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Advancements in the synthesis of faceted nanoparticles and colloids have spurred interest in the

phase behavior of polyhedral shapes. Regular tetrahedra have attracted particular attention because

they prefer local symmetries that are incompatible with periodicity. Two dense phases of regular

tetrahedra have been reported recently. The densest known tetrahedron packing is achieved in a crys-

tal of triangular bipyramids (dimers) with a packing density of 4000/4671 ≈ 85.63%. In simulation

a dodecagonal quasicrystal is observed; its approximant, with periodic tiling (3.4.32.4), can be com-

pressed to a packing fraction of 85.03%. Here, we show that the quasicrystal approximant is more

stable than the dimer crystal for packing densities below 84% using Monte Carlo computer simu-

lations and free energy calculations. To carry out the free energy calculations, we use a variation

of the Frenkel-Ladd method for anisotropic shapes and thermodynamic integration. The enhanced

stability of the approximant can be attributed to a network substructure, which maximizes the free

volume (and hence the wiggle room) available to the particles and facilitates correlated motion of

particles, which further contributes to entropy and leads to diffusion for packing densities below

65%. The existence of a solid-solid transition between structurally distinct phases not related by

symmetry breaking – the approximant and the dimer crystal – is unusual for hard particle systems.

© 2011 American Institute of Physics. [doi:10.1063/1.3651370]

I. INTRODUCTION

The self-assembly of nanoparticles into ordered struc-

tures is governed by interaction and shape anisotropy.1

Anisotropic particles are capable of stabilizing complex

phases by entropy alone. Such structures can have poten-

tially interesting optical and electrical properties yet to be

fully investigated.2–6 Among anisotropic particles, tetrahedra

are promising for assembling unusual structures because of

their simplicity as well as their lack of inversion symmetry.

When arranged face-to-face, tetrahedra form configurations

with five-fold or icosahedral symmetries that are incompatible

with periodicity. This results in geometric frustration and ren-

ders the assembly of tetrahedra more challenging than assem-

bling other shapes. Various types of nano-tetrahedra have re-

cently been synthesized from noble metals7, 8 and crystalline

silicon.9, 10 Micron-size colloidal tetrahedra made of colloidal

spheres have also been reported.11 In certain cases, these tetra-

hedra may be treated as hard particles.

Particles whose interactions are dominated by repulsion

can be modeled to first approximation as hard particles. Since

all permissible configurations of such systems are of iden-

tical energy, entropic effects govern their phase behavior.

Classic examples of entropy-driven phase transitions are the

isotropic-to-nematic transition for hard thin rods12 and the

crystallization of hard spheres into close-packed structures

upon compression.13 Entropy drives these particles to or-

der, because doing so will increase the number of config-

urations accessible to the system. In other words, the in-

a)Electronic mail: sglotzer@umich.edu.

crease in macroscopic (visible) order is accompanied by an in-

crease in microscopic disorder (the number of microstates).14

The origin of ordering can also be explained by consider-

ing the underlying thermodynamics of hard particle systems.

In the limit of infinite pressure, the Gibbs free energy G = PV

− ST is dominated by the PV term, which means that the dens-

est packing will be ultimately stable at sufficiently high pres-

sures. To date, all known maximally dense packings of hard

shapes are ordered.15

Although the phase behavior of hard spheres has been in-

vestigated extensively,16 many fewer studies have been done

on other hard shapes.17–25 A key feature of the reported phase

diagrams is the occurrence of symmetry-breaking phase tran-

sitions (first and second order) in which the symmetry group

of the high-density phase is a subgroup of the symmetry group

of the low-density phase (see, for example, the phase tran-

sitions in Ref. 25). This means that the compression of the

isotropic fluid results in an increase of structural complexity

by breaking at least one symmetry per transformation. For in-

stance, hard cubes form a cubatic liquid crystal before crys-

tallizing into a simple cubic lattice. In both the liquid crystal

and the cubic crystal the rotational symmetry is broken, while

the translational symmetry is only broken in the crystal and is

present in the cubatic phase.23

The problem of assembling and packing hard tetrahedra

has drawn significant attention over the last few years26–36

and two competing phases have been reported in the high-

density regime. The densest known packing of regular tetra-

hedra is a structurally simple double-triangular bipyramid

crystal with a packing density of φ = 4000/4671 ≈ 85.63%

obtained from analytical construction and supported by

0021-9606/2011/135(19)/194101/10/$30.00 © 2011 American Institute of Physics135, 194101-1
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FIG. 1. Dense packings of tetrahedra proposed by geometric construction

and computer simulation. (a) The densest known tetrahedron packing34 is a

crystal with four particles per unit cell forming two triangular bipyramids

(or “dimers”) shown in green and blue. The unit cell breaks the three-fold

symmetry of the dimers. (b) In simulation, the particles form rings of 12

tetrahedra (red) capped by pentagonal dipyramids (green) together with in-

terstitial tetrahedra (blue). The rings stack in logs, which arrange to form the

vertices of a planar square-triangle tiling. Tilings observed in simulation are

quasiperiodic, but a denser packing is obtained with the periodic (3.4.32.4)

Archimedean tiling, which is an approximant of the quasicrystal.29

numerical simulation.32, 34 It is obtained through optimizing

an earlier monoclinic crystal discovered by Kallus et al.30, 33

We refer to this structure as the dimer crystal throughout this

work since the packing is characterized by pairs of tetrahedra

incorporated into triangular bipyramids (Fig. 1(a)).

Despite its stability in the limit of infinite pressure, sim-

ulations show that the dimer crystal does not form from

the fluid except for systems of 16 or fewer particles.34 In-

stead, a dodecagonal quasicrystal spontaneously assembles

at packing densities close to 50% and above.29 Structurally,

the quasicrystal is significantly more complicated than the

dimer phase; tetrahedra are arranged into rings that are fur-

ther capped with pentagonal dipyramids (PDs). The rings and

PDs are stacked in logs parallel to the ring axis, which in pro-

jection form the vertices of a planar tiling of squares and tri-

angles (Fig. 1(b)). Additional particles – referred to as inter-

stitials – appear in the space between the neighboring logs. It

is noteworthy that the entire structure is a network of inter-

penetrating PDs spanning all particles in the system. A peri-

odic approximant of the quasicrystal, i.e., a crystal approxi-

mating the structure of the quasicrystal on a local level, with

the (3.4.32.4) Archimedean tiling and 82 tetrahedra per unit

cell compresses up to φ = 85.03%, only slightly less dense

than the dimer crystal.29 In this paper we demonstrate that the

approximant is more stable than the dimer crystal up to very

high pressures and that the system prefers the dimer crystal

thermodynamically only at packing densities exceeding 84%.

We carry out a detailed investigation of the phase behav-

ior of hard tetrahedra from the fluid up to the densest packing.

In contrast to previously studied systems of hard particles, the

phase diagram of tetrahedra entails a non-symmetry-breaking

solid-solid transition. We confirm its existence by Monte

Carlo simulation and free energy calculations and discuss the

origin of the transition. The present study complements pre-

vious works on hard tetrahedra which studied some aspects of

the equation of state29, 37, 38 as well as dense packings,33, 34 and

extends those to provide a complete picture of the phase dia-

gram. By comparing the results of self-assembly simulations

to those obtained from free energy calculations, we assess the

likelihood of various candidate phases to be observed both in

simulations and in experiments of hard tetrahedra.

The paper is organized as follows. The simulation meth-

ods as well as technical details of the free energy and free

volume calculations are presented in Sec. II. In Sec. III A, the

thermodynamics of the dimer phase is reported. The thermo-

dynamics of the quasicrystal and its approximant follows in

Sec. III B. The results of free energy calculations are pre-

sented in Sec. III C. A computer experiment in which the

dimer crystal spontaneously transforms into the quasicrystal

at φ = 50% is reported in Sec. III D. The origin of the stability

of the approximant over the dimer crystal at experimentally

realizable densities is discussed in Sec. III E and discussions

and concluding remarks are provided in Sec. IV.

II. METHODS

Simulations of N hard, regular tetrahedra are carried out

in the isochoric (NVT) ensemble and the isobaric (NPT) en-

semble using a Monte Carlo algorithm. Forbidden overlaps

of tetrahedra are determined using the separating axis theo-

rem as explained in detail in Ref. 29. N particle trial moves

are executed per Monte Carlo cycle. Each trial move can be a

trial translation or a trial rotation chosen with equal probabil-

ity. In the isobaric simulations, an additional box trial move

is also performed where the size and shape of the simulation

box are changed. The edge length of a tetrahedron, σ , is cho-

sen as the unit length of the system. The effective pressure P*

= Pσ 3/kBT is measured in dimensionless units. Maximum

steps sizes are adjusted occasionally to allow for a target ac-

ceptance probability of 30% and periodic boundary condi-

tions are applied in all three dimensions.

A. Equation of state

Equations of state, φ(P*), are calculated with isobaric

simulations. Changes in the Gibbs free energy within a sin-

gle phase are obtained via thermodynamic integration:

G2 − G1

NkBT
=

VT

σ 3

∫ P ∗
2

P ∗
1

dp

φ(p)
, (1)

where VT = σ 3
√

2/12 is the volume of a tetrahedron.

Simulations are carried out in the pressure range 50 ≤ P*

≤ 4000 for the dimer crystal (4 × 6 × 6 × 6 = 864 tetrahe-

dra), quasicrystal (8000 tetrahedra) assembled from the fluid

and compressed to a packing density up to 83.36%, and the

approximant (82 × 2 × 2 × 3 = 984 tetrahedra).

B. Pressure estimation

The acceptance probability of trial volume changes is an

estimator of the pressure in Monte Carlo simulations.39 Con-

sider a trial expansion that increases the volume from V to V

+ �V. To fulfill detailed balance, the acceptance probability
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of the volume change is given by the Boltzmann factor,

PB = exp

{

−
P ∗�V

σ 3
+ N ln

(

1 +
�V

V

)}

. (2)

On the other hand, a trial compression that decreases the vol-

ume from V to V − �V is accepted if and only if no over-

lap is generated by the trial volume change. Let PNO be the

probability to generate an overlap in the trial compression.

For small �V and in equilibrium the probabilities are equal,

PNO = PB, and we can solve for the pressure:

P ∗ = lim
�V →0

〈

Nσ 3

�V

[

ln

(

1 +
�V

V

)

−
1

2
ln pNO

]〉

. (3)

Here, pNO = P
2/N

NO is the probability of a single particle not

having any overlap with any other particle after the trial com-

pression that decreases the volume by �V.

C. Free energy calculations

1. Frenkel-Ladd method for anisotropic hard particles

The free energy of a (quasi-)crystal is calculated using

the Frenkel-Ladd method39, 40 by transforming it reversibly

into an Einstein crystal, which serves as a reference struc-

ture with known free energy. In the Einstein crystal, each par-

ticle is tethered to its average lattice position via harmonic

springs. Although originally developed for spherical particles,

this method can be extended to particles with rotational de-

grees of freedom, such as tetrahedra. Additional springs are

needed to tether the orientations of the particles to their av-

erage orientations in the lattice. Alternative extensions of the

Frenkel-Ladd method to systems of particles with rotational

degrees of freedom can be found in the literature.41

We describe the configuration of a tetrahedron by (r, q),

with r being its center of mass position and q being the unit

quaternion describing its orientation. The potential energy of

of the corresponding Einstein crystal can then be expressed as

U (rN , qN )

kBT
=

N
∑

i=1

||ri − ri,0||2

σ 2
+ c

N
∑

i=1

||qi − qi,0||2, (4)

where ri,0 and qi,0 are the reference position and the reference

orientation of the ith particle in the crystal. The constant c al-

lows us to adjust the relative strength of the rotational springs

and does not affect the computed free energy differences. All

the results in this study are obtained using a value of c = 1/2;

we tested that using other values of c does not affect the out-

come of the calculations.

Each system is transformed to the Einstein crystal along

a reversible path parameterized by γ ∈ [0, γmax] using the

isochoric-isothermal (NVT) ensemble and the Hamiltonian:

H(rN , qN ; γ ) = Hhard(rN , qN ) + γU (rN , qN ). (5)

The hard particle system with HamiltonianHhard corresponds

to γ = 0, while in the limit γ → ∞ the Einstein crys-

tal is obtained. In practice, we can stop at a sufficiently

large value of γmax when the springs are strong enough to

suppress any particle collisions. The Helmholtz free energy

difference �A = AEin − Ahard between the reference Einstein

crystal and the hard particle system is given by

�A =
∫ γmax

0

〈

∂H(γ )

∂γ

〉

γ

dγ =
∫ γmax

0

〈U 〉γ dγ. (6)

Note that the Frenkel-Ladd method can only be used if there

is no translational or rotational diffusion in the system; other-

wise the ensemble average 〈U〉γ will not be well-defined for

small values of γ .

In our simulations, the system is held for 2 × 105 Monte

Carlo cycles at each γ value during which 〈U〉γ is evaluated.

The integral in Eq. (6) is then computed numerically. This al-

lows us to determine the Gibbs free energy G = A + PV of the

dimer (D) and the approximant (A) in the range of 250 ≤ P*

≤ 600 where no configurational rearrangements are observed.

The free energy difference �G = GD − GA is extrapolated to

pressures outside this range using thermodynamic integration

in addition to the Frenkel-Ladd method:42

�G(P ∗)

NkBT
=

�G(P ∗
0 )

NkBT
+

VT

σ 3

∫ P ∗

P ∗
0

[

1

φD(p)
−

1

φA(p)

]

dp.

(7)

2. Fluid-solid transition

We determine the melting pressure P ∗
M by calculating the

absolute free energies of the solid and the fluid. For suffi-

ciently large values of γ , the Helmholtz free energy of the

Einstein crystal is given by39

AEin

NkBT
= −

3

2

N − 1

N
ln

π

γ
−

3

2
ln

π

cγ
− ln Nsym

+3
N − 1

N
ln

�

σ
, (8)

where � = h/(2πmkBT)1/2 is the de Broglie wavelength. Nsym

is the number of quaternions corresponding to orientations

that are symmetry-equivalent, which is twice the order of the

rotation group of the particle. The factor 2 arises from the

fact that quaternions are inherently degenerate in describing

the orientation, i.e., q and −q correspond to the same rotation

matrix. For a non-symmetric particle, the rotation group will

have one element (identity) only and Nsym = 2. Here, for tetra-

hedra, the rotation group has twelve elements, so Nsym = 24.

The first and the second terms are configurational contribu-

tions resulting from the translational and rotational springs.

The last term corresponds to momentum contributions due

to translational degrees of freedom. Momentum contributions

due to rotational degrees of freedom are identical for the fluid

and the solid and are, therefore, not included here.

The Gibbs free energy of an ideal gas, which approxi-

mates a real gas in the limit of infinite dilution, is

Gid

NkBT
= ln

P ∗

2π2
+

ln(2πN )

2N
+ 3 ln

�

σ
. (9)

The free energy of the fluid phase is then obtained from ther-

modynamic integration:43

Gfluid(P ∗)

NkBT
=

Gid(P ∗)

NkBT
+

∫ P ∗

0

[

VT /σ 3

φ(p)
−

1

p

]

dp. (10)
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We calculate Gfluid(P ∗) using the equation of state for a sys-

tem of N = 4096 tetrahedra for 0.01 ≤ P* ≤ 60.

3. Finite size effects

To ensure that the system sizes we use are free of finite

size effects, we calculate the Gibbs free energy difference be-

tween the dimer crystal and the approximant �G = GD − GA,

using Eq. (8):

�G(N ) − �G

NkBT
=

3

2

[

1

ND

−
1

NA

]

ln
πσ 2

γmax�2
. (11)

For the particle numbers used in the free energy calculations,

ND = 864, NA = 984, γ max = 4 × 106, and σ/� =
√

2π , the

error in �G is on the order of 10−3kBT, which is negligible

for the present purposes.

D. Free volume calculations

The free volume of a hard sphere is the volume of the

region of space in which the sphere can be moved continu-

ously without overlapping with its neighbors while keeping

all the other particles fixed.44 The definition generalizes to

anisotropic particles with rotational degrees of freedom where

free volume vf is now the volume of the largest subset of con-

figurational space connected to the origin that can be accessed

by a given particle while fixing the positions and orientations

of all other particles:45

vf =
∫

I (r, q)d3rd3q. (12)

Here, I (r, q) is the indicator function of motions (r, q) con-

sisting of a translation by r and a rotation by q and connected

to the origin. I is unity if the particle does not overlap with any

other particle and zero otherwise. Due to the inherent period-

icity of rotational motion, the free volume of an anisotropic

particle has generally a more complicated topology com-

pared to the free volume of a sphere. Here, we calculate free

volumes at high densities where the free volume is simply

connected.

1. Shooting method

We calculate the free volume of a particle using a method

we call the shooting method. Let (u, v) correspond to a unit

vector in the six-dimensional configuration space and sup-

pose that particle i is “shot” in this direction until it hits an-

other particle. The “shooting distance” is the smallest value

of α for which the particle first overlaps with its neighbors

if translated by αu and oriented according to the quaternion

(qi + αv)/||qi + αv||.
A lower bound for the free volume can be obtained by

averaging over a sufficiently large number Ns of shots with

shot distances αj along randomly chosen directions:

vf � lim
Ns→∞

1

Ns

Ns
∑

j=1

π3

6
α6

j . (13)

Here, π3/6 is the volume of the six-dimensional unit sphere.

Note that the periodic topology and the curvature of the six-

dimensional configuration space are ignored, which is accept-

able at high packing densities because ||�q|| ≪ 1.

Equation (13) is a lower bound for concave free volumes,

because shooting only allows access to the parts of the free

volume connected to the origin by a straight line. Non-convex

free volumes can arise from sliding collisions which, how-

ever, become increasingly rare at high packing densities. In

fact, as we will show now for tetrahedra, the shooting method

is accurate for high enough packing densities.

2. Binning method

To estimate the amount of error in the shooting method

introduced by non-convexity, we use the alternative binning

method which corresponds to a Monte Carlo integration of

the free volume. The configuration space of a given particle

is partitioned into Nbins small radial bins of volume V bin. We

perform Nt random ghost trial moves per bin to average out

the orientational degrees of freedom and determine the num-

ber NNO of trial moves not leading to an overlap. Free volume

can then be estimated from

vf �
1

Nt

Nbins
∑

j=1

V bin
j NNO

j . (14)

Binning is much slower than shooting and might overestimate

the free volume, if a trial move discovers an area of configu-

ration space without overlap, but not connected to the original

particle position. We find that the average of the logarithms of

the free volumes calculated from the shooting method and the

binning method agree within a relative error of 10−2 for all

densities φ ≥ 70%.

3. Mean-field approximation

The distribution of free volumes is related to the entropy

of a hard particle system in the mean-field approximation.

If we assume that free volumes of neighboring particles are

uncorrelated, then the partition function of the system is ex-

pressed as Qmf =
∏N

i=1 vf,i and the Helmholtz free energy

as Amf/NkBT = −〈ln vf 〉. The thermodynamically relevant

quantity is therefore the mean-log average of free volumes:

vf,ML := exp〈ln vf 〉, (15)

which will be used in the rest of this study instead of the sim-

ple average 〈vf〉.

III. RESULTS

A. Symmetrization of the dimer packing on
decreasing pressure

We construct the dimer crystal analytically34 and slowly

expand it by reducing the pressure. The crystal remains stable

during the simulation for pressures P* ≥ 60, while at lower

pressures it melts abruptly. No hysteresis is observed in the

equation of state (Fig. 2(a)), if the decompression is stopped

before melting and the system is re-compressed. This suggests
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that the system remains at least in metastable equilibrium over

this range of pressures and densities.

The compressibility κ = (1/φ)(∂φ/∂P*) (Fig. 2(b)) re-

veals a complicated phase behavior, with an anomalous peak

indicative of a second-order phase transition appearing at

around P* = 90. We verify that this is a displacive phase tran-

sition; i.e., it only involves a lattice distortion and the particles

in the lower density phase still remain in dimers. Analyzing

the lengths of the vectors spanning the simulation box and the

angles between them (Figs. 2(c) and 2(d)) indicates that the

transition takes place in two stages. While in the lower density

phase DI (P* < 90) all lengths and angles are equivalent, they

are completely split only in the phase DIII (P* > 220). There

is also an intermediate phase DII (90 < P* < 220) in which

only two of the lengths and angles are still degenerate. The
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FIG. 3. Thermodynamic stability of the dimer crystal. (a) The equation of

state for the dimer crystal, the approximant, and the quasicrystal shows that

the dimer crystal is the densest packing for P* > 700. The approximant is al-

ways denser than the quasicrystal. Error bars are smaller than the size of the

symbols. Insets show the equations of state in the melting region as well as

near P* = 700 where the dimer crystal first becomes denser than the approxi-

mant. (b) The Gibbs free energy difference between the dimer crystal and the

approximant �G/NkBT = (GD − GA)/NkBT calculated using thermodynamic

integration and the Frenkel-Ladd method. The dimer crystal is stable only at

very high pressures.

symmetrization of the lattice therefore follows the sequence:

triclinic (DIII) → monoclinic (DII) → rhombohedral (DI).

It is known that the three-fold symmetry of the dimers

must be broken to achieve optimal bulk packing,33, 34 and we

observe this in the sequence of transitions. We note that DII

was initially reported by Kallus et al. as a candidate for the

densest packing of tetrahedra.33 Its maximum packing den-

sity is only 0.2% lower than the maximum packing density

of DIII, the structure predicted by Chen et al.34 Note also that

the integrated area under the peak is a measure of the differ-

ence in packing densities. This explains the missing peak in

the compressibility for the transition DIII → DII. In contrast,

the difference in maximum packing densities for the transition

DII → DI is much larger, and of the order of a few percent.

B. Comparison of the quasicrystal and its (3.4.32.4)
approximant

The equations of state of the quasicrystal, the approxi-

mant, and the dimer crystal are presented in Fig. 3(a). We

observe that the approximant is not only denser than the qua-

sicrystal at all pressures above the melting transition, it also

melts at lower pressure. These observations together with

Eq. (1) suggest that the quasicrystal is generally less stable

than the approximant.

Further evidence for the stability of the approximant over

the quasicrystal is obtained through constructing higher or-

der approximants, i.e., approximants that have larger unit

cells than the (3.4.32.4) approximant, and comparing their
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a unit cell of 1142 particles) is less dense than the first approximant (with a

82-particle unit cell).

equations of state with the quasicrystal and the approximant.

For this purpose, we construct the second-order approximant

with a unit cell containing 1142 tetrahedra using an inflation

operation46 and compute its equation of state near the transi-

tion region.

As observed in Fig. 4, the second approximant is denser

than the densest quasicrystal that formed in our simulations

but less dense than the first approximant. Neither structure is

expected to have a significant entropic advantage over oth-

ers since tetrahedra experience similar local environments in

all these structures. It is therefore safe to conclude that the

first approximant is more stable than the quasicrystal and the

second approximant because of its higher density. Higher-

order approximants can be constructed similarly using infla-

tion symmetry; however, such approximants will have very

large unit cells with tens of thousands of particles. Based

on the observed trend, we expect higher-order approximants

to become successively less dense but still denser than the

quasicrystal.

The question of comparing the relative thermodynamic

stability of quasicrystals and their approximants plagues

nearly all reports of new quasicrystals in the literature. The

difficulty in obtaining perfect quasicrystals in experiments

and simulations, along with the slow kinetics that would be

involved in the transformation of even an imperfect quasicrys-

tal to any of its approximants, confounds attempts to address

quasicrystal stability. In this spirit, we remark that the qua-

sicrystal configuration used in this study is obtained in sim-

ulation and an ideal, perfect quasicrystal might be slightly

denser. The structure of such an ideal quasicrystal, however,

is unknown. A denser quasicrystal would shift the curve in

Fig. 3(a) slightly upwards, and hence make the quasicrys-

tal thermodynamically more stable than the approximant in

a narrow region close to melting. Based on all evidence, how-

ever, we use the (3.4.32.4) approximant as the most stable

quasicrystal-like structure for free energy and free volume

calculation purposes.

C. Relative thermodynamic stability

The Gibbs free energy difference between the dimer and

the approximant is calculated using the method described in
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can be calculated via the common tangent construction from the Helmholtz

free energies of the approximant (red) and the dimer crystal (blue).

Sec. II C 1. We find that the dimer crystal is stable only for

pressures above P ∗
c = 3780 ± 60 (Fig. 3(b)), while the ap-

proximant is favored below P ∗
c . At the critical pressure, the

approximant and the dimer crystal have packing densities of

(84.0 ± 0.1)% and (84.6 ± 0.1)%, respectively. The transition

densities can be alternatively calculated from the Helmholtz

energy using the common-tangent construction (Fig. 5). P ∗
c is

significantly higher than the melting pressure for the approx-

imant, P ∗
M = 55 ± 1 (Fig. 6), which is determined using the

approach described in Sec. II C 2.

It is noteworthy that the above calculations are based on

the assumption that the dimer crystal of Refs. 32 and 34 is the

densest possible arrangement of hard tetrahedra. Although we

cannot rule out the possibility that an even denser arrange-

ment of tetrahedra that is different from the approximant and

the dimer crystal might exist, our observation that the dimer

crystal is the densest structure that forms in simulations of 16

tetrahedra and fewer32, 34 substantiates this assumption. The

quasicrystal that we are using for comparison with the ap-

proximant has been assembled in simulations from the disor-

dered fluid and therefore contains imperfections. We cannot

rule out that a perfect quasicrystal might be thermodynami-

cally more stable than the approximant at all pressures. If this

was the case, then the transition between the approximant and

the dimer crystal reported above would be substituted by a

transition between the quasicrystal and the dimer crystal in

the phase diagram. Therefore, while such a discovery could
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FIG. 6. Gibbs free energies of the approximant and the fluid close to the

melting transition. The transition occurs at P ∗
M = 55.
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alter certain details of the phase transition, it will not elimi-

nate the existence of a solid-solid phase transition reported in

this work.

D. Dimer-quasicrystal transformation

To compare the relative thermodynamic stability of the

dimer crystal and the quasicrystal in simulation, we set up

a Monte Carlo simulation of a large dimer crystal with 2916

( = 4 × 9 × 9 × 9) tetrahedra in the isochoric ensemble. To fa-

cilitate the transformation, the box dimensions are occasion-

ally distorted in a random direction with the constraint that the

total volume remains unchanged (variable-shape ensemble18).

This distortion allows the system to adjust to arbitrary lattice

symmetries by relaxing shear stresses.

We choose a constant packing density of φ = 50%, be-

cause at this density the quasicrystal is routinely observed

to form spontaneously from the fluid. Structural changes are

detected by counting the number of particles that form PDs

and icosahedra using a shape-matching algorithm;47 icosah-

dral motifs vanish when the quasicrystal forms.29 Addition-

ally, the pressure is determined from the acceptance probabil-

ity of trial volume changes as described in Section II B.17, 48

The pressure shows a sharp spike after 4 million Monte

Carlo cycles accompanying the melting of the dimer crystal

(Fig. 7(a)). The spike quickly decreases to a plateau, which,

after 15–20 million Monte Carlo cycles, relaxes to its equi-

librium value. PDs and icosahedra form as the preferred lo-

cal configurations in the melt (Fig. 7(b)). On the other hand,

in the final solid structure, most particles are members of

PDs and virtually no icosahedra remain. Diffraction images in

Figs. 7(c)–7(f) show that the final solid structure is the do-

decagonal quasicrystal. The fact that the quasicrystal forms in
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FIG. 7. Transformation of the dimer crystal to the dodecagonal quasicrystal

in an isochoric simulation. (a) The pressure first spikes after 4 million Monte

Carlo cycles and then relaxes during the melting of the dimer crystal. Be-

tween 15 and 20 million Monte Carlo cycles, the quasicrystal forms from the

melt. (b) The number of particles arranged in pentagonal dipyramids (PDs) or

icosahedra (ico) increases rapidly during melting. In the quasicrystal essen-

tially all particles form PDs, while icosahedra disappear. Diffraction patterns

confirm the transformation from the dimer crystal (c) to the melt [(d),(e)] and

then to the quasicrystal (f).

the simulation with the melt as an intermediate state confirms

that both the quasicrystal and the melt are thermodynamically

favored over the dimer crystal at the packing density of φ =
50%.

E. Origin of stability of the approximant

To investigate the superior stability of the quasicrystal ap-

proximant compared to the dimer crystal over such a wide

range of densities, we investigate the significance of collec-

tive particle motions by comparing the free energy estimates

obtained from the mean-field approximation introduced in

Sec. II D 3 with the exact free energy differences. We also

analyze the dynamics in the approximant by calculating the

van Hove correlation function49 and visually inspecting the

high-mobility particles50 in our simulations.

1. Free volumes

We calculate the mean-log average of the free volumes

vf,ML of tetrahedra (Eq. (15)) in the approximant, the dimer

crystal, and the quasicrystal using the shooting method de-

scribed in Sec. II D 1. The results are presented in Fig. 8(a).

Whereas particles in the quasicrystal generally have a smaller
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FIG. 8. Relative stability of the dimer crystal, quasicrystal, and quasicrystal

approximant. (a) Up to packing density of 83% the dimer crystal has lower

average free volume per particle. This helps to stabilize the approximant en-

tropically. At high packing densities the dimer crystal should eventually have

the highest average free volume, because its maximally achievable density

is the highest of the three candidate structures. (b) Comparison of the Gibbs

free energy differences between the dimer crystal and the approximant us-

ing the exact Frenkel-Ladd method, the mean-field approximation, and the

cell-model approximations. The transition is predicted with all three methods

even though the critical densities φA (approximant) and φD (dimer crystal)

vary slightly.
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vf,ML than that in the approximant, the curves are shifted

along the abscissa relative to one another by a fixed amount

as indicated with arrows in Fig. 8(a). This implies an identi-

cal thermodynamics for the quasicrystal and the approximant

except for their different maximum packing densities. Indeed,

tetrahedra experience similar local environments in the qua-

sicrystal and its approximant.

In contrast, the mean log free volume of the dimer crys-

tal decays much more slowly with the packing density and

intersects the two other free volume curves. This finding sug-

gests that the approximant relaxes more efficiently during ex-

pansion, creating free volume for the particles more readily.

Note that the packing density where the two curves cross is

considerably below 84%, the density where the approximant

becomes thermodynamically unstable, which underscores the

significance of collective motions of particles in stabilizing

the approximant even at very high densities.

The importance of collective motions may be further in-

ferred by comparing the free energy difference estimated from

a mean-field approximation with the exact value. As shown

in Fig. 8(b), the mean-field approximation underestimates the

stability of the approximant, which indicates that entropic

contributions from collective motions are significant. We sus-

pect that slight rearrangements of particles in the approximant

during expansion also increase its stability at lower packing

densities. This is confirmed by estimating �G from a cell

model approximation. The cell model is similar to the mean-

field approximation except that free volumes are calculated

for a non-equilibrated structure obtained by isotropically ex-

panding the densest packing to a given packing density.45 As

shown in Fig. 8(b), the cell-model approximation underes-

timates the stability of the approximant even more than the

mean-field approximation, which suggests the significance of

small local rearrangements that occur while the structure is

equilibrated after expansion.

2. Dynamics in the approximant

Correlated motions of tetrahedra are observed in long

simulations of both the approximant and the quasicrystal at

all densities. These motions are most apparent at packing

densities below 65% where they give rise to local structural

rearrangements, but they are still present at higher densities

in the form of correlated vibrations of clusters of tetrahe-

dra. The fundamental mechanism through which these re-

arrangements proceed is the rotation of single PDs around

their principal axes by multiples of 72◦. The rounded, disk-

like shape of PDs, compared to tetrahedra with their sharp

corners, allows an easy rotation even in relatively dense

configurations.

The rotation of PDs is confirmed by observing sev-

eral peaks in Gs(r, t), the self-part of the van Hove corre-

lation function,49 which implies that the tetrahedra indeed

move between discrete sites separated by geometric barriers

(Figs. 9(a) and 9(b)). As reported in our earlier work,29 each

tetrahedron in the quasicrystal and the approximant is part of

a spanning network of interpenetrating PDs (that is, PDs that

share a tetrahedron). The locations of the peaks in Gs(r, t) cor-
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FIG. 9. Particle dynamics in the quasicrystal approximant. [(a),(b)] The self-

parts of the van Hove correlation functions at φ = 65% (a) and φ = 50% (b)

show various peaks, which indicates that the particles do not move continu-

ously but have to overcome (geometric) barriers. The peak positions corre-

spond to different levels of nearest neighbor distances in the underlying PD

network. [(c),(d)] The trajectories of particles with the highest mobility are

plotted. At high density, φ = 65% (c), tetrahedra move along the edges of

pentagons. This motion corresponds to rotations of the PDs in log centers.

At intermediate densities, φ = 50% (d), neighboring PDs start to rotate and

the tetrahedra are more mobile. In the infinite time limit the tetrahedra can

diffuse through successive PD rotations.

respond to the characteristic distances of the nearest neighbor

distances in the spanning network.

We observe that not all PDs are equally likely to rotate. At

high densities, the PDs capping the 12-fold rings in the center

of logs (shown in green in Fig. 1(b))29 rotate more frequently

as they are spatially separated from the rest of the structure.

This can be seen in the trajectories of the high-mobility par-

ticles in the approximant at φ = 65% (Fig. 9(c)). Close to

melting, however, rotations involve the full network of neigh-

boring PDs, which allows the particles to diffuse over arbi-

trary distances (Fig. 9(d)). The underlying dynamics is identi-

cal in the quasicrystal. However, the presence of defects leads

to higher mobility in the quasicrystals that form in simulation

as compared with “perfect” quasicrystals. Both the quasicrys-

tal and the approximant exhibit some “liquid-like” behavior

ϕ = 75% ϕ = 80%

(b)(a) ( )( )

FIG. 10. Correlated motion of clusters in a slab of the approximant at (a)

φ = 75% and (b) φ = 80%. Dark arrows correspond to the direction to-

wards which each particle has moved after t = 5 × 107 Monte Carlo cycles;

the length of each arrow is twice the distance the corresponding particle has

travelled. There are several clusters of neighboring tetrahedra moving collec-

tively. A few of these clusters are highlighted in blue. Not surprisingly, the

mobility is higher at φ = 75% as evidenced by longer arrows.
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FIG. 11. Schematic phase diagram of hard tetrahedra summarizing our find-

ings. In thermodynamic equilibrium the Dimer III crystal and the approxi-

mant are stable (middle panel). In compression simulations the approximant

is never observed, and only the quasicrystal forms. If crystallization is sup-

pressed, then a jammed packing with local tetrahedral order forms29, 36 (lower

panel). The transformation of the approximant or quasicrystal directly to and

from the Dimer III crystal is not observed in simulation. Instead, during ex-

pansion the Dimer III crystal transforms into the Dimer II crystal, and then

the Dimer I phase prior to melting to the fluid (upper Panel).

since unlike simple crystals, diffusion can take place in these

systems even in the absence of defects.

At packing densities beyond 65%, PD rotations become

extremely unlikely, but clusters of tetrahedra, including PDs,

can still vibrate collectively. Figures 10(a)and 10(b) show

such correlated motions occurring in a time period of 50 mil-

lion Monte Carlo cycles in a layer of the approximant at φ =
75% and φ = 80%, respectively. The vibrations are extremely

slow, but their existence adds additional entropy to the sys-

tem making the mean-field approximation and the cell model

inaccurate. No dynamics is observed in the dimer crystal.

In general, thermodynamically equivalent local rear-

rangements are a characteristic feature of quasicrystals and

their approximants. The transformation among these takes

place via phason modes.51–53 Elementary excitations are pha-

son flips, which previously have been observed with high-

resolution transmission electron microscopy54 and in simu-

lations of two-dimensional model systems.55

IV. DISCUSSION AND CONCLUSION

In general, one might expect a “simple” structure like the

dimer crystal to form more easily than “complex” structures

like the quasicrystal or its approximant. The observation that

tetrahedra defy this expectation suggests that structural com-

plexity is not always a good indicator of thermodynamic sta-

bility. Indeed, although it has been argued in the literature35

that the dimer crystal first reported in Refs. 32 and 34 and

studied here might be the stable phase even at densities where

the quasicrystal is reproducibly observed (down to densities

of 50%), our free energy calculations demonstrate that the

dimer crystal is, in fact, preferred thermodynamically only

at very high densities (above 84%). On the other hand, in-

sofar as structural complexity increases a system’s entropy,

structurally complex arrangements of hard particles may be

thermodynamically preferred over simpler ones.

Indeed, we have shown that the structural features of the

quasicrystal and the approximant allow for more complex dy-

namics than the dimer crystal at moderate and high densities

as manifested in the behavior of the free volume as a func-

tion of packing density and the collective motions in the form

of PD rotations. The existence of the PD network facilitates

collective particle motions at low densities. Although rear-

rangements become vanishingly unlikely at higher densities,

they appear to contribute additional entropy to the system and

stabilize it over the dimer crystal, in which each particle can

only “rattle” independently in its own cage. Rearrangements

are impossible in the dimer crystal because no rearrangeable

network exists there.

The superior stability of the quasicrystal and its approx-

imant relative to the dimer crystal may also be attributed to

the presence of almost-perfect face-to-face contacts between

tetrahedra. There is a natural tendency for hard polyhedra

to optimize face-to-face contacts at high densities in order

to maximize configurational entropy. For instance, there are

an infinite number of cubic arrangements of hard cubes with

packing fraction one, but among them the simple cubic lattice,

where all cubes are perfectly face-to-face, has the highest en-

tropy and is thermodynamically stable.56

Within the approximant, we observe that face-to-face

contacts between neighboring tetrahedra are nearly perfect in

the sense that the touching faces are not significantly shifted

with respect to one another. This is not true in the dimer crys-

tal where inter-dimer face-to-face contacts are shifted and

therefore not close to being perfect. Abundance of strong

face-to-face contacts makes the PD network more rearrange-

able and collective motions of particles more feasible, which

in turn leads to a higher entropy and superior stability.

We summarize our findings in a schematic phase diagram

in Fig. 11. We note that hard tetrahedra are one of the few

examples of hard particles with two distinct solid phases not

mutually related by symmetry breaking. Our results show that

entropic effects alone are sufficient for inducing highly non-

trivial solid-solid phase transitions.

Not all phase transformations are accessible in simula-

tions on finite time scales. The observation that simulations

only form the quasicrystal but never the approximant sug-

gests that the quasicrystal is kinetically more easily accessible

than the approximant – independent of whether it is thermo-

dynamically preferred or not. This can be attributed to the fact

that the transformation of a dodecagonal quasicrystal to one

of its approximants proceeds through a process called zipper

motion,57 which is extremely slow even in experiment.58 Fur-

thermore, transformation to the dimer crystal at packing den-

sities greater than 84% is not observable in simulations, and

may be unobservable in experiments, due to the extremely

slow kinetics at such high densities.

In conclusion, we have shown that the quasicrystal and its

approximant are thermodynamically favored over the dimer

crystal at all experimentally realizable packing densities. We

also observe a very rich dynamical behavior in the quasicrys-

tal and its approximant induced by rotations of pentagonal

dipyramids within an interconnected network. We have shown
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the significance of collective motions in stabilizing the ap-

proximant for a wide range of packing densities.
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