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Phase diagram of a two-component Fermi gas with
resonant interactions
Yong-il Shin1, Christian H. Schunck1, André Schirotzek1 & Wolfgang Ketterle1

The pairing of fermions lies at the heart of superconductivity and
superfluidity. The stability of these pairs determines the robust-
ness of the superfluid state, and the quest for superconductors
with high critical temperature equates to a search for systems with
strong pairing mechanisms. Ultracold atomic Fermi gases present
a highly controllable model system for studying strongly interact-
ing fermions1. Tunable interactions (through Feshbach collisional
resonances) and the control of population or mass imbalance
among the spin components provide unique opportunities to
investigate the stability of pairing2–4—and possibly to search for
exotic forms of superfluidity5,6. A major controversy has sur-
rounded the stability of superfluidity against an imbalance
between the two spin components when the fermions interact
resonantly (that is, at unitarity). Here we present the phase dia-
gram of a spin-polarized Fermi gas of 6Li atoms at unitarity,
experimentally mapping out the superfluid phases versus temper-
ature and density imbalance. Using tomographic techniques, we
reveal spatial discontinuities in the spin polarization; this is the
signature of a first-order superfluid-to-normal phase transition,
and disappears at a tricritical point where the nature of the phase
transition changes from first-order to second-order. At zero tem-
perature, there is a quantum phase transition from a fully paired
superfluid to a partially polarized normal gas. These observations
and the implementation of an in situ ideal gas thermometer pro-
vide quantitative tests of theoretical calculations on the stability of
resonant superfluidity.

When the two spin components resonantly interact, the behaviour
of the system becomes independent of the nature of the interactions.
This case of unitarity has become a benchmark for experimental and
theoretical studies over the last few years. However, there is an
ongoing debate about the stability of resonant superfluidity, reflected
in major discrepancies in predicted transition temperatures for the
balanced spin mixture7–9, and an even more dramatic discrepancy
for the critical imbalance of the two spin components, called the
Chandrasekhar–Clogston limit of superfluidity2,3. Recent quantum
Monte Carlo calculations predicted that superfluidity would be
quenched by a density imbalance around 40% (ref. 10), whereas
other studies predicted a critical imbalance above 90% (refs 11–
16). Our earlier work17–19 suggested the lower limit but other experi-
ments20,21 were interpreted to be consistent with the absence of the
Chandrasekhar–Clogston limit. This huge discrepancy reveals that
even qualitative aspects, such as the role of interactions in the normal
phase, are still controversial. The lack of reliable thermometry for
strongly interacting systems limits the full interpretations of experi-
mental results.

Here we resolve this long-standing debate by presenting the phase
diagram of a spin-polarized Fermi gas at unitarity. We observe that
the normal-to-superfluid phase transition changes its nature. At low
temperature, the phase transition occurs with a jump in the spin

polarization as the imbalance increases, which we interpret as a
first-order phase transition. The local spin polarization or local den-
sity imbalance is defined as s 5 (n"2 n#)/(n"1 n#), where " and #
refer to the two spin components with densities n",#. At high tem-
perature, the phase transition is smooth and therefore of second
order. The two regimes are connected by a tricritical point4,22 and
we estimate its position to be (stc, Ttc/TF") < (0.2, 0.07), where
kBTF:~B2(6p2n:)2=3=2m is the Fermi energy of the majority com-
ponent of density n" (kB is the Boltzmann constant, " is the Planck
constant divided by 2p and m is the atomic mass of 6Li). Our low-
temperature results confirm a zero-temperature quantum phase
transition at a critical polarization sc0 < 36%.

This work required the introduction of several techniques. A
tomographic reconstruction of local Fermi temperatures and spin
polarization allowed us to obtain the phase diagram for the homo-
geneous system, no longer affected by the inhomogeneous density of
the trapped samples. Furthermore, absolute temperatures were
obtained using in situ thermometry applied to the non-interacting
fully polarized Fermi gas in the outer part of the trapped samples,
an ideal thermometer with exactly known thermal properties.
Unlike previous work18,23, this is a direct measurement without any
approximations.

Our experiments are carried out in a trapping potential V(r). The
local chemical potential of each spin component is given as
m:,;(r)~m:0,;0{V (r), where m"0,#0 are the global chemical potentials.
When m:0=m;0, owing to imbalanced populations, the chemical
potential ratio g(r)~m;=m: varies spatially over the trapped sample
and so, under the local density approximation, the trapped inhomo-
geneous sample is represented by a line in the phase diagrams of the
homogeneous system. Figure 1 illustrates the spatial structure of a
strongly interacting Fermi mixture in a harmonic trap. In the inner
region, where g is closer to unity, a superfluid with zero (or small)
spin polarization will form at zero (or low) temperatures, having a
sharp phase boundary against the partially polarized normal gas in
the outer region. The spin polarization shows a discontinuity at the
boundary of the superfluid core at r 5 Rc, a signature of the phase
separation of a superfluid and a normal gas24. The critical polariza-
tion sc~ lim

r?Rz
c

s(r) represents the minimum spin polarization for a

stable normal gas; ss~ lim
r?R{

c

s(r) represents the maximum spin

polarization for a stable superfluid gas. At higher temperatures, the
discontinuity in the density imbalance disappears. The main result of
this paper is the observation and quantitative analysis of such density
profiles. Because we have no experimental evidence, we are not dis-
cussing the exotic partially polarized phases25 which could exist only
in the transition layer between the superfluid core and the normal
outer region.

We prepared a variable spin mixture of the two lowest hyperfine
states of 6Li atoms, labelled :j i and ;j i, at a magnetic field of 833 G. A
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broad Feshbach resonance at 834 G enhances the interactions
between the two spin states. Our sample was confined in a three-
dimensional harmonic trap with cylindrical symmetry. The in situ
density distributions of the majority (spin ") and minority (spin #)
components were determined using a phase-contrast imaging tech-
nique19 (Fig. 2). We obtained the low-noise profiles ñ by averaging
the column density distribution along the equipotential line and
determined the three-dimensional density profiles n(r) using the
inverse Abel transformation of the column densities ñ(r) (see
Methods Summary). Most of our measurements were performed at
a total population imbalance of d < 50%, where d 5 (N"2 N#)/
(N"1 N#) refers to the total numbers of atoms in the sample, N"
and N# of the spin " and # components, respectively.

Figure 3 displays the radial profiles of the densities n",#(r) and the
corresponding spin polarization s(r) for various temperatures. The
discontinuity in the spin polarization, clearly shown at very low
temperatures, demonstrates the phase separation of the inner super-
fluid of low polarization and the outer normal gas of high polariza-
tion. At low temperature, the core radius Rc is determined as the kink
(and/or peak) position in the column density difference profile. At
high temperature (but still in the superfluid regime), the discontinu-
ity in s(r) disappears. At our lowest temperature, the radii of the
minority cloud and the core region were measured as R#5 0.73(1)R"
and Rc 5 0.430(3)R" (at d 5 44(4)%), respectively, and these values
agree with recent theoretical calculations10,25 within the experimental
uncertainties due to the determination of d. Here, R" is the radius of

the majority cloud, and the uncertainty of the final digit is indicated
by parentheses.

We determined temperature from the in situ majority wing pro-
files. The outer part of the majority component, forming a non-
interacting Fermi gas, fulfils the definition of an ideal thermometer,
namely a substance with exactly understood properties in contact
with the target sample. This new in situ method avoids the modifica-
tion of the ideal gas profile caused by the collision with the inner core
during ballistic expansion (ref. 18, see Supplementary Information).
The outer part of the averaged column density difference profile
(r . R#) was fitted to a finite temperature Fermi–Dirac distribution
in a harmonic trap (Fig. 4) and the relative temperature T 0:T=TF0

was determined, where kBTF0~B2(6p2n0)2=3=2m is the Fermi energy
of the non-interacting Fermi gas, which has the same density distri-
bution in the outer region as the majority cloud (n0 is the central
density of the non-interacting Fermi gas at zero temperature). We
verified that anharmonicity of the trapping potential does not affect
the fitted temperature (see Methods).

The critical lines of the phase diagram of a homogeneous spin-
polarized Fermi gas were obtained by determining the local temper-
ature and spin polarization at the phase boundary. The local relative
temperature T 0local:T=TF: was derived from the local density n" (Rc)
according to T 0(Rc)~T=TF0|(n0=n:(Rc))

2=3. Because we observe no
jump in the majority density within our resolution, TF" is well-
defined at the boundary. The critical polarizations sc and ss were
measured as sc 5 s(Rc) and ss 5 s(Rc 2 0.05R") (this criterion for ss

was more robust than a fitting procedure, but excludes the possibility
that ss will be equal to sc at high temperature. Therefore, the mea-
sured ss should be regarded as a lower bound for the polarization of
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Figure 1 | Schematic of spatial structure of a strongly interacting Fermi gas
in a harmonic trap. a, A two-component (spin " and #) Fermi mixture is
confined in an external potential V(r) / r2 with the chemical potential m"0,#0
of each spin component (dm# is the shift for the spin # component owing to
interactions). b, Density distributions of the majority component n"(r) (red
line) and the minority component n#(r) (blue line). c, Spin polarization
s(r) 5 (n"2 n#)/(n"1 n#). At zero temperature, the sample has a three-layer
radial structure: (I), the core region (0 # r , Rc) of a fully paired superfluid
with n"5 n#; (II), the intermediate region (Rc , r , R#) of a partially
polarized normal gas; and (III), the outer region (R#, r , R") of a fully
polarized normal gas. The critical polarization sc (or ss) is defined as the
minimum (or maximum) spin polarization of the normal (or superfluid)
region. The non-interacting case is shown in the insets. The insets have the
same axes as the main figure.
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Figure 2 | Double in situ phase-contrast imaging of a trapped Fermi
mixture. Two phase-contrast images of one sample were taken using
different probe frequencies of the imaging beam, measuring the density
difference nd1 5 n"2 n# (a) and the weighted density difference nd2 5 0.76
n"2 1.43n# (b), respectively. The images show the two-dimensional
distribution of the column density difference, ~nnd1,2(x,z):

Ð
nd1,2(r)dy,

owing to the line-of-sight integration. The field of view for each image is
150mm 3 820mm. c, The distributions of the column density difference ñd1

(black line) and ñd2 (red line) along the central line (the dashed lines in a and
b). The profiles of the integrated linear density difference,
�nnd1,z:

Ð
~nnd1(x,z)dx (d) and �nnd1,x:

Ð
~nnd1(x,z)dz (e), show the identical flat-

top feature except scaling. The aspect ratio of the trapping potential was
l 5 6.15, the majority atom number was N"5 5.9(5) 3 106, the population
imbalance was d 5 44(4)%, and the relative temperature was
T9 5 T/TF0 5 0.03(1) (see text for definitions).
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the superfluid at the boundary). The discontinuity in the spin polar-
ization profile implies that there is a thermodynamically unstable
window, ss , s , sc, leading to a first-order superfluid-to-normal
phase transition. As the temperature increases, the unstable region
reduces with decreasing sc and increasing ss. For high temperature
when the bimodal feature in the spin polarization profile disappears,
we recorded the condensate fraction as an indicator of superfluidity,
using the rapid field-ramp technique17. As the temperature decreases,
the condensate fraction gradually increases with a finite central
polarization19. Such smooth variations of the density profile and
condensate fraction across the phase transition are characteristic of
a second-order phase transition.

The phase diagram is characterized by three distinct points: the
critical temperature Tc0 for a balanced mixture, the critical polariza-
tion sc0 of a normal gas at zero temperature, and the tricritical point
(stc, Ttc) at which the nature of the phase transition changes. Owing
to the lack of a predicted functional form for the phase transition
line in the s–T plane, we apply a linear fit to the measured critical
points, suggesting Tc0/TF"< 0.15, sc0 < 0.36 and (stc, Ttc/TF") <
(0.20, 0.07). The value for sc0 agrees well with the prediction (from
the quantum Monte Carlo calculation) of 0.39 (ref. 10). The extra-
polation of the phase diagram to s 5 0 is tentative, because the in situ
thermometry could not be applied to small population imbalances
owing to the narrowness of the non-interacting outer region.

The Chandrasekhar–Clogston limit reflects the energetic competi-
tion between a superfluid state and a partially polarized normal state,
and occurs at a critical value of 2hc for the chemical potential differ-
ence dm~m:{m;. In Bardeen–Cooper–Schrieffer theory, which is
valid for weak interactions, hc~D=

ffiffiffi
2
p

(ref. 3). Here, D is the pairing
gap. With the assumption of no interactions in a normal gas,
quantum Monte Carlo studies predict hc~1:00(5)D <1:2m at uni-
tarity11, where m~(m:zm;)=2. The condition m;c~m{hcv0
requires n#5 0 for a non-interacting normal gas, implying the
absence of a partially polarized normal phase and consequently
sc0 5 100%. Mean-field approaches12–16, which cannot treat the
interactions in the normal phase accurately, also predict a high crit-
ical imbalance sc0 . 90%. Strong interactions in the normal phase,

however, have been observed through the compressed shape of
the minority cloud18 and the shift in the radio frequency excitation
spectrum26. The data in Fig. 5 clearly establish a zero-temperature
Chandrasekhar–Clogston limit for sc0 in the range 30% to 40%. By
analysing the in situ density profiles25,27, we obtained hc<0:95m (see
Methods). Since theory clearly predicts m , D at unitarity9,11, we
have hc , D. If hc were larger than D, polarized quasi-particles
would have negative energies and would already form at zero tem-
perature. Therefore, up to our observed value of hc, the fully paired
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Figure 3 | Density profiles of trapped Fermi
mixtures with imbalanced populations. The top
row (a–d) shows the averaged column density
profiles for various temperatures (red, majority;
blue, minority; black, difference). The majority
radius R" was determined from the outer region
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reconstructed three-dimensional profiles and the
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a–c), indicated by the vertical dashed lines. The
two spin polarizations sc at r 5 Rc and ss at
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arrows, respectively. The values for T9 , sc, Rc/R",
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superfluid state is stable, and a polarized superfluid exists only at
finite temperature.

The interface between two immiscible fluids involves a surface
energy, leading to at least a small violation of the local density
approximation. However, the observed sharp interface along an
equipotential line and the flat-top structure of the linear density
difference profiles (Fig. 2d and e) imply that corrections to the local
density approximation are smaller than the resolution of our experi-
ment. These observations are inconsistent with the interpretations
given for the experimental results reported in refs 20 and 21, where it
has been shown that highly elongated small samples are deformed by
surface tension28,29. The scaling of those surface effects to our para-
meters predicted a deviation of the aspect ratio of the superfluid core
of about 15% from the trap aspect ratio29, whereas our data gives an
upper bound of 2%. We note that surface tension would add energy
in the phase-separated superfluid regime and would shift the
Chandrasekhar–Clogston limit to smaller values. Refs 20 and 21
concluded that the Chandrasekhar–Clogston limit should be
dc0 . 95%, which is ruled out by our observations. We are not aware
of any suggested effect that can reconcile the data of refs 20 and 21
with our phase diagram for a resonant superfluid. To identify this

finite size effect and to understand fully the nature of the normal
state26, more work on imbalanced Fermi gases is needed.

In conclusion, we have established the phase diagram of a homo-
geneous spin-polarized Fermi gas with resonant interactions in the
s–T plane. This includes the identification of a tricritical point at
which the critical lines for first-order and second-order phase transi-
tions meet, and the final confirmation of a zero-temperature
quantum phase transition—the Chandrasekhar–Clogston limit of
superfluidity—for a gas at unitarity. So far, predicted exotic super-
fluid states such as the breached-pair state in a stronger coupling
regime (Bose–Einstein condensate side)13 and the Fulde–Ferrell–
Larkin–Ovchinnikov state in a weaker coupling regime (Bardeen–
Cooper–Schrieffer side)5,6,12,16,30 have not been observed, but the
novel methods of tomography and thermometry will be important
tools in the search for those states.

METHODS SUMMARY

The experimental procedure has been described in our previous publica-

tions17–19. A degenerate Fermi gas of 6Li atoms was first prepared in an optical

trap, using laser cooling and sympathetic cooling with 23Na atoms. A variable

spin mixture of the two lowest hyperfine states :j i and ;j i (corresponding to the

F~1=2, mF~1=2j i and F~1=2, mF~{1=2j i states at low magnetic field) was

created at a magnetic field B 5 885 G. The final evaporative cooling was achieved

by lowering the trap depth and all measurements were performed at B 5 833 G.

The temperature of the cloud was controlled by the lowest value of the trap depth

in the evaporative cooling process. The oscillation frequency in the axial dir-
ection was fz 5 23 Hz. The two transverse oscillation frequencies fr are equal to

within less than 2%. Two phase-contrast images of the same sample were taken

consecutively with different probe frequencies, n1 and n2 (Fig. 2). The time

interval between the two images was 10 ms, and the pulse duration of each probe

beam was 15ms. Because the probe beam was off-resonant, no heating effect of

the first pulse was observed in the second image. The trapped sample was

observed to have an elliptical shell structure of the same aspect ratio l 5 fr/fz
as the trapping potential over our entire temperature range, and we obtained the

low-noise profiles ñ by averaging the column density distribution along the

equipotential line defined as l2x2zz2~r2 for a given radial position r. The

region for averaging was restricted depending on the type of analysis.

Deviations from the trap aspect ratio were only found for the outer thermal

wings. Details of the phase-contrast imaging technique and the data analysis are

given in Methods and Supplementary Information.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Phase-contrast imaging. The optical signal in the phase-contrast imaging is

proportional to the net phase shift of the imaging beam passing through a

Fermi mixture, that is, it is proportional to n:=(n{n0
:){n;=(n{n0

;), where n is

the probe frequency of the imaging beam, and n"
0 and n#

0 are the resonance

frequencies of the optical transition for the states :j i and ;j i, respectively. When

the probe beam is tuned to the middle of the two transitions, that is, to

n~n0~(n0
:zn0

;)=2, the optical signal reflects the density difference nd 5 n"2 n#.
In our experiment, two phase-contrast images of the same sample were taken

consecutively with different probe frequencies, n1 and n2 (Fig. 2). The two images
record the density difference nd1 5 n"2 n# and the weighted density difference

nd2 5 a"n"2 a#n#. The first probe frequency n1 was determined by zeroing the

optical signal with an equal mixture and a",# was determined by the signal ratio

between the first and the second image for a highly imbalanced Fermi mixture

with jdj. 95% (an almost fully polarized gas). Finally, we obtained

n"5 (a#nd1 2 nd2)/(a#2 a") and n#5 (a"nd1 2 nd2)/(a#2 a"). The difference

between n1 and n2 was chosen to lie between 8 and 13 MHz.

Data analysis. Low-noise profiles were obtained by averaging the column den-

sity distribution of phase-contrast images along elliptical equipotential lines

(l2x2zz2~r2). For the measurement of the critical spin polarization, the aver-

aging region was restricted to jxj, 12 mm to preserve the sharp features at the

phase boundary. The diffraction limit for our imaging system was about 2 mm.

For the determination of local quantities in the profiles, we averaged over 65mm

around a given position. For temperature determination, the averaging region

was restricted to an axial sector of 660u to avoid corrections due to transverse

anharmonicities (see below). The relative temperature T9 is determined as

T 0:T=TF0~({6Li3({f)){1=3, where f is the fugacity obtained from the fit

(Lis(z):
P?

k~1

zk=ks is the polylogarithmic function of order s).

Anharmonicity of the trapping potential. For the determination of tempera-

tures from the spatial in situ profiles it was necessary to address the anharmo-

nicity of the trapping potential. Our trap is generated by a weakly focused (beam

waist w < 125mm) infrared gaussian laser beam (wavelength 1,064 nm) near the

saddle point of a magnetic potential. The total trapping potential is given as

V (r,z)~U0 exp {
2r2

w2

� �
z

m(2pfz )2

2
{

r2

2
zz2

� �
,

where r2~x2zy2. We note that gravity has been compensated by a magnetic

field gradient. The axial confinement comes mainly from the magnetic potential

with oscillation frequency of fz 5 23 Hz. The transverse magnetic potential is

anti-trapping and limits the trap depth according to:

U~
1

4
m(2pfr)2w2 1{

f 2
z

2f 2
r

ln
2f 2

r zf 2
z

f 2
z

 !" #
ð1Þ

where fr is the transverse oscillation frequency in the central harmonic region.

When the trap depth is comparable to the Fermi energy of a sample, the trans-

verse anharmonicity will affect the shape of the cloud. Although in our experi-

ments the inner core and the outer cloud had the same aspect ratio as the

trapping potential, anharmonicities were not negligible in the spatial wings used

to determine the temperature.

This issue was addressed by adjusting the angular averaging region

(Supplementary Fig. 3). Because the trapping potential is only anharmonic for

large r, we could reduce the effect by decreasing the angle of the averaging sector

around the axial z-direction. Both the experimental data and an exact simulation

for an ideal Fermi gas show that the fitted temperature remains almost constant

up to a certain angle and then increases when the averaging sector includes more

of the transverse outer region. In our temperature determination, we chose the

averaging sector to be 660u, which was large enough to create low-noise profiles,

but kept the effect of the anharmonicities to below 10%. The one-dimensional fit

to angularly averaged profiles was computationally more efficient than a two-

dimensional fit to a selected region of the image. In a two-dimensional fit, one

could also include anharmonic terms in the fitting function.

Critical chemical potential ratio gc. In a harmonic trap, the chemical potential

of the majority and minority components are given as m:(r)~m:0(1{r2=R2
:) and

m;(r)~m:0(g0{r2=R2
:), respectively. At unitarity, the global chemical potential

of a fully paired superfluid in the core is given as ms0~jeF~jB2(6p2ns0)2=3=2m

where ns0 5 n",#(r 5 0) is the central density. The thermodynamic equilibrium

requires ms0~(m:0zm;0)=2, where m:0~B2(6p2n0)2=3=2m. From

ms0=m:0~j(ns0=n0)2=3, we obtain the chemical potential ratio as:

g(r)~
g0{r2=R2

:

1{r2=R2
:

~2
j(ns0=n0)2=3{1

1{r2=R2
:

z1

In our coldest sample (d < 44%), the normalized central density and the

radius for the phase boundary were measured to be ns0/n0 5 1.72(4) and

Rc/R"5 0.430(3), respectively, yielding the critical chemical potential ratio

gc 5 g(Rc) < 0.03 with j 5 0.42 (ref. 11). The critical difference is

hc=m~(1{gc)=(1zgc)<0:95.
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