wavelength of the 20-cycle FWHM long sin-squared NIR pulse was
varied between 0.0607 a.u. (750 nm) and 0.0555 a.u. (820 nm), in steps of 2.5 · 10−5 a.u. The XUV pulse consisted
of a superposition of 5 harmonics (H11-H19) with a Gaussian temporal profile with a FWHM equal to that of the
NIR pulse. The peak electric field of the NIR was 0.0004 a.u., corresponding to an intensity of 5.6 · 109 W/cm2 while
the peak field strength of each of the 5 harmonics was 0.001 a.u. The delay between the XUV and NIR pulses was
varied between -80 and 80 a.u. in 4 a.u. steps. PES were calculated for kinetic energies between 0 and 0.2 a.u., with
a resolution of 2.5 · 10−4 a.u.

B. Parameters of perturbative model calculation

For the numerical solution of the perturbative model, transition wavelengths and dipole moments for the 1snp 1P1

(n = 3...7) series were taken from the NIST atomic spectra database [34]. Transition dipole moments for bound-
to-continuum transitions were calculated using a quantum-defect model [36]. For the H17-NIR pathway, transition
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dipole moments were calculated using hydrogenic models for ionization from the ground state [37] and for continuum-
continuum transitions [38]. Since the phase of this pathway is expected to only weakly depend on the wavelength [12],
only one intermediate state at the central wavelength of H17 was included in the calculation. Furthermore, for both
pathways the perturbative model was limited to the D final angular momentum channel, which is expected to be
dominant due to oscillator strength [39] and Fano propensity rules [40]. In accordance with experiment, Gaussian
NIR pulses were used with a spectral width of 10 nm (FWHM). The width of the individual harmonics was estimated
from the measured XUV spectra as 0.65 nm FWHM (140meV).

C. Derrivation of two- and three-photon amplitudes from time-dependent perturbation theory

To derrive the expression for the two- and three-photon excited final state amplitude, we employ time-dependent
perturbation theory. The amplitude of an N -th order multiphoton excitation is described recursevly as: [17]

a(N)
m (t) = (ih̄)−1

∑
l

∫ t

−∞
dt′Vml(t

′)a
(N−1)
l (t′)eiωmlt

′
, (5)

where a
(N−1)
l is the excitation amplitude of intermediate states l in (N − 1)-st photon order, ωml = ωm − ωl is the

transition frequency between states l and m. Vml(t) = µmlE(t) is the time-dependent perturbation of the system
by the electric field E(t) =

∫∞
−∞E(ω)eiωtdt and µml is the transition dipole moment between states l and m. It

is assumed that the continuum is sufficiently flat, such that a description of discrete states can be kept throughout
bound and continuum states.

Starting with a system in the ground state g, i.e. a
(0)
l = δlg, the two-photon transition amplitude to a state f via

intermediate state n is:

a
(2)
f (t) = −

∑
n

µfnµng

h̄2

∫ t

−∞
dt1

∫ t1

−∞
dt2EXUV(t2)ENIR(t1)eiωngt2eiωfnt1 , (6)

where we assume that ωng � ωfn, such that we can safely factorize our two-color field in its components EXUV(t)
and ENIR(t). To simplify the discussion it is assumed that the electric fields are transform limited, i.e. they can be
described as real and positive. We also omit the explicit mention of the (trivial) time-delay τ phase of the NIR field
with respect to the XUV field, i.e.:

ENIR(ω, τ) = ENIR(ω)eiωτ . (7)

Using the spectral representation of the two electric fields, we can rewrite Eq. (6) as:

a
(2)
f (t) = −

∑
n

µfnµng

h̄2

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2EXUV(ω2)ENIR(ω1)

∫ t

−∞
dt1

∫ t1

−∞
dt2e

i(ωng−ω2)t2ei(ωfn−ω1)t1 , (8)

and directly integrate up to t1:

a
(2)
f (t) = −

∑
n

µfnµng

h̄2

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2EXUV(ω2)ENIR(ω1)

∫ t

−∞
dt1e

i(ωfn−ω1)t1
ei(ωng−ω2)t1

i(ωng − ω2)
. (9)

We will assume that we measure the photoelectron long after the interaction with the electric fields is over and
therefore take t→∞. Using the Fourier property of the Dirac-delta function: δ(ω−ωl) =

∫∞
−∞ dt exp [i(ω + ωl)t], we

can solve the remaining time-dependent integral in Eq. (9) and using the integral properties of the Dirac-delta the
spectral integral of ω1, leaving us with:

a
(2)
f = −

∑
n

µfnµng

ih̄2

∫ ∞
−∞

dω2EXUV(ω2)ENIR(ωfg − ω2)
1

(ωng − ω2)
(10)

Introducing a (negative) damping term to account for limited lifetime ωng = ωn − ωg − iΓ allows applying the
Sokhotski–Plemelj theorem for the resonant case ω2 = ωng and yields Eq. (1) in the main text.

We apply similar steps to solve the three-photon transition amplitude to a state f via intermediate states n and m.

a
(3)
f =

∑
n,m

µngµmnµfm

ih̄3

∫
dω3

EXUV (ω3)

(ωng − ω3)(
iπENIR(ωmg − ω3)ENIR(ωfm) + PV

∫
dω2ENIR(ω2)ENIR(ωfg − ω2 − ω3)

1

(ωmg − ω2 − ω3)

)
.

(11)
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As described in the main text, in the continuum we will only consider one resonant excited state m with a resonant
frequency ωmn at the center of the NIR spectrum. Since the principle value integral is then always symmetric around
the resonance it evaluates to zero. We can then apply again the Sokhotski–Plemelj theorem to the remaining integral
of ω3:

a
(3)
f

∣∣∣
m
≈
∑
n

µngµmnµfm

ih̄3[
−π2EXUV (ωng)ENIR(ωmn)ENIR(ωfm) + iπPV

∫
dω3

EXUV (ω3)

(ωng − ω3)
ENIR(ωmg − ω3)ENIR(ωfm)

]
.

(12)

The numerical results of the three-photon excitation are shown in Fig 3(b) in the main text. The parameters are
described in the main text. Again two pathways contribute to the H17 signal in the perturbative model, the three-
photon pathway containing (near-)resonant excitation of the 1snp 1P1 series in He photoionization by an NIR photon
and a continuum-continuum transition driven by absorption of an NIR photon and the one-photon pathway of direct
photoionization by the 17th harmonic. As described in the main text, the wavelength dependence of the TDSE H17
signal is well reproduced, but the perturbative model shows a varying offset from the TDSE results, indicating the
limits of our simple modeling.
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