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For hard anisotropic particles the formation of a wide variety of fascinating crystal and liquid-crystal

phases is accomplished by entropy alone. A better understanding of these entropy-driven phase

transitions will shed light on the self-assembly of nanoparticles, however, there are still many open

questions in this regard. In this work, we use Monte Carlo simulations and free-energy calculations to

determine the phase diagram of colloidal hard superballs, of which the shape interpolates between

cubes and octahedra via spheres. We discover not only a stable face-centered cubic (fcc) plastic crystal

phase for near-spherical particles, but also a stable body-centered cubic (bcc) plastic crystal close to the

octahedron shape. Moreover, coexistence of these two plastic crystals is observed with a substantial

density gap. The plastic fcc and bcc crystals are, however, both unstable in the cube and octahedron

limit, suggesting that the local curvature, i.e. rounded corners and curved faces, of superballs plays an

important role in stabilizing the rotator phases. In addition, we observe a two-step melting

phenomenon for hard octahedra, in which the Minkowski crystal melts into a metastable bcc plastic

crystal before melting into the fluid phase.

1. Introduction

Recent breakthroughs in particle synthesis have resulted in a

spectacular variety of anisotropic nanoparticles such as cubes,

octapods, tetrapods, octahedra, ice cones, etc.1 A natural starting

point to study the self-assembled structures of these colloidal

building blocks is to view them as hard particles.1 Not only can

these hard-particle models be used to predict properties of suit-

able experimental systems, but such models also provide a

stepping stone towards systems where soft interactions play a

role.2,3 Moreover, the analysis of hard particles is of fundamental

relevance and raises problems that influence fields as diverse as

(soft) condensed matter,1,4–6 mathematics,5,7 and computer

science.8 In this light the concurrent boom in simulation studies

of hard anisotropic particles is not surprising.5–7,9–17

The best-known hard-particle system consists of hard spheres,

which freeze into close-packed hexagonal (cph) crystal structures,8

of which the ABC-stacked cph crystal, better known as the face-

centered cubic (fcc) crystal phase, is thermodynamically stable.18

Hard anisotropic particles can form liquid-crystalline equilibrium

states if they are sufficiently rod- or disclike,13,17 but particles with

shapes that are close-to-spherical tend to order into plastic crystal

phases, also known as rotator phases.15–17 In fact, simple guidelines

were recently proposed to predict the plastic- and liquid-crystal

formation only on the basis of rotational symmetry and shape

anisotropy of hard polyhedra.6,19 In this work we will take a

different approach, based on free-energy calculations, and address

the question whether and to what extent rounding the corners and

faces of polyhedral particles affects the phase behavior. Such

curvature effects are of direct relevance to experimental systems, in

which sterically and charged stabilised particles can often not be

considered as perfectly flat-faced and sharp-edged.20 For instance,

recent experiments on nanocube assemblies show a continuous

phase transformation between simple cubic and rhombohedral

phases by increasing the ligand thickness and hence the particle

sphericity.3

In this paper, we study a system of colloidal hard superballs in

order to address these problems. A superball is defined by the

inequality

rxr2q + ryr2q + rzr2q # 1, (1)

where x, y and z are scaled Cartesian coordinates with q the

deformation parameter, and we use radius a of the particle as our

unit of length. The shape of the superball interpolates smoothly

between two Platonic solids, namely the octahedron (q ¼ 0.5)

and the cube (q¼N) via the sphere (q¼ 1) as shown in Fig. 1.We

define the asphericity as
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A ¼ 1�
p

1=3½6vðqÞ�2=3

SðqÞ
; (2)

where S(q) is the surface area of the particle. The volume of the

superball v(q) is given by

vðqÞ ¼ 8a3
ð

1

0

ð

ð1�x2qÞ
1=2q

0

�

1� x2q � y2q
�1=2q

dy dx

¼
8a3

�

Gð1þ 1=2qÞ
�3

Gð1þ 3=2qÞ
; (3)

where a ¼ 1 is the radius of the particle. This is similar to the

definition in ref. 21 and 22. In our definition A ¼ 0 for a sphere

and A > 0 for nonspherical objects. The asphericity increases

smoothly and substantially by letting q deviate from q ¼ 1. The

asphericity of superballs as a function of 1/q is shown in Fig. 1.

By determining the phase diagram of these superballs as a

function of q, we discovered a thermodynamically stable body-

centered cubic (bcc) plastic crystal phase for octahedron-like

superballs. To the best of our knowledge no thermodynamically

stable plastic crystals other than cph structures have so far been

observed for hard particles. A bcc rotator phase has also

recently been reported in simulations of truncated and perfect

octahedra parallel to our work.19 However, the thermody-

namical stability of the bcc rotator phase has not been exam-

ined in ref. 19. Moreover, we demonstrate using free-energy

calculations that bcc and fcc plastic crystal phases are

unstable for hard octahedra and hard cubes, respectively.

Therefore, rounded faces and edges may play an important role

in stabilizing rotator phases, while flat faces tend to stabilize

crystals.

The remainder of this paper is organized as follows. We first

give a description on the methods we employ to calculate the free

energies in Section 2. The phase diagram of the cube-like and

octahedron-like superballs is presented in Section 3. Finally,

conclusions are drawn in Section 4.

2. Free-energy calculations

2.1. Fluid phase

We employ standard NPT Monte Carlo simulations to obtain

the equation of state (EOS) for the fluid phase. For these simu-

lations we use the hard-particle overlap algorithm described in

Appendix A.1. We also determine the free energy by integrating

the EOS from reference density r0 to r:

FðrÞ

N
¼

Fðr0Þ

N
þ

ð

r

r0

Pðr0 Þ

r0 2
dr0 : (4)

Here F(r0)/N ¼ m(r0) � P(r0)/r0 is the Helmholtz free energy per

particle at density r0, with N the number of particles and m(r0)

the chemical potential, which is calculated by the Widom’s

particle insertion method.23

2.2. Crystal phases

For the free energy of a crystal we use the Einstein integration

method. The Helmholtz free energy F of a crystal is

FðN;V ;TÞ ¼ FEinstðN;V ;TÞ �

ð

lmax

0

dl

�

vUEinstðlÞ

vl

�

; (5)

where V and T are the volume and temperature of the system,

respectively, with kB the Boltzmann constant. FEinst is the free

energy of the ideal Einstein crystal given by

FEinstðN;V ;TÞ

kBT
¼ �

3ðN � 1Þ

2
ln

�

pkBT

lmax

	

þN ln

�

Lt
3Lr

s4

	

þ ln

�

s3

VN1=2

	

� ln




1

8p2

ð

dq sinðqÞdf dc

� exp

�

�
lmax

kBT

�

sin
2
jia þ sin

2
jib

�

�

;

(6)

and

UEinstðlÞ ¼ l
X

N

i¼1

h

ðri � ri;0Þ
2
=s2 þ

�

sin
2
jia þ sin

2
jib

�

i

; (7)

is the aligning potential for fixing the particles onto a crystal

lattice, where (ri � ri,0) is the displacement of particle i from its

rest position in the ideal Einstein crystal. Here s is the unit of

length, and we use s ¼ a ¼ 1 in the free-energy calculation of

superballs and s ¼ v1/3 in the free-energy calculation of hard

octahedra. The angles jia and jib are the minimum angles formed

by the two field vectors, i.e. a and b, in the ideal Einstein crystal

and the vectors defining the orientation of the particle in the

crystal. Lt and Lr in eqn (6) are the translational and orienta-

tional thermal wavelengths of the particles, respectively, and

both are set to 1.

2.3. Plastic crystal phases

For the free-energy calculations of a plastic crystal phase, we use

a soft interaction potential between the particles

Fig. 1 The asphericity A as a function of 1/q, where the shape of

superballs interpolates between octahedra (q¼ 0.5) and cubes (q¼N) via

spheres (q ¼ 1).
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4ði; jÞ ¼
g
�

1� A
�

1þ zði; jÞ
��

zði; jÞ\0

0 otherwise
;

(

(8)

where z(i,j) is the overlapping potential as defined in ref. 24 which

is negative when particles i and j are overlapping and positive

otherwise,24 and g is the integration parameter with the constant

A¼ 0.9.25This method was introduced in ref. 25, and allows us to

change gradually from a non-interacting system, i.e., g ¼ 0, to a

plastic crystal phase of hard superballs where g ¼ gmax. The

Helmholtz free energy of the plastic crystal is then given by

FðN;V ;TÞ ¼ FEinstðN;V ;TÞ �

ð

lmax

0

d l

�

vUEinstðlÞ

vl

�

gmax

þ

ð

gmax

0

dg

*

v
PN

isj4ði; jÞ

vg

+

lmax

: (9)

3. Results and discussion

3.1. Cube-like superballs (1 < q < N)

Following ref. 9 and 26, we first calculate the close-packed

structures for systems of hard superballs. We employ the algo-

rithm to check for particle overlap as described in Appendix A.1.

For cube-like particles, it is found that at close packing there are

so-called C0 and C1 crystal phases in accordance with ref. 10 and

11. C0 and C1 crystals are deformed fcc and simple cubic crystals,

respectively, depending on the shape parameter q. We perform

NPTMonte Carlo simulations with variable box shape and fixed

pressure P, number of particles N, and temperature T to deter-

mine the equation of state (EOS) of the crystal phase. Our

simulation results show that both the C0 and the C1 crystals

deform with decreasing density. The lattice vectors for C0 crys-

tals are given by e1 ¼ 21�1/2qi + 21�1/2qj, e2 ¼ 2k, and e3 ¼ –2si +

2(s + 2�1/2q)j + k, where i, j and k are the unit vectors along the

axes of the particle, and s is the smallest positive root of the

equation (s + 2�1/2q)2q + s2q + 2�2q � 1 ¼ 0. The lattice vectors for

C1 crystals are given by e1 ¼ 21�1/2qi + 21�1/2qj, e2 ¼ 21�1/2qi +

21�1/2qk, e3 ¼ 2(s + 2�1/2q)i � 2sj � 2sk, where s is the smallest

positive root of the equation (s + 2�1/2q)2q + 2s2q � 1¼ 0, and there

is only one particle in the unit cell.10,11 For instance, in a C1

crystal of superballs with q ¼ 2.5, one finds that he1,e2i ¼ 0.5,

he1,e3i ¼ he3,e2i ¼ 0.60552, re2r/re1r ¼ 1, and re3r/re1r ¼

0.825737, where hei,eji is the cosine of the angle between ei and ej.

The calculated angles and the length ratios between lattice

vectors as a function of packing fraction f for the cube-like

particles with q¼ 2.5 are shown in Fig. 2. We find that at packing

fractions approaching close packing, the crystal remains in the

C1 phase. With decreasing packing fraction, the crystal lattice

deforms towards a fcc structure: he1,e2i ¼ he1,e3i ¼ he2,e3i ¼ 0.5

and re2r/re1r ¼ re3r/re1r ¼ 1.

Moreover, when 1 < q < 3, it is found that the deformedC0 and

deformed C1 crystals melt into a fcc plastic crystal phase. By

Einstein integration, we calculated the Helmholtz free energy as a

function of packing fraction for both the fcc plastic crystal and

the deformed C1/C0 crystal phases.23 Combined with the free-

energy calculations for the fluid phase done by Widom’s particle

insertion method, we obtain the phase boundaries in the phase

diagram shown in Fig. 3. Also see Tables 1 and 2 in Appendix

A.2 for several values of the free energies used to construct this

phase diagram. The part of the phase diagram for hard cube-like

superballs roughly agrees with the empirical phase diagram by

Batten et al.12 At high packing fractions, there are stable

deformed C0 and C1 phases. When q > 1.1509, the close-packed

structure is the C1 crystal, whereas it is the C0 crystal whenever

1 < q < 1.1509.10,11 To determine the location of the transition

from the deformed C0 crystal to the deformed C1 crystal, we

performed two series of NPTMC simulations with an increasing

value of q for the first series and decreasing q for the second series

of simulations at pressure P*¼ Pv/kBTx 250, with v the volume

of the particle.13 The first series started from a C0 crystal phase,

while the second series of simulations started from a C1 crystal

phase. Our simulations show that the phase transition occurred

around q ¼ 1.09 at packing fraction f ¼ 0.736 as shown by the

asterisk in Fig. 3. Moreover, for hard cubes (q ¼ N) the C1

crystal is a simple cubic (sc) crystal. Although it was found that

for hard cubes there is a significant number of vacancies in the

simple cubic crystal, it only shifts the phase boundary by �2% in

the packing fraction.14 In our simulations, we did not observe

any vacancies in the crystals of hard superballs with q # 3, we

therefore assume that the possible presence of vacancies would

not shift the phase boundary significantly.

3.2. Octahedron-like superballs (0.5 # q < 1)

The other part of the phase diagram concerns the octahedron-

like superballs. For 0.79248 < q < 1, we obtained a denser

structure than the predicted O0 lattice of ref. 10 and 11. For

instance, after compressing the system to pressures around P* ¼

107 at q ¼ 0.85, we obtained a body-centered-tetragonal (bct)

crystal with f ¼ 0.7661. This is denser than the O0 crystal, which

achieves f ¼ 0.7656 at q ¼ 0.85. Note, however, that these two

crystals are very similar to each other, sinceO0 is also a form of a

bct lattice. The only difference is that the orientation of the

particles in the O0 crystal is the same as the symmetry of the axes

in the crystal lattice, while in our bct crystal there is a small angle

between these two orientations in the square plane of the crystal.

Furthermore, for q < 0.79248, we also found a crystal with denser

Fig. 2 The deformation of the crystal unit cell with lattice vectors ei as a

function of packing fraction f in a system of hard superballs with q¼ 2.5.

The dashed lines in the figures indicate the values for the C1 crystal.
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packing than the predicted O1 crystal in ref. 10 and 11. For q ¼

0.7, we performed floppy-box MC simulations with several

particles to compress the system to a high pressure state, i.e.,

P* ¼ 107. We found a deformed bcc (dbcc) crystal shown in

Fig. 3, which is an intermediate form between the bcc lattice and

the Minkowski crystal.27 The lattice vectors are e1 ¼ 0.912909i +

0.912403j� 0.912165k, e2 ¼�0.271668i + 1.80916j� 0.288051k,

and e3 ¼ 0.28834i � 0.272001j � 1.80882k, where i, j, and k are

the unit vectors along the axes of the particle. Our dbcc

crystal is close to the predicted O1 crystal, whose lattice vectors

are e1 ¼ 0.912492i + 0.912492j � 0.912492k, e2 ¼ �0.2884i +

1.80629j � 0.2884k, and e3 ¼ 0.2884i � 0.2884j � 1.80629k.

However, it has a packing fraction of f ¼ 0.832839 which is

denser than the predicted O1 crystal with f ¼ 0.824976 in ref. 10

and 11 by roughly 1%. In ref. 10 and 11, theO0 andO1 phases are

found to switch at q ¼ 0.79248. We also observed that both the

bct and dbcc crystals transform into the bcc phase at q¼ 0.79248.

As shown in Fig. 3, when the shape of the superballs is close to

spherical, i.e., 0.7 < q < 3 corresponding to an asphericity A (

0.08 for cube-like and A ( 0.03 for octahedron-like superballs,

there is always a stable fcc plastic crystal phase. Surprisingly,

when the shape of superballs is octahedron-like, we find a stable

bcc plastic crystal phase. Moreover, around q ¼ 0.8 we even find

a fairly broad two-phase regime where a low-density fcc plastic

crystal coexists with a high-density bcc plastic crystal phase. In

order to quantify the orientational order in the bcc plastic

crystal, we calculate the cubic order parameter S4 given by:12

S4 ¼ max
n

(

1

14N

X

i; j

�

35
�

�uij$n
�

�

4
�30

�

�uij$n
�

�

2
þ3

�

)

; (10)

where uij is the unit vector of the jth axis of particle i, N is the

number of particles, and n is a unit vector. The cubic order

Fig. 3 Phase diagram for hard superballs in the f (packing fraction) versus 1/q (bottom axis) and q (top axis) representation where q is the deformation

parameter. Here the C1 and C0 crystals are defined in the main text and in ref. 10 and 11, where the particles of the same color are in the same layer of

stacking. The solid diamonds indicate the close packing, and the locations of triple points are determined by extrapolation as shown by the dashed lines.

The phase boundaries for hard cubes are taken from ref. 14.

Table 1 Helmholtz free energy per particle, F(r0)/NkBT, and the
chemical potential, m(r0), in the fluid phase for several choices of the
shape parameter q at density r0. This result was obtained by the Widom
particle-insertion method for N particles in the simulation box

q r0a
3 N m(r0)/kBT F(r0)/NkBT

0.70000 0.100 500 1.85523 �1.63213
0.79248 0.100 500 3.32035 �1.14744
0.85000 0.050 500 �0.94569 �3.07702
1.75000 0.020 500 �2.56824 �4.29418
2.50000 0.036 500 0.71808 �2.69570
3.00000 0.028 500 �0.60904 �3.30777
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parameter S4 is shown in Fig. 4 as a function of packing fraction

for the bcc plastic crystal phase of superballs with q ¼ 0.7. For

comparison, we also show S4 for the (metastable) fcc plastic

crystal phase for which the cubic order is always very low hS4i(

0.2. We observe that hS4i( 0.2 at low packing fractions, which

means that there is a very weak orientational order in the

system.28 With increasing packing fraction, the cubic order

parameter increases monotonically to around 0.65 at a packing

fraction of 0.7, which is indicative of a medium-ranged orienta-

tionally ordered system. This suggests that the entropic repulsion

due to the rotation of the octahedron-like superballs stabilizes

the bcc lattice. Moreover, as a bcc-like phase is the best-packed

crystal structure for these superballs, the translational entropy

gained in the bcc rotator phase outweighs the loss in orienta-

tional entropy compared to the fcc rotator phase at the same

packing fraction.

Due to the numerical instability in the overlap algorithm, we

are not able to investigate systems of superballs with q < 0.7.24

However, we can use the separating axis theorem6 to simulate

hard superballs with q ¼ 0.5, i.e., perfect octahedra. When we

compressed the system from a fluid phase, we did not observe the

spontaneous formation of a crystal phase in our simulation box

within our simulation time. When we expand the Minkowski

crystal, which is the close-packed structure of octahedra, in NPT

MC simulations by decreasing the pressure, the system melts into

a bcc plastic crystal phase as shown in Fig. 5. We also calculated

the free energy for these three phases to determine the phase

boundaries. To exclude finite-size effects in the free-energy

calculation of crystal phases, we performed Einstein integration

for systems of N ¼ 1024, 1458, and 2000 particles, and applied a

finite-size correction.23 Also see Appendix A.3 and Fig. 9 for this

procedure. We confirmed the errors in the free-energy calcula-

tions to be on the order of 10�3kBT per particle. The calculated

free-energy densities for the three phases are shown in Fig. 5.

Employing a common tangent construction, we found that there

is only phase coexistence between a fluid phase and a Minkowski

crystal phase, while the bcc plastic crystal phase is metastable.

Moreover, the Minkowski crystal melts into a bcc plastic crystal

before melting into the fluid phase. Our results thus show that the

rounded corners of octahedra play an important role in stabi-

lizing the bcc plastic crystal phase. We note here that stable bcc

rotator phases have been reported before for soft particles, e.g.,

for simple water models29 and SF6 molecules with an octagonal

shape.30 However, its stability for systems of hard particles has

not been demonstrated before to the best of our knowledge.

4. Conclusion

In conclusion, using free-energy calculations we have determined

the full phase diagram of hard superballs with shapes interpo-

lating between cubes and octahedra, i.e., 0.5# q <N. In systems

of cube-like superballs (q > 1), we find a stable deformed C1

phase at high packing fraction, except close to the sphere-limit

(q¼ 1) where a deformedC0 crystal is stable. For q < 3 the crystal

phase melts into a fcc plastic crystal before melting into a fluid

phase of cube-like superballs. In systems of octahedron-like

superballs (0.5 < q < 1), we find a stable bct or a deformed bcc

crystal phase upon approaching close packing, with a crossover

at q ¼ 0.79248. Moreover, a stable fcc plastic crystal appears at

intermediate densities for 0.7 < q# 1. Interestingly, for q < 0.85,

we find a novel stable bcc plastic crystal phase, which can even

coexist with the fcc plastic crystal phase at around q ¼ 0.8. It is

worth noting that phase coexistence between a bcc and a fcc

plastic crystal phase has been predicted for particles interacting

with soft potentials, e.g., for simple water models.29 More

surprisingly, the bcc and fcc rotator phases are unstable for the

flat-faced and sharp-edged hard octahedra and hard cubes,

respectively, which suggests that the asphericity A as defined in

eqn (2) and the curvature of superballs may play an important

Fig. 5 A part of the equation of state for hard octahedra. The pressure

Pv/kBT and free-energy density F/V � rmc + Pc as a function of packing

fraction f. Here v is the volume of the particle; F andV are the Helmholtz

free energy and the volume of the system (in units of particle volume)

respectively; mc and Pc are the chemical potential and pressure at bulk

coexistence respectively with r the number density of the particles. The

solid lines in the EOS for the Minkowski and the bcc plastic crystal

phases are obtained by melting the close-packed Minkowski crystal in

floppy-box NPT MC simulations, and the dotted line for the bcc plastic

crystal is obtained by compressing the crystal in cubic box NPT MC

simulations. The black points and dashed line show the coexistence

between the fluid phase and the Minkowski crystal phase.

Fig. 4 Cubic order parameter S4 as a function of packing fraction f for a

bcc and a (metastable) fcc plastic crystal phase of hard superballs with

q ¼ 0.7. The inset shows a typical configuration of a BCC plastic crystal

of hard superballs with q ¼ 0.7 at f ¼ 0.54.
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role in stabilizing rotator phases. As the asphericity A increases

smoothly by deviating from q¼ 1, as shown in Fig. 1, it is hard to

define a stability criterion for the plastic crystal phases based on a

threshold value of A. However, we find stable rotator phases for

the shape parameter range 0.7 < q < 3, which corresponds to an

asphericity A( 0.08 for cube-like and A( 0.03 for octahedron-

like superballs. In addition, we determine the total and local

Gaussian curvature for the superballs in Appendix A.4. The total

Gaussian curvature of a superball equals 4p independent of the

shape parameter q and in agreement with the Gauss–Bonnet

theorem. In Fig. 10, we show the distribution of local curvatureK

on the surface of various superballs. We observe that for the

stability range of the rotator phases 0.7 < q < 3, the variations in

the distribution of the local curvature on the superball are rela-

tively moderate. For particles that display regions with high

curvature (sharp edges) and simultaneously regions with no

curvature (flat faces) the rotator phases are destabilized. Hence,

one may argue that entropic directional forces19 that tend to align

sufficiently large flat faces of polyhedral-shaped particles desta-

bilize rotator phases in favor of crystals. We stress here that

rounded corners are not a necessary condition for stable rotator

phases since almost spherical polyhedral particles have been

shown to form rotator phases as well.6 Finally, we also observed

a two-step melting phenomenon in a system of hard octahedra,

such that the Minkowski crystal melts into a metastable bcc

plastic crystal before melting into the fluid phase. Nanoparticle

self-assembly is therefore surprisingly sensitive to the particle

curvature.

A Appendix

A.1 Overlap algorithm for superballs

The algorithm we used to check for overlaps between superballs

is based on the Perram and Wertheim (PW) potential introduced

in ref. 31. The details of the application of this general method to

the specific case of superballs can be found in ref. 24. A superball

with shape parameter q, located at r0, and orientation matrixO¼

(o1,o2,o3) is given by the set of points {r|z(r)# 0, r˛R3} with z an

appropriate shape function. The shape function is strictly convex

and defined by

z(r) ¼ g[~z(~r)] � 1 (11)

with

g(x) ¼ x1/q

~z(~r) ¼ ~r2q1 + ~r2q2 + ~r2q3

where ~r¼ (~r1,~r2,~r3)
T ¼O�1(r� r0) gives the relative coordinates of

r with respect to the particle centered at r0 with the reference

orientation O.

The condition for overlap between a pair of particles A and B

can be thought of as an inequality between the position and

orientation of the particles. For this purpose, we measure the

distance between the two superballs using the overlap potential

z(A,B), where A and B contain the information for the location

and orientation of the two superballs. The sign of z(A,B) gives us

an overlap criterion through

zðA;BÞ. 0 if A and B are disjoint

zðA;BÞ ¼ 0 if A and B are externally tangent

zðA;BÞ\0 if A and B are overlapping

8

>

<

>

:

(12)

z(A,B) is also at least twice continuously differentiable in the

position and orientation of A and B, respectively.

In the following we describe the procedure by which z(A,B)

can be determined for two superballs with given position and

orientation. We define and compute the overlap conditions using

a procedure originally developed for ellipsoids by Perram and

Wertheim.31 The PW overlap potential is defined by

zðA;BÞ ¼ max
0# l# 1

min
rC

�

lzAðrCÞ þ ð1� lÞzBðrCÞ
�

; (13)

where zA(rC) and zB(rC) are the shape functions that define the

two superballs A and B, respectively. Here rC can be thought of

as the first point of contact between A and B, when these particles

are uniformly expanded/scaled, whilst keeping their orientation

and position fixed. This is illustrated in Fig. 6.

For every l, the solution of the inner optimization over rC is

unique due to the strict convexity of A and B, and it satisfies the

gradient condition

Vz(A,B) ¼ lVzA(rC) + (1 � l)VzB(rC), (14)

which shows that the normal vectors are anti-parallel as shown in

Fig. 6. The solution of the outer optimization problem over l is

specified by the condition

z(A,B) ¼ zA(rC) ¼ zB(rC). (15)

Calculation of the PW overlap potential can be done by

solving for rC(l) in eqn (14), and then determining the l that

satisfies eqn (15). The solution to eqn (13) can be obtained by

solving a set of ordinary differential equations (ODEs) and by

making use of the ODE event location method32 to achieve

zA(rC) ¼ zB(rC). This method is rigorous in the sense that the

optimal l can be determined within an arbitrary accuracy,

however, it is inefficient since it requires solving ODEs.

If a good-enough initial guess can be provided for l, one can

directly use the Newton–Raphson (NR) method on this system

of two equations. The method has the advantage that it is more

Fig. 6 An illustration of the scaling procedure applied to the two

superballs A and B, which results in the contact point at rC, and the two

anti-parallel vectors that are normal to the scaled surfaces of the particles

at rC.
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efficient than the one used in ref. 32. The Newton–Raphson steps

are determined as follows

Dl ¼
�1

zll

�

ðzB � zAÞ � DgTM�1
VzAB

�

; (16)

DrC ¼ M�1(DgDl � VzAB), (17)

where

M ¼ lV2zA + (1 � l)V2zB,

Dg ¼ VzA � VzB,

zll ¼ DgTM�1
Dg,

Vz(rC) ¼ g0[~z(~rC)]V~z(~rC),

V
2z(rC) ¼ g0[~z(~rC)](V

2~z(~rC)) + g0 0[~z(~rC)](V~z(~rC))(V~z(~rC))
T,

V~z(~rC) ¼ OV~rC
~z(~rC),

V
2~z(~rC) ¼ OV~rC

2~z(~rC)O
T,

with O an orthogonal matrix, and V~rC
and V~rC

2 the gradient and

Hessian matrix with respect to ~rC, respectively. Here we also

corrected the typographical errors in ref. 24.

We have found that this NR method is only sufficiently

numerically stable for simulations of superballs with 0.85 # q #

1.7. Therefore, in order to improve the range of stability, we

make the following modifications to the Newton–Raphson steps:

Dl� ¼
Dl$a

maxðjDlj; jDrCjÞ
(18)

Dr�C ¼
DrC$a

maxðjDlj; jDrCjÞ
(19)

where a is a uniform random number in interval [0,1). Essentially

the modification makes the length of Newton–Raphson steps

randomly smaller than unity. This helps to avoid the divergence

of the iterations in the NR procedure around singularities. With

this modification, we have shown that we are able to study

systems of superballs with 0.7 # q # 3.5.

A.2 Free energies and equations of state for hard superballs

In this section, we give the free energies of the fluid phase

(Table 1) and the crystal phases (Table 2) used to construct the

phase diagram in Fig. 3. We also give several equations of state in

Fig. 7 and 8 for the corresponding phases. Note that the exact

value of free energy depends on the unit of length; here we set the

radius of the superball a ¼ 1.

A.3 Finite size scaling for the free energies of hard octahedra

The excess free energy density as a function of 1/N for systems of

hard octahedra in aMinkowski crystal and in a bcc plastic crystal

phase is shown in Fig. 9. After finite-size scaling the Helmholtz

free energy per particle in a Minkowski crystal (f¼ 0.71052) and

Table 2 Helmholtz free energy per particle, F(r0)/NkBT, for the crystal
phases of hard superballs with various shape parameter values q at
density r0 as calculated using the Einstein-integration method. Here fcc,
bcc, and bct are the abbreviations for the face-centered cubic, body-
centered cubic, and body-centered tetragonal crystal phases, respectively.
The C1 crystal is defined in the main text and in ref. 10

q Crystal type N r0a
3 F(r0)/NkBT

0.70000 Plastic bcc 512 0.21200 4.22893
0.70000 Plastic fcc 500 0.21200 4.27468
0.79248 Plastic bcc 512 0.17589 3.80535
0.79248 Plastic fcc 500 0.17589 3.67894
0.85000 Plastic fcc 500 0.17189 4.45765
0.85000 Plastic bcc 432 0.17189 4.84055
0.85000 bct 512 0.20716 11.9065
1.75000 Deformed C1 512 0.11654 9.42461
1.75000 Plastic fcc 500 0.09760 4.54847
2.50000 Deformed C1 512 0.10675 9.58457
2.50000 Plastic fcc 500 0.07700 3.13303
3.00000 Deformed C1 512 0.10522 10.0684
3.00000 Plastic fcc 500 0.07600 3.77605

Fig. 7 Equation of state for cube-like hard superballs with various shape

parameters q. The solid, dashed, and dotted lines indicate the fluid, plastic

fcc, and deformed C1 phases, respectively. P and f denote the pressure

and packing fraction of the system, and v is the volume of a particle. The

color of the lines gives the shape (parameter q) of the particles.

Fig. 8 Equation of state for octahedron-like hard superballs with

various shape parameters q. The solid, dashed, dotted, and dash-dotted

lines indicate the fluid, plastic bcc, plastic fcc, and bct phases, respec-

tively. P and f denote the pressure and packing fraction of the system,

and v is the volume of a particle. The color of the lines gives the shape

(parameter q) of the particles.
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in a bcc plastic-crystal phase (f ¼ 0.5) is 12.349159kBT and

6.22587kBT, respectively. Note that in these calculations we used

the volume of an octahedron as the unit volume.

A.4 Local geometric properties of superballs

To show the geometric properties of a superball as defined in eqn

(1), we derive the local Gaussian curvature of this object. To that

end we parameterize the points (x,y,z) on the surface of a

superball with shape parameter q as

8

<

:

x ¼ jcos 4j
1=q

jcos qj
1=q

$signðcos 4Þ$signðcos qÞ

y ¼ jcos 4j1=qjsin qj1=q$signðcos 4Þ$signðsin qÞ

z ¼ jsin 4j
1=q

$signðsin 4Þ

; (20)

where �p/2 # 4 # p/2 and �p # q # p are the polar and

azimuthal angles, respectively. Then the local Gaussian curva-

ture K at a point (x,y,z) is given by

K ¼
K1

ðK2 þ K3Þ
2
; (21)

where

K1 ¼ (2q � 1)2 cos2+2/q q cos4 4 sin2+2/q q sin2+2/q 4;

K2 ¼ cos2/q q cos2/q 4 sin2/q q sin4 4;

K3 ¼ cos4 4 sin2/q 4(cos2/q q sin4 q + cos4 q sin2/q q),

with 0 # 4 # p/2 and 0 # q # p/2.

One can show by integration that the total Gaussian curvature

of a superball is given by
ðð

jxj2qþjyj2qþjzj2q¼1

K dS ¼ 4p; (22)

which is in agreement with the Gauss–Bonnet theorem. More-

over, as shown in Fig. 10, the distribution of the local curvature

on the surface of a superball has strongly pronounced peaks at

Fig. 10 The distribution of the local Gaussian curvature K on the surface of superballs for various choices of the shape parameter q. Here a ¼ 1 is the

radius of the particle. Red indicates the regions where the particle is (almost) flat and blue indicates the regions with high curvature. Note that our free-

energy calculations predict stable rotator phases for the superballs with q ¼ 0.7, 1.0, 1.375, 1.75, and 2.5.

Fig. 9 Fex/NkBT + ln N/N as a function of 1/N for a system of hard

octahedra in aMinkowski crystal (a) and in a bcc plastic crystal phase (b)

at packing fraction f ¼ 0.71052 and 0.5, respectively.
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the corners of the particle, which suggests that both the flat faces

and the rounding of the corners may play a dominant role in the

way that the phase behavior changes with varying shape

parameter.
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