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We investigate the phase diagram of dirty two-band superconductors. This paper primarily focuses on the

properties and observability of the time-reversal symmetry-breaking s + is superconducting states, which can be

generated in two-band superconductors by interband impurity scattering. We show that such states can appear in

two distinct ways. First, according to a previously discussed scenario, the s + is state can form as an intermediate

phase at the impurity-driven crossover between s± and s++ states. We show that there is a second scenario where

domains of the s + is state exists in the form of an isolated dome inside the s± domain, completely detached from

the transition between s± and s++ states. We demonstrate that in both cases the s + is state generated by impurity

scattering exists in an extremely small interval of impurity concentrations. Although this likely precludes direct

experimental observation of the s + is state formation due to this mechanism, this physics leads to the appearance

of a region inside both the s± and s++ domains with unusual properties due to softening of normal modes.

DOI: 10.1103/PhysRevB.95.024517

I. INTRODUCTION

The physics of unconventional superconductors with mul-
tiple broken symmetries has attracted a lot of attention for a
long time [1]. Of particular interest is the broken time-reversal
symmetry state (BTRSS) which has been proposed to exist
in Sr2RuO4 [2,3] and heavy-fermion compounds [4]. In these
systems the discussed BTRSS is commonly referred to as the
p + ip state by analogy with the chiral A phase of superfluid
3He confined in a thin slab [1,5]. There, the BTRSS appears
in combination with parity breaking.

In multiband systems, a different type of time-reversal
symmetry-breaking state, termed s + is, can appear. It is
fundamentally different from the well-studied p + ip state,
and its principal distinction is that it does not break any crystal
symmetries and thus represents a type of superconducting
state beyond the lattice point group-based classification. Such
states were discussed in a wide range of systems, and
in particular in three-band superconductors with frustrated
interband interactions [6–8].

The s + is states have been predicted to host a broad

range of interesting new phenomena, among which can be

mentioned different massless [9] and “phase-density mixed”

[8,10–12] collective modes, unconventional thermoelectric

properties [13,14], additional mechanisms of damping of the

vortex motion [15], and unconventional magnetic signatures

induced by defects [16,17]. Multiple broken symmetries in

s + is superconductors give rise to several strongly disparate

coherence lengths. This can lead to a state with attractive

intervortex interaction originating in the magnetic field pen-

etration length being smaller than some, and larger than

other coherence lengths [10,18]. Besides vortices, the s + is

state also allows other types of topological excitations that

include domain walls and skyrmions [19–21]. The s + is state

also exhibits complex beyond-mean-field physics with new

fluctuation-induced phases [22–25].

The s + is state can have various microscopic physics

origins. It was recently shown to be generated by quasipar-

ticle scattering in multiband superconductors with repulsive

interaction of electrons in different bands [26,27]. This

mechanism would be rather generic for iron-pnictide super-

conductors, where the pairing is generated by the interband

electron-electron repulsion [28], producing the so-called s±
superconducting state with a sign change between the order-

parameter components in different bands [29,30]. That is, for

two components of order parameter |�i |eiϕi , the state has

ϕ1 = ϕ2 + π in contrast to the s++ state where ϕ1 = ϕ2.

Existence of the s + is state localized near the surface of

a two-band s± superconductor has been investigated in [26],

while it was later proposed that interband impurity scattering

can generate the s + is state in the bulk [27]. It has further

been argued that the disorder-induced transition from s± to

s++ state in two-band superconductors can occur in two

qualitatively different ways. The first one is a crossover without

additional symmetry breaking when the superconducting gap

in one of the bands crosses zero, as a function of impurity

concentration [31]. The second possible scenario involves s±
to s++ state transformation through the intermediate complex

s + is state ϕ1 = ϕ2 + δ with δ �= 0,π [27].

In this paper we calculate phase diagrams of supercon-

ducting states in the presence of interband scattering, and

discuss the basic properties of the emerging BTRSS. We point

out that in general the phase diagrams are quantitatively and

also qualitatively different from the one sketched in [27].

In particular we show that a domain of the s + is state is

not necessarily attached to the s± to s++ crossover line but

under certain conditions arises inside the s± state. We further

analyze, within the framework of microscopic Ginzburg-

Landau expansion, the properties of the transition lines to

the s + is state. Finally, we conclude that in the super-

conductors described by a weak-coupling two-band theory

s + is occupies a very narrow region of the phase diagram

as a function of impurity concentration and temperature.

Thus, in such two-band systems, it is extremely unlikely

to observe the impurity-induced s + is states. However, its

presence on the phase diagram can influence the properties

of the superconducting state in a wider region of the phase

diagram even outside the s + is domain, as we discuss

below.
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The rest of this paper is organized as follows. Section II

introduces the basic framework and briefly discusses the

known properties of impurity-driven s± to s++ crossover in

two-band superconductors. Next, Sec. III presents the numeri-

cally calculated phase diagrams, in several characteristic cases.

Section IV addresses the general mean-field properties of the

s + is transition regions. The mean-field critical behavior at

the s±/s + is and s++/s + is transition lines is discussed in

terms of the Ginzburg-Landau theory in Sec. V, and finally

our conclusions are given in Sec. VI.

II. MICROSCOPIC MODEL

We consider a superconductor with two overlapping bands

at the Fermi level. Within the quasiclassical approximation, the

band parameters characterizing the two different sheets are the

partial densities of states nk , labeled by the band index k =
1,2. The order parameter is determined, using a microscopic

theory formulated in terms of quasiclassical propagators gk

and fk , the normal and anomalous Green’s functions obeying

the normalization condition |fk|2 + g2
k = 1. The system of

Eilenberger equations for a spatially homogeneous two-band

superconductor with impurities reads as [32]

ωnf1 = �1g1 + γ12(g1f2 − g2f1), (1)

ωnf2 = �2g2 + γ21(g2f1 − g1f2), (2)

where ωn = (2n + 1)πT , n ∈ Z are the fermionic Matsubara

frequencies, T is the temperature, and γkk′ are the interband

scattering rates proportional to the impurity concentration.

The components of the order parameter �k = |�k|eiϕk are

determined by the self-consistency equation

�k = 2πT

Nd
∑

n=0

∑

k,k′=1,2

λkk′fk′(ωn) (3)

for the Green’s function and satisfy Eqs. (1) and (2). Here Nd =
	d/(2πT ) is the summation cutoff at Debye frequency 	d .

The diagonal elements λkk of the coupling matrix 
̂ in the self-

consistency equation (3) describe the intraband pairing, while

the interband interaction is determined by the off-diagonal

terms which can be either positive or negative. In the following,

we consider the latter case which corresponds to the interband

repulsion, favoring the sign changing s± state. The interband

coupling parameters and impurity scattering amplitudes satisfy

the symmetry relation [32]

λij = −λJ /ni and γij = njŴ, (4)

where λJ > 0 and n1,2 are the partial densities of states in the

two bands.

In general, the s± state is not favored by the impurity

scattering, which tends to average out the order parameter over

the whole Fermi surface, suppressing the critical temperature.

Still, provided the interband pairing interaction is weak,

superconductivity can be transformed into a s++ state and

survive even in the limit Ŵ ≫ Tc0, characterized by the critical

temperature Tc∞ which reads as [27,28]

ln(Tc0/Tc∞) = n1(w11 + w12) + n2(w22 + w21), (5)

where Tc0 is the critical temperature without interband scat-

tering, ŵ = 
̂−1 − λ−1Î , and λ is the maximal eigenvalue of

the coupling matrix 
̂ with the elements λkk′ . According to

Eq. (5), one can see that the interband interaction λJ should

be sufficiently weak, in order to avoid a drastic suppression of

the critical temperature in the s++ state. To derive the criterion

note that n1w11 + n2w22 > 0, so that the right-hand side of

Eq. (5) is larger than n1w12 + n2w21 = λJ /(λ11λ22). Therefore

in order to have Tc∞ not much smaller than Tc0, we require the

following condition to be fulfilled:

λJ /(λ11λ22) < 1. (6)

Below we study the phase diagrams, given by the formalism

of Eqs. (1)–(3), as functions of T and Ŵ, for various

pairing coefficients λkk′ . The restriction on pairing interactions

[Eq. (6)] will be shown to set up rather strong limitations on

the size of the s + is domains as a function of the effective

impurity concentration Ŵ.

III. PHASE DIAGRAMS

We construct phase diagrams in the plane of parameters

Ŵ,T of a two-band superconductor with interband impurity

scattering. For that purpose, we solve numerically the system

of Eilenberger equations (1) and (2) together with the self-

consistency equation (3), according to the procedure described

in the Appendix. The results are shown in Fig. 1, which

demonstrates the role of impurities on the state properties,

for various representative cases. The different rows in Fig. 1,

respectively, display (A) nearly degenerate bands with λ11 =
0.3, λ22 = 0.29, (B) intermediate band disparity λ11 = 0.3,

λ22 = 0.25, and (C) strong band disparity λ11 = 0.3, λ22 =
0.2. For each of these, the different columns show, respectively,

weak (1), intermediate (2), and strong (3) interband pairing

interactions (as compared to the intraband couplings).

The crossover line between s± and s++ states, indicated by

the thick solid lines in Fig. 1, is associated with the vanishing of

�2 as we choose λ11 > λ22. Everywhere else, both components

of the order parameter remain finite. Figure 2 displays the total

density ̺, defined as ̺2 = |�1|2 + |�2|2, that corresponds to

the various regimes shown in the phase diagrams Fig. 1. The

crossover generically occurs for temperatures close to Tc(Ŵ)

and at lower temperatures the s± and s++ domains in the (Ŵ,T )

phase diagram may be separated by an intermediate s + is

state. When this phase is realized, it shows up as a dome that

extends down to T = 0. As discussed below, in Sec. V, both

the s±/s + is and s++/s + is transition lines are of the second

order, at the mean-field level.

The s + is state is characterized by a relative phase that

differs for zero or π . That possibility can be understood

heuristically in the following way: while the interband pairing

enforces a π phase difference at zero impurities, the impurity

scattering favors a phase difference of zero. As the interband

pairing and impurity scattering favor different values of the

phase locking, the system has to compromise between those

behaviors and it can happen that the optimal phase locking is

neither zero nor π : the s + is state.

In general the s + is dome exists at temperature T < Tc.

However, for nearly degenerate bands it starts very close to

Tc [see Fig. 1(A1)]. As demonstrated in the next section,
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in case of exact degeneracy λ11 = λ22, the transition from

s± to s++ always occurs through the BTRSS domain, which

extends to the T = Tc(Ŵ) curve of the (T ,Ŵ) diagram. In-

creasing the disparity of intraband coupling constant λ11 − λ22

disconnects the s + is dome from the Tc(Ŵ) curve, replacing

it by the crossover line in a certain temperature interval.

For small disparity λ11 − λ22 ≪ λ11 one can show that the

s + is domain starts at T ∗ ∝ Tc[1 + α(λ−1
11 − λ−1

22 )] where

α ∼ 1. This tendency agrees with that shown in the first

column of Fig. 1. Simultaneously with the T ∗ suppression,

the band disparity extends the crossover line down to lower

temperature which finally goes to T = 0 eliminating the

domain of the s + is state attached to the s± → s++ crossover

line.

However, in contrast to the phase diagrams reported in [27],

we show that the s + is state forms under more general

conditions as an isolated dome inside the s± region on the phase

diagram, entirely detached from the s± → s++ crossover line.

This effect is demonstrated in the second column of Fig. 1,

where we take a larger value of the interband coupling in order

to increase the width of the s + is region, to make it more

visible on the diagrams. On the other hand this set of plots

demonstrates the general tendency governing the size of the

BTRS domain which grows with increased interband coupling.

At the same time, however, the critical temperature of the s++
state is exponentially suppressed, according to Eq. (5), so that

basically the relevant values of λ12 are restricted by Eq. (6)

which does not allow increasing significantly the size of the

BTRS domain in the phase diagram.

IV. PROPERTIES OF THE s + i s DOMAIN

The s + is state is formed quite generically in case of nearly

degenerate bands near the impurity-driven s±/s++ crossover.

However, we find that it occupies only a vanishingly small

region of the phase diagrams. In the case of weak interband

pairing, defined according to Eq. (6) as λJ < λ11λ22 (see

first column in Fig. 1), the two lines of second-order phase

transitions s± → s + is and s + is → s++ almost overlap.

There is actually a very narrow region in between that requires

rather extreme fine tuning of material parameters, as can be

seen in a close-up view in Fig. 3.

On the other hand, as can be seen, for example, in the second

column of Fig. 1, it appears that increasing the interband

interaction tends to widen the region where the s + is state

is realized. However, this growth is limited by the strong Tc

suppression at the s±/s++ crossover which sets the upper limit

for λJ [Eq. (6)]. Hence for all possible values of interband

pairing the s + is domain still represents a vanishingly

small region of the phase diagrams. Besides that, the s + is

transition lines go almost parallel to the T axis, and therefore

can be detected only by changing the effective impurity

concentration, which would make it extremely challenging

to realize the s + is states via this mechanism. Note also that

FIG. 1. Phase diagrams of two-band superconductors with interband impurity scattering. These show the values of the lowest-energy-state

relative phase ϕ12 = ϕ2 − ϕ1 between the components of the order parameter, as function of temperature and interband scattering Ŵ. Different

lines show different values of the intraband coupling parameters λ11 and λ22, while different columns correspond to different values of the

interband couplings λ12 and λ21. The green solid line shows the critical temperature of the superconducting phase transition Tc(Ŵ) and the

solid black line shows the zero of �2, that is the crossover between s± and s++ states. In panels A1–A3, B1, B2, and C1, the crossover line is

attached to the s + is dome. In the panel C2, the crossover line is detached from the s + is dome, while in the panel B3 it exists without an

s + is dome.
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FIG. 2. The total density ̺, defined as ̺2 = |�1|2 + |�2|2 in two-band superconductors with interband impurity scattering, as a function of

temperature and interband scattering Ŵ. Different lines show different values of the intraband coupling parameters λ11 and λ22, while different

columns correspond to different values of the interband couplings λ12 and λ21. The green solid line shows Tc(Ŵ) and the solid black line shows

the zero of �2, that is the crossover between s± and s++ states.

increasing the band disparity extends the s±/s++ crossover

line and restricts the impurity-induced s + is state only to

very low temperatures. Below, we study the shape and size

of the s + is domain, in the case of degenerate bands. The

conclusions obtained are still qualitatively correct in case of

moderate band disparities.

FIG. 3. This shows a close-up view of the transition from s±
to s++ with an intermediate s + is phase, at T/Tc0 = 0.3 and for

parameters corresponding to panel B1 in Fig. 1. This demonstrates

that for sufficiently low temperature, in the case of weak interband

pairing, the s + is state is realized as an intermediate state between

s± and s++ regions. However, the width of this region is extremely

narrow.

A. Size of s + i s transition region: The case

of degenerate bands

To give an analytical estimate of the size of the s +
is domain, we consider the simplified case of identical

superconducting bands n1 = n2 so that γ12 = γ21 = γ and

λ11 = λ22 = λ. Under such assumptions, the superconducting

gaps can be chosen in a symmetrical form �1 = �∗
2 = �eiϕ ,

so that f1 = f ∗
2 = f eiα , and g1 = g2 = g. Hence the real and

imaginary parts of the self-consistency equation (3) become

2πT

Nd
∑

n=0

g

ωn

=
1

λ − λJ

, (7)

2πT

Nd
∑

n=0

g

ωn + 2γg
=

1

λ + λJ

. (8)

These equations are simultaneously satisfied in the s + is

phase, while s++ and s± states are described by either Eq. (7)

or Eq. (8), respectively.

The transition lines to the s + is state can be found from

the system Eqs. (7) and (8). First of all, we show that in

the considered case of exactly degenerate bands, the s + is

domain extends up to the critical temperature. Indeed, at T =
Tc, one can put g = 1 so that Eqs. (7) and (8) become the

definitions of the critical temperature for s++ and s± states,

respectively. They are simultaneously satisfied at a single value

for interband impurity scattering, γ ∗, which determines the
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s±/s++ transition. Hence according to Eq. (7), the s + is state

exists at this point when T = Tc(γ ∗).

For arbitrary temperatures T < Tc, the system of Eqs. (7)

and (8) can be solved using an expansion by small parameters

γ /Tc0 ≪ 1 and λJ ≪ 1. The first step is to find the gap

amplitudes �+ and �− in s++ and s± states, respectively,

with the accuracy up to linear order in γ and λJ . For the s++

state we can use the exact expression g = ωn/
√

ω2
n + �2

+. For

the s± one, we find linear corrections for the propagator using

the equation (ωn + 2γg)2(1 − g2) = �2
−g2, which in general

does not have an analytical solution. In this way we obtain that

the s++ and s± gap amplitudes satisfy

2πT

Nd
∑

n=0

1
(

ω2
n + �2

+
)1/2

=
1

λ − λJ

, (9)

2πT

Nd
∑

n=0

[

1
(

ω2
n + �2

−
)1/2

−
2γω2

n
(

ω2
n + �2

−
)2

]

=
1

λ + λJ

. (10)

To find the boundaries of the s + is domain we subtract

Eqs. (7) and (8) from each other to obtain

2πT

Nd
∑

n=0

[

γ+
(

ω2
n + �2

+
) −

2γ 2
+

(

ω2
n + �2

+
)3/2

]

=
λJ

λ2
, (11)

2πT

Nd
∑

n=0

[

γ−
(

ω2
n + �2

−
) +

2γ 2
−
(

�2
− − ω2

n

)

(

ω2
n + �2

−
)5/2

]

=
λJ

λ2
, (12)

where Eqs. (11) and (12) yield the implicit equations γ+ =
γ+(T ) and γ− = γ−(T ) describing the s++/s + is and s±/s +
is transition correspondingly. Here we need to take into

account the terms up to the second order in γ since in the

linear order the transition lines coincide.

The largest width for the s + is domain occurs at low

temperatures T ≪ Tc when we can substitute summation

by Matsubara frequencies 2πT
∑

n =
∫

dω. Hence, from

Eqs. (9) and (10), we obtain the relation between the gap

functions in s++ and s± phases:

ln

(

�+

�−

)

=
π

2

γc

�−
−

2λJ

λ2
. (13)

To the first order in small parameters, Eq. (13) can be

reduced to give the difference δ� = �− − �+ = γπ/2. The

relation (13) holds everywhere in the s± region, where it gives

the dependence of gap function �− = �−(γ ), while the gap

does not depend on γ in the s++ region. Within the same

approximation, Eqs. (11) and (12) yield

π

2

γ+

�+
− 2

γ 2
+

�2
+

=
λJ

λ2
, (14)

π

2

γ−

�−
+

2

3

γ 2
−

�2
−

=
λJ

λ2
. (15)

From the above argument, we conclude that the s + is

domain is located in the vicinity of γc = 2�−λJ /(πλ2), and

the width of the s + is domain δγ = γ+ − γ− is much smaller,

δγ ≪ γc. This can be found by combining Eqs. (14) and (15),

which yield δγ = (0.4/π )γ 2
c /�+, so that

δγ =
�+

20

λ2
J

λ4
. (16)

For the parameters used in Fig. 3 the estimate (16) yields

δŴ = 2δγ ∝ 10−3, which coincides by the order of magnitude

with numerically found values. In general Eq. (16) implies

that the s + is domain is generically narrow for this model of

a two-band superconductor with impurities since its width is

determined by the parameter λ2
J /λ4 which is small according

to the restriction (6).

The characteristic shape of the s + is domain in the plots of

Fig. 1 can be understood considering one of the transition lines,

namely, between s++ and s + is domains. With good accuracy

we can use the first-order-in-γ approximation in Eq. (11),

which yields

γ+

2πT
ψ ′

(

�+

2πT
+

1

2

)

= −
λJ

λ2
, (17)

where ψ(s) is a digamma function satisfying the

relation ψ(s) − ψ(1/2) =
∑∞

n=0[1/(n + 1/2) − 1/(n + s)].

Given that the temperature dependence of the gap �+ =
�+(T ) is determined by the usual gap equation (9), one can

find that Eq. (17) yields only a weak temperature variation

of γ+(T ) which is consistent with the s + is domain being

elongated, almost parallel to the T axis as can be seen in the

first column of Fig. 1.

B. Effect of the band disparity

We have previously shown that, for exactly degenerate

bands, the s + is state extends all the way up to the critical

temperature near the s± to s++ transition. As can be seen

from the numerical plots in Fig. 1, for the case of finite band

disparity, the s + is dome is disconnected from the Tc(Ŵ)

curve. It is instead replaced by a crossover line near the

critical temperature. To describe this effect analytically, let us

derive the equation describing s + is transition lines, assuming

again that the condition (6) is satisfied, so that the interband

scattering amplitudes are small. Here, we are not interested in

the width of the s + is region, so that we implement first-order

expansion in γ12 to obtain from Eqs. (1) and (2)

f1 = �1

g1

ωn

+ (�2 − �1)
γ12g1g2

ω2
n

. (18)

A similar expression for f2 is given by the interchange 1 ↔ 2

in Eq. (18). Substituting Eq. (18) into the self-consistency

equation (3), we find that on both s±/s + is and s++/s + is

transition lines, the following condition is satisfied:

2πT

∞
∑

n=0

g1 − g2

ωn

=
1

λ11

−
1

λ22

, (19)

where we took into account that λ12λ21 ≪ λ11λ22.

The relation (19) implies several properties of the s + is

transition lines. First it is clear that the s + is domain does

not reach Tc, since the condition (19) is not satisfied near

the critical temperature where g1 = g2 = 1. Besides that, near

Tc we can put g2 = 1 and g1 = 1 − �2
1/2ω2

n, to rewrite the
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condition (19) in the simpler form

�2
1 =

8π2T 2
c

7ζ (3)

λ11 − λ22

λ11λ22

, (20)

where ζ (3) = 1.2 is the Riemann zeta function. Provided that

�2
1 ∝ Tc(Tc − T ), it is clear that the s + is states can extend

only up to the threshold temperature T ∗ = Tc[1 + α(λ−1
11 −

λ−1
22 )], where α ∼ 1. When increasing band disparity, the

temperature T ∗ goes down, which agrees with the numerical

results displayed in the first column of Fig. 1.

The second important consequence of Eq. (20) follows

from the fact that the gap amplitudes |�1| are different on

the s± and s++ sides. Therefore the threshold temperature T ∗

is different for the s±/s + is and s++/s + is transition lines.

Consequently the phase diagram featuring the s + is state is in

general not only quantitatively but also qualitatively different

from the plot given in [27]. Namely, the s± to s++ crossover line

is not, in general, attached to the summit of the s + is dome.

Rather, it can attach to an arbitrary point of the line of second

order phase transition that separates the s + is state. This can,

for example, be seen for a zoomed in diagram corresponding

to panel A3 of Fig. 1.

C. Domain of s + i s state inside the s± phase

As previously emphasized, in general, the crossover line

does not attach to the top of the s + is dome. We find that it

rather attaches to a different point belonging to the s + is/s++
transition line. This implies that the s + is state also can occur

away from the s± to s++ crossover. More precisely, as can

be seen in Fig. 4 (corresponding to a zoom on the panel C2

of Fig. 1), the s + is state can show up as a small “isolated

dome” inside the s± region. Such an isolated dome can occur

for rather important band disparity and intermediate values of

the interband impurity scattering. This effect can be understood

as follows. When there is band disparity and impurities, the

crossover line attaches below the summit of the s + is dome.

Moreover, the s + is region is generically pushed to lower

temperatures when increasing band disparity. It can thus occur

that at a certain level of disparity the temperature where the

crossover line attaches to the dome goes to zero and then

the crossover line detaches from the dome, which means that

the s + is dome becomes isolated.

FIG. 4. This displays a close-up view of the “isolated dome” in

panel C2 of Fig. 1. This demonstrates that the s + is state can actually

be disconnected from transition between s± and s++ states.

V. ORDER OF THE PHASE TRANSITIONS IN THE

GINZBURG-LANDAU MODEL

As discussed in the first part of the paper, the s + is state,

although realized, can be extremely challenging to observe due

to the narrowness of the interval in parameter space where this

state can exist. Nonetheless, it is a relevant question to study

the order of the phase transition to the s + is state, that is, if the

phase transition is of the second order, which guarantees that

there appears a divergent coherence length that, in some range

of parameters, should exceed the magnetic field penetration

length as well as other coherence lengths [10,18]. Regimes

with some coherence lengths larger and some smaller than the

magnetic field penetration length feature attractive intervortex

forces that, under some circumstances, may be responsible

for formation of vortex clusters (that kind of regime was

termed type-1.5 superconductivity in [33]). Therefore due to

the divergent behavior of one of the coherence lengths at

the phase transition there may be a range of this state with

anomalous magnetic and transport properties.

To determine the order of the phase transition at the mean-

field level we derive a Ginzburg-Landau free-energy functional

from the microscopic equations. Here we implement the

standard multiband expansion in two small gaps �k = |�k|eiϕk

in the dirty case (note that the multiband expansions in general

are based on assumptions of several small parameters [34]

that are not related to broken symmetries, not to be confused

with the simplest expansion in single small parameter τ =
1 − T/Tc). Justification and validity conditions of multiband

expansions of this kind in several small parameters were

discussed in detail in the clean s-wave case [35]. The potential

terms in such an expansion read as

F =
2

∑

k=1

{

akk|�k|2 +
bkk

2
|�k|4

}

+ 2(a12 + c11|�1|2 + c22|�2|2)|�1||�2| cos ϕ12

+ (b12 + c12 cos 2ϕ12)|�1|2|�2|2. (21)

There, the coefficients akk′ , bkk′ , and ckk′ can be calculated from

the inputs λkk′ , T , and Ŵ of the microscopic self-consistent

equations [27].

We investigate the state properties of the Ginzburg-Landau

theory by minimizing the free energy (21) with respect to

the densities |�k| and the relative phase ϕ12 = ϕ2 − ϕ1. The

relative phase is given by the equation δF/δϕ12 = 0:

(a12 + c11|�1|2 + c22|�2|2)|�1||�2| sin ϕ12

+ c12|�1|2|�2|2 sin 2ϕ12 = 0. (22)

This has different solutions in the different states:

s± : ϕ12 = π, s++ : ϕ12 = 0,

s + is : ϕ12 = ± arccos

(

−
a12 + c11|�1|2 + c22|�2|2

2c12|�1||�2|

)

.

(23)

Note here that the values of the gaps are determined by the

other equations δF
δ|�k | = 0. Figure 5 shows an example of such

a calculation applied to the regime displayed in panel A3

of Fig. 1. In the area where the two-band Ginzburg-Landau
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FIG. 5. Top-left panel shows the phase diagram of two-band

superconductors with interband impurity scattering for parameters

corresponding to the panel A3 in Fig. 1. That is, the values of

intraband coupling parameters are λ11 = 0.3, λ22 = 0.29, and λ12 =
λ21 = −0.1. The top-right panel displays the smallest eigenvalue of

the Hessian matrix of the Ginzburg-Landau free energy. Clearly, it

vanishes at Tc, signaling that the system has a divergent coherence

length at these temperatures and thus the second-order phase

transition between superconducting and normal state. Moreover,

the s + is phase is surrounded by another line with vanishing

smallest eigenvalue, signaling the flatness of the potential and thus

an additional second-order transition from s±/s++ to s + is states.

Note that for the s±/s++ crossover, all eigenvalues remain finite

and the second gap vanishes. The triangle shows the summit of

the s + is dome, where a second eigenvalue vanishes as well. The

bottom-left panel shows the corresponding specific heat, while the

bottom-right panel displays few one-dimensional cross sections of

that plot, corresponding to vertical scans (at a given impurity). There

are clearly two jumps when the vertical lines intersect both the

superconducting phase transition as well as the phase transition from

s± to s + is state.

expansion in small gaps is formally justified, the phase diagram

matches with that obtained within the microscopic theory of

Eqs. (1)–(3).

Now we focus on the properties of the transition lines

between the various phases. For a given state to be stable,

all the eigenvalues of the stability (Hessian) matrix Ĥ must be

positive. The Hessian matrix reads as

Ĥ =

⎛

⎜

⎜

⎝

∂2F

∂2�1

∂2F

∂�1∂�2

∂2F

∂�1∂ϕ12

∂2F

∂�1∂�2

∂2F

∂2�2

∂2F

∂�2∂ϕ12

∂2F

∂�1∂ϕ12

∂2F

∂�2∂ϕ12

∂2F

∂2ϕ12

⎞

⎟

⎟

⎠

(24)

and Hab, where a,b = 1,2,ϕ denotes the entry of the Hessian

that relates to the variations with respect to |�1|, |�2|, and ϕ12,

respectively. Second-order phase transitions are associated

with a divergent coherence length, and, correspondingly, there

should be flatness of the potential in some direction of

parameter space. Mathematically, this can be characterized by

the vanishing of the smallest eigenvalue of the corresponding

Hessian matrix.

By definition, the s + is state is that where both |�1| and

|�2| are nonzero and for which ϕ12 �= 0,π is given by the

equation δF/δϕ12 = 0. Both in the s± and s++ state Hiϕ = 0

(i = 1,2). And thus the contribution of the relative phases

to the stability (Hessian) matrix originates only in Hϕϕ . The

stability of the s± and s++ states thus requires thatHϕϕ|s±,s++
>

0. The transition line to the s + is is thus given by the condition

that Hϕϕ|s±,s++
= 0. Indeed, this is the point where s± and s++

states become unstable and s + is becomes stable. This gives

an additional condition, for the transition line:

(a12 + c11|�1|2 + c22|�2|2)|�1||�2| cos ϕ12

+ 2c12|�1|2|�2|2 cos 2ϕ12 = 0. (25)

The right panel in Fig. 5 displays the smallest eigenvalue

of the Hessian matrix of the Ginzburg-Landau free energy.

Clearly, it vanishes at Tc, which means that there is a divergent

coherence length and thus the standard, at mean-field level,

second-order phase transition between superconducting and

normal state. Moreover, the s + is phase is surrounded by

another line with vanishing smallest eigenvalue signaling the

flatness of potential, and thus a second-order transition and

a divergent coherence length at the transition to the s + is

state. The corresponding behavior of the specific heat C =
−T dS/dT following from Eq. (21) is displayed in the bottom

line of Fig. 5. By contrast the total density does not have a

strong feature at the phase transition (see Fig. 2). Therefore

no dramatic variation of magnetic field penetration length is

expected.

VI. CONCLUSION

We discussed the phase diagram of dirty two-band super-

conductors. Our main interest was to examine the possible oc-

currence of the s + is superconducting state in the mean-field

model. We find that the state exists and appears under more

general circumstances than previously discussed: namely, it

is not necessarily connected to the crossover from the s±
to s++ state but can arise inside the s± phase. However, we

demonstrate that the domain of the s + is state is extremely

small in this model and on a large-scale plot almost shrinks

to a line. For all practical purposes that makes it unobservable

in experiments in materials with this microscopic physics. We

also establish that the phase transitions to the s + is state

are second order on the mean field level. This implies that

near the phase transition there is a divergent length scale

associated with the order-parameter variations, as well as a

related softening of dynamical modes: such as Leggett’s [9]

and “phase-density mixed” collective modes [8,10–12]. We

emphasise that our “nonobservability” results here apply only

for the weak-coupling models of two-band superconductivity

but do not preclude formation of larger areas of s + is states by

other mechanisms such as three-band systems with frustrated

intercomponent interaction.
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APPENDIX: NUMERICAL PROCEDURE

Given a set of microscopic parameters (temperature T ,

interband scattering amplitude Ŵ, and couplings λkk′), the state

is found by solving numerically the Eilenberger equations (1)

and (2), under the condition that |fk|2 + g2
k = 1, together with

the self-consistency equation (3), following the procedure

described below.

First, note that using Eqs. (1) and (2) the anomalous Green’s

functions can be expressed in terms of the normal Green’s

functions, gaps, etc., as
(

f1

f2

)

=
1

w

(

g1(ωn + γ21g1) γ12g1g2

γ21g1g2 g2(ωn + γ12g2)

)(

�1

�2

)

with w = ωn(ωn + γ12g2 + γ21g1). (A1)

This allows one to find expressions for |fk|2, which once

substituted into the normalization condition yields the system

of nonlinear equations for the normal Green’s functions gk , as

w2
(

g2
1 − 1

)

+ g2
1[(ωn + γ21g1)Re(�1) + γ12g2Re(�2)]2

+ g2
1[(ωn + γ21g1)Im(�1) + γ12g2Im(�2)]2 = 0, (A2)

w2
(

g2
2 − 1

)

+ g2
2[(ωn + γ12g2)Re(�2) + γ21g1Re(�1)]2

+ g2
2[(ωn + γ12g2)Im(�2) + γ21g1Im(�1)]2 = 0. (A3)

We choose an optimization method to find g1,2 from Eqs. (A2)

and (A3) based on an objective function F given by

F (g1,g2) = [Eq. (A2)]2 + [Eq. (A3)]2. (A4)

We use a covariance matrix adaptation evolution strategy [36],

which is a stochastic numerical optimization method for

nonlinear or nonconvex problems. As compared to other

algorithms, this can be rather suboptimal, but since it is a

stochastic, gradient-free method, the solution is guaranteed to

be independent of any initial guess.

The anomalous Green’s functions can be reconstructed,

given the solutions gk(ωn) of Eqs. (A2) and (A3), using

Eq. (A1). Finally, the gaps are constructed using the self-

consistency equation (3). This procedure is iterated via a

fixed-point method until the gaps converge according to the

criterion that

√

∑

k |�new
k − �old

k |2 < 10−7.
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