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We explore theoretically the nonequilibrium photonic phases of an array of coupled cavities in presence

of incoherent driving and dissipation. In particular, we consider a Hubbard model system where each

site is a Kerr nonlinear resonator coupled to a two-level emitter, which is pumped incoherently. Within a

Gutzwiller mean-field approach, we determine the steady-state phase diagram of such a system. We find

that, at a critical value of the intercavity photon hopping rate, a second-order nonequilibrium phase transition

associated with the spontaneous breaking of the U(1) symmetry occurs. The transition from an incompressible

Mott-like photon fluid to a coherent delocalized phase is driven by commensurability effects and not by the

competition between photon hopping and optical nonlinearity. The essence of the mean-field predictions is

corroborated by finite-size simulations obtained with matrix product operators and corner-space renormalization

methods.

DOI: 10.1103/PhysRevA.96.023839

I. INTRODUCTION

Interacting many-particle systems driven away from the

thermodynamic equilibrium exhibit a number of interesting

features in both the classical [1–3] and quantum [4,5]

regimes. Our understanding of such systems is limited by

the fact that nonequilibrium can emerge in a broad variety

of forms, making it difficult to develop a unitary picture. In

contrast, in the equilibrium situation, very general paradigms

allow us to predict the behavior of large ensembles of

particles [6–9].

Nonequilibrium dynamics can be realized both in isolated

quantum systems subject to quench dynamics [10] and in

open systems under the effect of driving and dissipation.

The investigation of nonequilibrium phenomena in extended

open quantum systems is a complex problem: Theoretical

efforts to develop analytical techniques [11,12] and nu-

merical methods [13–18] have been carried out over the

years. Another strategy involves the experimental realiza-

tion of a tunable and well-controllable quantum simulator

[19,20] which mimics the behavior of the real system under

consideration.

The quantum simulation of many-body systems in equi-

librium conditions has been implemented in very different

contexts ranging from ultracold atoms in optical lattices

[21,22] to trapped ions [23]. The impressive experimental

advances of the last decade allowed researchers to extend this

idea to the nonequilibrium realm using Rydberg atoms and

trapped ions [24], exciton-polariton condensates [25], cold

atoms in cavities [26], and arrays of coupled QED cavities

[27,28]. Among them, coupled-cavity arrays are particularly

appealing from the condensed-matter physics perspective

*alberto.biella@univ-paris-diderot.fr

since they allow the simulation of archetypal (interacting)

lattice models under nonequilibrium conditions [29].

The emergence of collective behaviors and critical phe-

nomena in these platforms has attracted increasing interest

over the years. Their phase diagram can be remarkably rich

(see, for example, Refs. [30–38]): Exotic ordering [39] and

phases without an equilibrium counterpart may appear [40].

Very recently, the buildup of quantum correlations and the

peculiar behavior at criticality have begun to be investigated

[41–44]. Like what happened for their equilibrium counterpart,

the possibility to engineer and manipulate complex many-body

states would allow us to study fundamental questions and

obtain deep insight about the nature of phase transitions and

spontaneous out-of-equilibrium ordering.
An important ingredient determining the dynamics in these

systems is the competition between the on-site photon-photon
interaction (mediated by the atoms) and the photon hopping
between neighboring cavities: A large local interaction favors
the formation of states with a fixed number of particles per
site, while a large photon hopping allows delocalization and
enhances the density fluctuations. The early works in the
literature [45–47] explored this physics considering essentially
the case of negligible photon losses. The large number of
studies in this regime clearly showed the striking resemblance
of the thermodynamic phases [46,48–50] as well as of the
critical properties [51–53] to the celebrated Bose-Hubbard
(BH) model (see also the reviews in [29] and references
therein).

However, the unavoidable presence of photon dissipation
and atomic relaxation affects the thermodynamic properties
of these quantum simulators. The dissipative processes are
counteracted by an external (coherent or incoherent) driving
source which makes the long-time dynamics nontrivial: As a
matter of fact, this is determined by the simultaneous interplay
between Hamiltonian dynamics, dissipative processes, and
external driving. As a result, the scenario is considerably
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FIG. 1. A sketch of the considered photonic system, consisting

of a lattice of coupled nonlinear cavities. Each lattice site is a cavity

coupled to a two-level system, which is incoherently pumped at a

rate Ŵp . �R is the coherent coupling rate (vacuum Rabi frequency)

between the cavity mode and the two-level emitter (with frequencies

ωc and ωat , respectively), while U is the photon-photon Kerr on-site

interaction. The coupling with the environment produces incoherent

photon leakage and atomic relaxation at rates Ŵl and γ , respectively.

Photons can hop between neighboring sites at a rate J .

enriched, and the intrinsic nonequilibrium nature of these
platforms emerges in different aspects, ranging from their
dynamical response [54] and transport properties [55,56] to the
steady-state behavior [57–59]. Furthermore, nonequilibrium
effects have been highlighted in single planar cavities, where
complex shapes for the condensate wave function have
been found and explained [60] and interesting dispersions
for the Goldstone mode have been predicted [61]. Even if
the competition between the photon hopping and on-site
nonlinearities always plays an important role, the analogies
with the underlying BH model are, in general, difficult to find.

In this work we study the steady-state phases of an

incoherently driven photonic lattice (see sketch in Fig. 1).

Each site is represented by a lossy nonlinear cavity, where

the photon mode is coupled to a two-level system, which is

pumped incoherently [62,63]. A recent study [64] has shown

that, via a non-Markovian pump scheme based on a reservoir

of two-level systems with engineered spectral features, it

is possible to stabilize Mott-like states of photons in spite

of the losses. However, a nonequilibrium phase diagram is

unknown for this class of systems where a photonic lattice

is incoherently driven. Here we determine the phase diagram

within a Gutzwiller mean-field approach including both pho-

ton modes and two-level systems, showing the emergence of a

second-order phase transition with a U(1) symmetry breaking

from a Mott-like incompressible fluid of light to a coherent

delocalized phase. Our Gutzwiller theoretical predictions are

consistent with finite-size numerical simulations obtained

with two different methods (matrix product operators and

corner-space renormalization).

This paper is organized as follows. In Sec. II we introduce

our model, highlighting the main features of the incoherent

driving scheme. In Sec. III we discuss the steady-state

phase diagram of the system under the Gutzwiller mean-field

approximation. In Sec. III C we go beyond the Gutzwiller

approximation, and we show the signatures of our findings

in cavity arrays, comparing the mean-field results with finite-

size numerical simulations. Finally, in Sec. IV we draw our

conclusions and discuss some future perspectives.

II. THE MODEL

We consider a driven-dissipative BH model for photons in

a d-dimensional array of QED cavities (setting h̄ = 1),

Ĥph =
∑

i

(ωc â
†
i âi + U â

†
i â

†
i âi âi) − J

∑

〈i,j〉

âi â
†
j , (1)

where âi (â
†
i ) are bosonic photon annihilation (creation)

operators associated with the ith cavity of the chain with

natural frequency ωc, which obey the canonical commutation

relations ([âi,â
†
j ] = δij ,[âi,âj ] = 0), J is the hopping rate, and

U sets the scale of the Kerr nonlinearity.

Each cavity is coupled to a two-level emitter which is

pumped incoherently and provides a driving source for the

array. The atomic evolution and the coupling to the cavities

are ruled by

Ĥat = ωat

∑

i

σ̂+
i σ̂−

i ,

(2)
ĤI = �R

∑

i

(â
†
i σ̂

−
i + H.c.),

where σ̂±
i = (σ̂ x

i ± iσ̂
y

i )/2 and {σ̂ α
i | α = x,y,z} are the Pauli

matrices acting on the ith site.

The photon leakage from the cavities, atomic relaxation,

and pumping processes are taken into account by means of a

master equation for the density matrix in the Lindblad form,

ρ̇ = −i[Ĥ ,ρ] + L[ρ], (3)

where Ĥ = Ĥph + Ĥat + ĤI and

L[ρ] =
∑

i

(

Ŵl

2
D[âi ; ρ] +

γ

2
D[σ̂−

i ; ρ] +
Ŵp

2
D[σ̂+

i ; ρ]

)

,

(4)

withD[Ô; ρ] = [2ÔρÔ† − {Ô†Ô,ρ}]. A sketch of the system

is provided in Fig. 1. In what follows we will be interested

in the nonequilibrium steady state (NESS) of this model, as

determined by computing the long-time limit of Eq. (3) ρ(t →
∞) = ρSS .

III. RESULTS

In this section, we present our main results for the steady-

state properties of the considered system obtained by solving

the master equation (3) via several approaches. In Sec. III A,

we first consider the single-cavity case and discuss the photon

number selection mechanism that can be achieved with the

considered incoherent pump scheme for the two-level emitters.

In particular, in the limit of large nonlinearity (hard-core

photons), we provide the exact analytical solution for the

steady-state density matrix. In Sec. III B, we study the many-

cavity case and explore its steady-state phase diagram within

a Gutzwiller mean-field approach. Finally, in Sec. III C we

compare our findings with exact finite-size simulations using

two different techniques.
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FIG. 2. Steady-state observables for a single-cavity system. The

steady-state value of the photon number n, photon number fluctu-

ations 
n, purity P , and one-photon Fock state population �1 are

plotted as a function of the nonlinearity U/Ŵp for different values

of the cavity dissipation rate Ŵl/Ŵp , as indicated in the legend. The

other parameters are ωat = ωc, �R/Ŵp = 10−1, and γ /Ŵp = 10−4.

A. Photon number selection in a single cavity

The eigenvalues of the Hamiltonian in Eq. (1) for J = 0

(labeled by their photon number) are

ωN = Nωc + N (N − 1)U. (5)

This implies that the N → N + 1 transition has a frequency

ωN+1,N = ωc + 2NU . Choosing the emitter transition fre-

quency to be resonant with the N → N + 1 transition (i.e.,

ωat = ωN+1,N ), it is possible to obtain a NESS that is a mixed

state (with no coherences) dominated by the N + 1 photon

state (and the atom in the excited state). While the specific

conditions to obtain this for a generic integer N require a fine

tuning of parameters, as discussed in full detail in [62], the

ones for the N = 1 photon state have the simple form

Ŵ0
em

Ŵl

≫ 1,
Ŵ0

emŴ2
p

Ŵl U 2
≪ 1, (6)

where Ŵ0
em = 4�2

R/Ŵp. We checked this (numerically) focus-

ing on the 0 → 1 transition by solving the single-cavity master

equation via diagonalization of the corresponding Liouvillian.

In the following we will work in units of Ŵp. In Fig. 2 we

show the steady-state value of the photon density n = 〈â†â〉
(where 〈Ô〉 = Tr[ρSSÔ] and Tr[ρSS] = 1) and its variance


n as a function of U/Ŵp for different values of the cavity

dissipation rate Ŵl/Ŵp. Moreover, we also show the purity

of the density matrix P = Tr[(ρSS)2] and the population

�1 = 〈1, ↑|ρSS |1, ↑〉, where |1, ↑〉 denotes the state with

one photon in the cavity mode and the two-level system into

its excited state. As highlighted in the bottom right panel of

Fig. 2, it is possible to prepare the desired Fock state with

arbitrary precision for large enough nonlinearity and small

photon leakage.

When the nonlinearity is large enough to forbid the double

occupation of a lattice site, Eq. (3) can be analytically solved

for the steady state (see Appendix A). At resonance (ωat = ωc)

the photon density reads

n =
4Ŵp�2

R

(Ŵp + γ + Ŵl)
[

Ŵl(Ŵp + γ ) + 4�2
R

] . (7)

Expanding Eq. (7) for a small effective loss-gain ratio η =
Ŵl/Ŵ0

em, we obtain

n =
Ŵp

Ŵtot

−
Ŵp + γ

Ŵtot

η + O(η2), (8)

where Ŵtot = Ŵp + γ + Ŵl . The expression above for the pho-

ton population tells us that, in the regime of large nonlinearity,

it is possible to stabilize in the steady state a single-photon Fock

state for small enough cavity and atomic dissipation rates. The

number of photons fluctuates as


n2 =
Ŵp(γ + Ŵl)

Ŵ2
tot

−
(Ŵp + γ )(Ŵp − γ − Ŵl)

Ŵ2
tot

η + O(η2).

(9)

What we want to do next is to study what the effect of a finite

coupling between neighboring cavities (J 	= 0) is.

B. Gutzwiller phase diagram for cavity lattices

In this section, we consider a lattice of cavities using the

same kind of incoherent driving that we have analyzed for

the single-cavity case. Due to the complexity of the problem,

we perform a Gutzwiller mean-field approximation [58,59]

assuming a factorized ansatz for the global density matrix

ρMF =
⊗

i

ρi, (10)

where ρi is the density matrix of the ith site. Inserting such an

ansatz into Eq. (3) and assuming the translational invariance

(ρi = ρj , ∀ i,j ), we get an effective master equation of the

form

ρ̇i = −i[ĤMF,ρi] + Li[ρi], (11)

where ĤMF = Ĥi + ĤB. Here Ĥi and Li contain all the local

terms of the full Hamiltonian Ĥ and of the superoperator

L [see Eq. (4)], respectively, acting on the ith site. The

term ĤB = −zJ (â
†
i 〈â〉 + H.c.) (where z is the coordination

number of the lattice) takes into account the mean-field

interactions of site i with its neighbors. The steady state

is reached dynamically after integrating Eq. (11) by means

of a fourth-order Runge-Kutta method. The mean field

is computed dynamically 〈â〉(t) = Tr[âρi(t)] and used to

self-consistently evolve ρi(t) until the steady state is reached.

This approach has been proven to be very effective for

determining the phase diagram of the coherently driven

BH model [37,58,59] and similar systems [33] since the

local pumping and decay drastically restrict the range of the

correlations. We therefore expect that the Gutzwiller ansatz

(10) is very suitable for capturing the physics of our system.

In Fig. 3 we show the value of the mean-field order

parameter |〈â〉|, the photon density n, its fluctuations 
n, and

the compressibility K = 
n2/n [65] in the steady state as a

023839-3
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FIG. 3. The order parameter |〈â〉| (top panel) and the number of

photons n, its variance 
n, and the compressibility K (bottom panel)

of the steady state of Eq. (11) as a function of zJ/Ŵp in the hard-core

limit (U/J = +∞). Here Ŵl/Ŵp = γ /Ŵp = 10−3, �R/Ŵp = 10−1,

and ωat = ωc. The dashed vertical line signals the predicted critical

value of J (see Appendix B).

function of the intercavity hopping rate in the hard-core limit

(U/J = +∞). The main findings of the Gutzwiller mean-field

theory can be summarized as follows.

For 0 � J < J HC
c (where J HC

c denotes the critical hopping

rate in the in the hard-core limit), we get a vanishing value

of the mean-field (MF) order parameter |〈â〉| = 0. As a

consequence, each local steady-state density matrix can be

approximately written as

ρSS
i ≃ |1, ↑〉〈1, ↑|. (12)

By construction, a vanishing value of the MF order parameter

forces ρSS
i to be the steady-state solution of the master equation

(3) for a single cavity. However, the short-range coupling

induced by the photon hopping may play an important role.

Consequently, in order to characterize the phase with the

unbroken symmetry it is necessary to go beyond the mean-field

theory. This is done in Sec. III C, where we show that in a

range of zJ/Ŵp compatible with the Gutzwiller prediction

the number of photons remains very close to unity with very

small fluctuations. This Mott-like phase is also characterized

by an (almost) vanishing compressibility K, analogous to what

happens in equilibrium situations [66].

At J = J HC
c , a second-order phase transition takes place.

For J > J HC
c , the system enters a coherent delocalized phase

characterized by the emergence of limit cycles, namely,

〈â〉 = |〈â〉| e−iωLt , (13)

where ωL depends on the system parameters. This transition is

associated with the spontaneous breaking of the U(1) symme-

try possessed by Eq. (3) [67]. The steady-state density matrix

becomes mixed (not shown), and the photonic population feels

the transition: The number of photons starts to be significantly

different from 1, and its fluctuations become relevant. The

transition from a Mott-like to a coherent phase can be measured

by monitoring the behavior of the compressibility, which

becomes finite in the symmetry-broken phase. For large values

of zJ/Ŵp the photon density remains finite, approaching

asymptotically n = 1/2, and the steady-state density matrix

becomes maximally mixed. We also note that the use of

the translationally invariant ansatz (10) imposes that the

condensate appears in the k = 0 mode [68]. This restriction is,

however, fully justified as the pumping conditions chosen for

the numerics of Sec. III C (see Figs. 7 and 8) explicitly favor

condensation into the k = 0 mode.

Further information about the nature of the steady state

can be extracted by looking at the Wigner quasiprobability

distribution

W (α) =
2

π
Tr

[

ρSS
phD̂(α)eiπâ†âD̂†(α)

]

, (14)

where ρSS
ph = Trat [ρ

SS] is the photonic reduced density

matrix, D̂(α) = eαâ†−α∗â is the displacement operator, and the

prefactor ensures that
∫

C
d2α W (α) = 1. As shown in Fig. 4,
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FIG. 4. Contour plot of the steady-state Wigner distribution W (α)

in the Mott-like (top panel) and coherent (bottom panel) phases. Each

contour denotes a variation of 0.05 of the value of W (α). The black

dashed contour encircles the region with W (α) < 0. The parameters

are set as in Fig. 3.
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FIG. 5. Results of the Gutzwiller mean-field stability analysis

in the hard-core regime (U/J = +∞). The yellow area denotes

the region where 〈â〉 = 0 is stable, while the light blue area is the

region where the solution 〈â〉 = 0 is unstable and the symmetry

is broken. When not varying them, we fixed the parameters as

Ŵp = 1, �R = 10−1, Ŵl = γ = 10−3, ωat = ωc. The solid lines are

the predictions for the critical hopping rate given by Eq. (17), which

well approximates the phase boundary in the Ŵ0
em/Ŵl ≫ 1 limit

[see Eq. (16)]. The dashed horizontal lines denote the Ŵ0
em/Ŵl = 1

threshold. The condition Ŵ0
em/Ŵl > 1 is necessary in order to have a

significant population in the symmetry-broken phase.

for 0 � J < J HC
c the steady state is approximately a one-

photon Fock state, and then the Wigner distribution is negative

around α = 0 (see top panel), indicating strong nonclassicality

[69]. For J > J HC
c the U(1) symmetry is spontaneously

broken in the steady state. The Wigner function thus becomes

asymmetric and rotates at a frequency ωL around α = 0

(see bottom panel). Let us note that also in this case W (α)

is negative around α = 0, again indicating the nonclassical

nature of the steady state at a low photon number per site.

The phase transition we observe is not related to the

competition between photon hopping and nonlinearity since

we explored a range of parameters such that the zJ/U ratio

remains very small. Increasing J , we increase the bandwidth

(2zJ ); therefore the photons start to be off resonant with

respect to the incoherent driving source provided by the atoms.

As a consequence, the photons cannot be efficiently pumped

into the array, and their number is no longer commensurate to

the system size. The presence of a significant number of empty

sites allows photons to move along the lattice and to establish

a long-distance coherence. As we will discuss in Sec. III C,

the transition can be characterized also in terms of spatial

correlation functions: It is associated with the appearance

of a long-range order in the first-order coherence function.

Very recently, the transition between a Mott-like regime and a

coherent one driven by the J -U competition was theoretically

investigated in [64] by making use of specifically designed

emission spectra based on a non-Markovian reservoir.

Also for the configuration under examination in the present

work, in spite of its nonequilibrium nature it is possible to trace

an analogy with the phase diagram of the hard-core BH model

at zero temperature [70]. The ground state of this model is a

superfluid (in two dimensions) when the band is not completely

filled (i.e., |μ/J | < z, where μ is the chemical potential).

Here this commensurability-driven transition is extended to

the nonequilibrium realm, and the emergent coherent phase

(|〈a〉| 	= 0) has a mixed nature.

In the hard-core regime, it is also possible to exploit the

single-cavity exact solution to infer the structure of the phase

diagram. In the unbroken symmetry phase (〈â〉 = 0), the MF

master equation (11) always admits a stationary solution which

corresponds to the single-cavity steady state. For certain values

of the parameters such a solution becomes unstable, and

the system approaches a stationary state with 〈â〉 	= 0. The

stability analysis reveals that, for the typical values of the

parameters we are interested in, the single-cavity fixed point

becomes unstable as the hopping rate is increased (see Fig. 5).

The scaling of the instability point with the system parameters

can be estimated by comparing the effective emission rate at

the band boundary with the photon leakage rate,

Ŵ0
em

(Ŵp/2)2

(

ωat − ωc + zJ HC
c

)2 + (Ŵp/2)2
≃ Ŵl . (15)

In the regime where the effective pumping rate dominates over

the photon losses, that is,

Ŵ0
em

Ŵl

=
4�2

R

ŴpŴl

≫ 1, (16)

at resonance (ωat = ωc) we get

zJ HC
c ≃

√

Ŵp

Ŵl

�R. (17)

The prediction of Eq. (17) (solid black lines in Fig. 5) well

reproduces the phase boundaries in the regime (16). The

dashed horizontal lines in Fig. 5 denote the Ŵ0
em/Ŵl = 1

threshold. The lasing condition Ŵ0
em/Ŵl � 1 is necessary to

have a significant population in the symmetry-broken phase.

For the details of the Gutzwiller mean-field stability analysis

see Appendix B.

It is interesting to extend our study considering finite

values of the nonlinearity. In Fig. 6 we show the mean-field

steady-state phase diagram in the U/Ŵp-zJ/Ŵp plane. For

each value of U we explored, we found a critical value of

the tunneling rate Jc(U ) such that for J > Jc(U ) the U(1)

symmetry is spontaneously broken (|〈â〉| 	= 0) and the system

exhibits limit cycles. The value of the critical hopping rate

increases as U is increased, approaching the value predicted in

the hard-core limit zJ HC
c /Ŵp = 1.51 (result of the Gutzwiller

stability analysis).

C. Beyond the Gutzwiller approximation

In this section, we go beyond the Gutzwiller mean-field

approximation employed in Sec. III B and present finite-size

simulations using different numerical methods. The goal is
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Mott-like phase

FIG. 6. Mean-field steady-state phase diagram in the U/Ŵp −
zJ/Ŵp plane. The white area corresponds to the region of the

parameters for which |〈â〉| = 0, while in the dotted region the U (1)

symmetry is spontaneously broken and the steady state exhibits a limit

cycle (|〈â〉| 	= 0). Here γ /Ŵp = Ŵl/Ŵp = 10−2, �R/Ŵp = 10−1, and

ωat = ωc. The dashed vertical line denotes the critical hopping rate

predicted by the Gutzwiller stability analysis zJ HC
c /Ŵp = 1.51.

to show the fate of the phases predicted by the Gutzwiller

mean-field theory. Since the Hilbert space dimension increases

exponentially with the system size, the exact diagonalization of

the full Liouvillian soon becomes impracticable. Numerically,

the present problem is also particularly challenging since there

are several time scales which differ by orders of magnitude (in

particular, the two-level and cavity dissipation rates compared

to the incoherent driving rate). In order to compute the steady

state ρSS of Eq. (3) we use two methods: An algorithm based

on the matrix-product-operator (MPO) formalism [71,72] and

the corner-space renormalization method [16]. The MPO algo-

rithm enables us to simulate relatively large chains of cavities

(up to 20 sites) but is unable to explore the region where

long-range spatial correlations develop (convergence with

respect to the bond dimension was not achieved in that region).

The MPO approach has therefore been used extensively to

investigate the nature of the strongly localized Mott-like phase

in large arrays. The corner-space renormalization approach

allows us to compute the global density matrix with arbitrary

accuracy across the critical region (and therefore can be used

to access information as the entropy of the steady state), but

it is more limited by the system size (we report here results

across the critical region for chains with up to eight sites).

In Fig. 7 we show the average photon density n =
∑M

i=1 〈â†
i âi〉/M , its fluctuations 
n2 =

∑M
i=1 
n2

i /M , and the

compressibility K =
∑M

i=1 
n2
i /(niM) for different system

sizes M as a function of the hopping rate zJ/Ŵp (here z = 2) in

the hard-core limit. In these numerical calculations, we have

chosen a slightly shifted atomic frequency ωat = ωc − zJ .

Under this condition, gain is strongest at the bottom of

the photon band, so that condensation into the k = 0 mode

is explicitly favored from the outset. This ensures that the

spatially homogeneous condensation process that we have

assumed in the mean-field calculation is not disturbed by

mode-competition phenomena between pairs of modes with

opposite wave vectors which display the same gain and

0.4

0.5

0.6

0.7

0.8

0.9

1

n

M=2
M=4
M=8

0

0.05

0.1

0.15

0.2

0.25

Δ
n

2

0.001 0.01 0.1 1 10

z J / Γ
p

0

0.1

0.2

0.3

0.4

K

0.01 0.1 1 10

z J / Γ

0.1

0.2

0.5

S
/M

0.001 0.01 0.1 1 10

z J / Γ
p

0

1

2

3

4

S

FIG. 7. Top: the average photon density n in the steady state

(left panel) and its variance 
n2 (right panel) as a function of

J/Ŵp . Bottom: steady-state value of the compressibility K (left

panel) and of the entropy (right panel) as a function of J/Ŵp in the

hard-core limit (U/J = +∞). The various curves are for different

sizes, as indicated in the legend. The solid horizontal lines are the

single-cavity values (J = 0) of the quantity under consideration.

The dashed vertical lines denote the critical hopping rates predicted

by the Gutzwiller mean-field theory. The parameters are set as

ωat = ωc − zJ , Ŵl/Ŵp = γ /Ŵp = 10−3, �R/Ŵp = 10−1. For the

largest size considered (M = 8), the convergence of the considered

quantities has been achieved with 3000 states in the corner space (the

full Hilbert space has a dimension equal to 48 = 65 536).

could give rise to condensate fragmentation effects [73]. This

fragmentation mechanism was likely the reason for the reduced

coherence numerically found in [63].

We observe that the data collapse on the single-cavity

predictions (J = 0) for J � J HC
c . This result is in agreement

with the findings of the mean-field analysis which predicts

a region where local interactions dominate over cooperative

effects. Such a Mott-like phase (highlighted by the logarithmic

scale) is thus characterized by an almost integer local density

and almost vanishing fluctuations and compressibility. This

means that in this parameter range, the correlations among

different cavities are very small, and cooperative effects are

suppressed. As the photon hopping rate is increased (J �
J HC

c ), the system enters a regime with finite (significant)

local-density fluctuations and, consequently, a large value of

the compressibility. Our numerical results in one-dimensional

systems are consistent with the expectation that in one dimen-

sion a true phase transition to a lasing regime, as predicted

by the Gutzwiller theory, is replaced by a crossover from a

Mott-like phase to a mixture of extended Tonks-Girardeau

states with different numbers of photons [74,75]. We remark

that the hard-core regime forbids the multiple occupation of a

lattice site but allows for the multiple (eventually macroscopic)

occupation of a given k mode of the lattice.

The transition between these two phases is also signaled

by a sharp variation of the entropy of the steady-state density

matrix (S = Tr[ρSS ln(ρSS)], bottom right panel of Fig. 7). As

predicted at the mean-field level, in the Mott-like phases the

system is an almost pure state, while the symmetry-broken

phase has a strongly mixed character. This appears to be
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FIG. 8. Derivative of the entropy with respect to the hopping rate

∂S/∂(zJ/Ŵp) for different system sizes as indicated in the legend.

The dashed vertical line denotes the critical hopping rate predicted

by the Gutzwiller mean-field theory. The other parameters are set as

in Fig. 7.

a common feature of phase transitions in driven-dissipative

lattices [40,44]. In the inset, we show S/M , the entropy

rescaled by the number of cavities. In the Mott-like phase,

where the correlations among the cavities are very weak, the

data referring to different system sizes collapse, indicating the

extensive nature of the entropy. Indeed, when the steady-state

density matrix is factorizable, one gets S = M Ssc, where Ssc

is the single-cavity entropy.

In Fig. 8, we show ∂S/∂(zJ/Ŵp), the derivative of the

entropy with respect to the hopping rate: It displays a

peak that, for the considered range of sizes, becomes more

pronounced and closer to the Gutzwiller mean-field critical

coupling (zJ HC
c /Ŵp = 3.3) as the number of sites is increased.

However, it is expected that for one-dimensional systems in the

thermodynamic limit no divergence of the entropy derivative

occurs since the phase transition predicted by the mean-field

theory should be replaced by a crossover between the two

phases [76,77].

To better understand the buildup of the quantum correla-

tions among the different cavities and to further characterize

the Mott-like phase we also computed the one-body correlation

function in the steady state,

c(i,j ) = 〈â†
i âj 〉. (18)

To do so we exploited an MPO algorithm which allows us

to dynamically reach the steady state for large systems in the

Mott-like regime. In Fig. 9 we show the behavior of c(i,i + r)

for M = 20 as zJ/Ŵp is varied. Since c(i,j ) has an oscillatory

behavior due to the very large nonlinearity, we considered

its absolute value. The one-body correlation function decays

exponentially with the distance

|c(i,i + r)| ∝ e−r/λ, (19)

where the correlation length λ increases as the photon hopping

increases. In particular, it is possible to show that λ scales as

λ ∝
1

|ln(J/Ŵp)|
(20)

in the J/Ŵp ≪ 1 limit. The details of the derivation of Eq. (20)

can be found in Appendix C.
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FIG. 9. Top: spatial decay of the correlation function c(i,i + r)

[as defined in Eq. (18)] with the distance r for M = 20, ωat = ωc

and different values of zJ/Ŵp , as indicated in the legend. Correlators

have been chosen in a symmetric way with respect to the center of

the chain. The other parameters are set as in Fig. 7. Bottom: the

correlation length λ obtained fitting c(i,i + r) with an exponentially

decaying function. The solid line is the scaling predicted by Eq. (20).

For all the values of the parameters considered, convergence has been

achieved with a bond link dimension χ = 50 for the MPO algorithm.

IV. CONCLUSIONS

In this work, we have investigated the steady-state phases

of a photonic lattice in presence of incoherent driving,

dissipation, and strong photon-photon interactions. We have

explored a general model where each lattice site (a nonlinear

Kerr resonator) is coupled to a two-level emitter, which is

pumped incoherently. Via a Gutzwiller decoupling theory,

we have determined the nonequilibrium phase diagram. We

have found that the interplay between on-site interactions,

photon hopping, and driven-dissipative processes lead to a

second-order nonequilibrium phase transition related to the

spontaneous breaking of the U(1) symmetry possessed by the

model. Furthermore, we have shown that such an incoherent

driving scheme allows us to stabilize Mott-like phases of

light characterized by an almost integer local density and

almost vanishing compressibility. The picture predicted by

the Gutzwiller mean field has been validated by numerical

finite-size simulations using matrix product operators and the

corner-space renormalization method. By driving the system

across the critical point, we have characterized the transition

in terms of both one-body correlation functions (which display

long-range order) and the entropy of the system (which
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increases in the symmetry-broken phase). The phase transition

from an (almost) incompressible Mott-like photon fluid to

a coherent delocalized phase is driven by commensurability

effects. The control parameter of this transition can thus

be deduced by comparing the effective emission rate at the

band boundary with the photon leakage rate. The mixed

character of the steady-state density matrix reflects the intrinsic

nonequilibrium nature of the coherent phase. Remarkably,

signatures of the phase transition are present already in small

arrays.

The strongly correlated photon phases proposed here could

be explored by using photonic quantum simulators based

on circuit QED lattices [27]. In particular, in these systems,

thanks to superconducting quantum resonators and Josephson

junctions, it is possible to engineer large Kerr photon-photon

interactions and to tailor the interaction with two-level emitters

[78,79], paving the way to study strongly correlated quantum

fluids of light and nonequilibrium phase transitions. The

incoherent pump scheme we exploit can be implemented by

coherently driving the emitter into a third metastable level

from which it quickly decays into the excited state of the active

transition, thus resulting in an effective incoherent pump [80].

The role of dimensionality, disorder, and criticality in these

nonequilibrium quantum phases are intriguing topics that need

to be explored experimentally and theoretically in the future.
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APPENDIX A: SINGLE-CAVITY SOLUTION

(HARD-CORE LIMIT)

When the nonlinearity is large enough to forbid the double

occupation of a lattice site, one can map the bosonic degree of

freedom into an effective spin,

â → �̂−,
(A1)

â† → �̂+.

In doing so, the single-cavity Hamiltonian becomes

Ĥ =
ωc

2
(�̂z + 1) +

ωa

2
(σ̂ z + 1) +

�R

2
(�̂x σ̂ x + �̂y σ̂ y).

(A2)

In the Heisenberg representation the evolution of a given

operator θ̂ is ruled by

θ̇ = i[Ĥ ,θ̂ ] + L̃[ρ], (A3)

where

L̃[ρ] =
∑

i

(

Ŵl

2
D̃[âi ; ρ] +

γ

2
D̃[σ̂−

i ; ρ] +
Ŵp

2
D̃[σ̂+

i ; ρ]

)

,

(A4)

with D̃[Ô; ρ] = [2Ô†ρÔ − {Ô†Ô,ρ}]. Writing the equation

of motion for 〈�̂α〉, 〈σ̂ α〉, and 〈�̂ασ̂ β〉 (15 equations) and

solving for the stationary state, one always find a single (stable)

solution given by

〈�̂x〉 = 〈�̂y〉 = 〈σ̂ x〉 = 〈σ̂ y〉 = 0,

〈�̂z〉 =
−Ŵl(Ŵp + γ )� + 4�2

R[Ŵ2
p − (γ + Ŵl)

2]

Ŵl(Ŵp + γ )� + 4�2
RŴ2

tot

,

〈σ̂ z〉 =
Ŵl(Ŵp − γ )� + 4�2

R[Ŵ2
p − (γ + Ŵl)

2]

Ŵl(Ŵp + γ )� + 4�2
RŴ2

tot

,

〈�̂x σ̂ z〉 = 〈�̂y σ̂ z〉 = 〈�̂zσ̂ x〉 = 〈�̂zσ̂ y〉 = 0, (A5)

〈�̂x σ̂ x〉 = 〈�̂y σ̂ y〉 =
8ŴpŴl�R
ω

Ŵl(Ŵp + γ )� + 4�2
RŴ2

tot

,

〈�̂x σ̂ y〉 = −〈�̂y σ̂ x〉 = −
4ŴpŴl�RŴtot

Ŵl(Ŵp + γ )� + 4�2
RŴ2

tot

,

〈�̂zσ̂ z〉 =
4�2

R(−Ŵp + γ + Ŵl)
2 − Ŵl(Ŵp − γ )�

Ŵl(Ŵp + γ )� + 4�2
RŴ2

tot

,

where 
ω = ωat − ωc, Ŵtot = Ŵp + γ + Ŵl , and � = Ŵ2
tot +

4
ω2.

APPENDIX B: MEAN-FIELD STABILITY ANALYSIS

(HARD-CORE LIMIT)

At the mean-field level the dynamics in the hard-core

regime is ruled by the master equation (A3), where the

single-cavity Hamiltonian (A2) is replaced by

Ĥ → Ĥ −
zJ

2
(�̂x〈�̂x〉 + �̂y〈�̂y〉). (B1)

The single-cavity steady-state solution (A5) is always a fixed

point of the single-site MF equations with 〈â〉 = 0 (〈�̂x〉 =
〈�̂y〉 = 0) which becomes unstable for certain values of the

parameters and allows the emergence of a phase characterized

by 〈â〉 	= 0. In order to study the stability of this solution we

computed the Jacobian matrix of the MF equations [34,37,58]

evaluated with respect to the single-cavity solution (A5). If the

real part of one of its eigenvalues becomes positive for certain

values of the parameters, then the single-cavity fixed point is

unstable. In Fig. 5 we show the Heaviside step function of

the real part of the most unstable eigenvalue of the Jacobian

�[Re(λu)] as a function of the typical values of the system

parameters. The result is a plot which highlights the stable

(〈â〉 = 0) and unstable (〈â〉 	= 0) regions in yellow and light

blue, respectively.
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APPENDIX C: SPATIAL CORRELATION FUNCTIONS

(HARD-CORE LIMIT IN ONE DIMENSION)

In this appendix we provide a scaling law for the spatial

decay of the one-body correlations in the J/Ŵp ≪ 1 regime by

using an ansatz for the photonic steady-state density matrix in

the hard-core limit. Even if the derivation might at first appear

somewhat heuristic, it will provide a good approximation of

how the correlation length depends on the system parameters

(see Sec. III C). In analogy with the equilibrium physics of

hard-core bosons in one dimension, we suppose that the steady

state is fermionized, i.e., that the photonic density matrix ρ is

diagonal in the fermionic momentum basis, up to a unitary

Jordan-Wigner transformation Û which antisymmetrizes the

bosonic density matrix:

ρF = ÛρBÛ−1, ρF = ⊗k ρF
k . (C1)

The bosonic and fermionic annihilation operators are related

through the unitary relation

âF
j = eiπ(

∑

l<j n̂l )Û âB
j Û−1, (C2)

where the local particle number operator n̂l = n̂
B/F

l is left

unchanged by the antisymmetrization process.

In the simple case of free bosons, the steady-state momen-

tum distribution can be exactly calculated analytically:

n
f b

k =
(

Ŵl

Ŵem(ωc − ǫk)
− 1

)−1

=
{

Ŵl

Ŵ0
em

[(δ̃ + 2ǫk/Ŵp)2 + 1] − 1

}−1

, (C3)

where δ̃ = −2
ω/Ŵp and ǫk = −2J cos(k). So a natural

ansatz for the Fermi nonequilibrium distribution would be

n
ff

k =
{

Ŵl

Ŵ0
em

[(δ̃ + 2ǫk/Ŵp)2 + 1] + 1

}−1

. (C4)

The analytical function

g(z) =
{

Ŵl

Ŵ0
em

[(δ̃ + z)2 + 1] + 1

}−1

(C5)

of the complex variable z can be expanded as

g(z) =
∑

n

αn(z/rc)n, (C6)

where rc is the convergence radius of this power series and αn is

a subexponential function of the variable n, which is dominated

by any geometric function. The convergence radius is given

by the modulus of the complex pole of g(z) which is closest

to the origin z = 0 and thus has the following expression:

rc =
√

1 + δ̃2 + Ŵ0
em/Ŵl .

From the ansatz (C4), it is possible to calculate the

long-range properties of the fermionic one-body correlation

function

cF (j ) =
〈

âF
j â

F †
0

〉

=
∫ π

−π

dk

2π
eikj n

ff

k . (C7)

Exploiting the expansion (C6), we obtain

cF (j ) =
∑

n�j

αn

(

2J

rcŴp

)n ∫ π

−π

dk

2π
eikj cosn(k), (C8)

as the integral on the right side is nonzero only for n � j . In

the limit 2J/(rcŴp) ≪ 1 we can keep only the lowest power

of J in the series expansion, which corresponds to n = j ,

cF (j ) ≃ αj

(

2J

rcŴp

)j ∫ π

−π

dk

2π
eikj cosj (k) (C9)

= αj

(

J

rcŴp

)j

(C10)

= αj e−j/λF , (C11)

where αj is subexponential. The fermionic autocorrelation

thus spatially decays exponentially with a correlation length

λF given by

1/λF = ln

⎛

⎝

Ŵp

√

1 + δ̃2 + Ŵ0
em/Ŵl

J

⎞

⎠ (C12)

and scales as 1/ln(Ŵp/J ) for small J/Ŵp.

The true photonic correlation function is related to the

fermionic one as follows:

c(j ) = 〈âj â
†
0〉 =

〈

âF
j eiπ

∑

0<l<j n̂l â
F †
0

〉

. (C13)

For a vanishing J , the fermionic distribution is nearly

momentum independent, and the particles are thus fully lo-

calized with the uniform spatial density n = 1/(Ŵl/Ŵ0
em + 1).

The correlation function can be thus factorized as c(j ) ≃
〈âF

j â
F †
0 〉

∏

0<l<j 〈eiπn̂l 〉. The local expectation value 〈eiπn̂l 〉 ≃
(1 − Ŵ0

em/Ŵl)/(1 + Ŵ0
em/Ŵl) is positive for hole-dominated

statistics (Ŵ0
em/Ŵl < 1) and negative for particle-dominated

statistics (Ŵ0
em/Ŵl > 1).

The expression for the photonic one-body correlation

function in the J/Ŵp ≪ 1 limit reads

c(j ) ∝ (−1)j e−j/λ (C14)

for particle-dominated statistics. The corresponding correla-

tion length is given by

1/λ = ln

⎛

⎝

∣

∣

∣

∣

∣

∣

1 + Ŵ0
em

Ŵl

1 − Ŵ0
em

Ŵl

∣

∣

∣

∣

∣

∣

Ŵp

√

1 + δ̃2 + Ŵ0
em

Ŵl

J

⎞

⎠. (C15)

It maintains the logarithmic scaling and is slightly shorter than

the fermionic one due to a scrambling induced by sign changes

when crossing intermediary particles.
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