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This is a brief summary of the contemporary understanding of the QCD phase diagram as a
function of temperature T and baryo-chemical potential µB .

1 Introduction

Strong interactions are described by Quantum Chromodynamics (QCD) – a remarkable theory.
QCD is a convincing practical example of the success of the quantum field theory. Asymptotic
freedom allows QCD to be consistent down to arbitrary short distance scale, enabling us to
define the theory completely in terms of the fundamental microscopic degrees of freedom –
quarks and gluons. This fundamental definition is very simple, yet the theory describes a
wide range of phenomena – from the mass spectrum of hadrons to deep-inelastic processes. As
such, QCD should also possess well defined thermodynamic properties. The knowledge of QCD
thermodynamics is essential for the understanding of such natural phenomena as compact stars
and laboratory experiments involving relativistic heavy-ion collisions.

Full analytical treatment of QCD is very difficult. In certain limits, in particular, for large
values of the external thermodynamic parameters temperature T and/or baryo-chemical poten-
tial µB, when thermodynamics is dominated by short-distance QCD dynamics, the theory can
be studied analytically, due to the asymptotic freedom. But the most interesting experimental
region of parameters T and µB is that of order ΛQCD – the intrinsic QCD scale. This makes
first principle lattice approaches, which do not rely on a small coupling expansion, an invaluable
and the most powerful tool in studying QCD thermodynamics.

The full potential of lattice methods is close to being realized as far as the study of QCD
at µB = 0 is concerned. The status of thermodynamics of QCD at non-zero µB is different.
The main impediment to lattice simulations is the notorious sign problem. No method devised
so far is known, or expected, to converge to the correct physical result as the infinite volume
limit is approached at fixed µB 6= 0. However, since the most interesting structure of the QCD
phase diagram (phase transitions and critical points) lie at nonzero µB, any progress in this
direction is especially valuable. Existing lattice methods generically rely on clever extrapolations
from µB = 0. These techniques yield interesting results in the regime of small, but already
experimentally relevant µB.

A contemporary view of the QCD phase diagram is shown in Fig. 1. It is a compilation of
a body of results from model calculations, empirical nuclear physics, as well as first principle
lattice QCD calculations and perturbative calculations in asymptotic regimes.

This report provides an overview of the structure of the QCD phase diagram based on
available theoretical (lattice and model calculations) and phenomenological input.
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Figure 1: The contemporary view of the QCD phase diagram – a semiquantitative sketch.

2 The phase diagram

Thermodynamic properties of a system are most readily expressed in terms of a phase diagram
in the space of thermodynamic parameters – in the case of QCD – as a TµB phase diagram.
Each point on the diagram corresponds to a stable thermodynamic state, characterized by
various thermodynamic functions, such as, e.g., pressure, baryon density, etc. (as well as kinetic
coefficients, e.g., diffusion or viscosity coefficients, or other properties of various correlation
functions).

Static thermodynamic quantities can be derived from the partition function – a Gibbs sum
over eigenstates of QCD Hamiltonian, which can be alternatively expressed as a path integral
in Euclidean space of the exponent of the QCD action.

2.1 Massless quark limit and chiral symmetry argument

In the chiral limit – the idealized limit when 2 lightest quarks, u and d, are taken to be massless,
the Lagrangian of QCD acquires chiral symmetry SU(2)L×SU(2)R, corresponding to SU(2)
flavor rotations of (uL, dL) and (uR, dR) doublets independently. The ground state of QCD
breaks the chiral symmetry spontaneously locking SU(2)L and SU(2)R rotations into a single
vector-like SU(2)V (isospin) symmetry and generating 3 massless Goldstone pseudoscalar bosons
– the pions. The breaking of the chiral symmetry is a non-perturbative phenomenon.

At sufficiently high temperature T ≫ ΛQCD, due to the asymptotic freedom of QCD, per-
turbation theory around the approximation of the gas of free quarks and gluons (quark-gluon
plasma – QGP) should become applicable. In this regime chiral symmetry is not broken. Thus
we must expect a transition from a broken chiral symmetry vacuum state to a chirally symmetric
equilibrium state at some temperature Tc ∼ ΛQCD. The transition is akin to the Curie point in
a ferromagnet – where the rotational O(3) symmetry is restored by thermal fluctuations (chiral
O(4)=SU(2)×SU(2) symmetry in QCD). Thermodynamic functions of QCD must be singular at
the transition point – as always when the transition separates thermodynamic states of different
global symmetry.

Thus, in the massless quark (chiral) limit, the region of broken chiral symmetry on the
TµB phase diagram must be separated from the region of the restored symmetry by a closed
boundary.



2.2 Nf = 2 chiral limit and tricritical point

For two massless quarks the transition can be either second or first order1. As lattice and model
calculations show, both possibilities are realized depending on the value of the strange quark
mass ms and/or the baryo-chemical potential µB.

The point on the chiral phase transition line where the transition changes order is called
tricritical point. The location of this point is one of the unknowns of the QCD phase diagram
with 2 massless quarks. In fact, even the order of the transition at µB = 0, which many older
and recent studies suggest is of the second order is still being questioned (see review 2).

Neither can it be claimed reliably (model or assumption independently) that the transition, if
it begins as a 2nd order at µB = 0, changes to first order at larger µB. However, numerous model
calculations show this is the case. Lattice calculations also support such a picture. Contemporary
understanding of QCD at low T and large µB, recently reviewed in 3, also point at a first order
transition (at low-T , high-µB) from nuclear matter to color-superconducting quark matter phase.

2.3 Physical quark masses and crossover

When the up and down quark masses are set to their observed finite values, the diagram assumes
the shape sketched in Fig. 1. The second order transition line (where there was one) is replaced
by a crossover – the criticality needed for the second order chiral restoration transition requires
tuning chiral symmetry breaking parameters (quark masses) to zero. In the absence of the exact
chiral symmetry (broken by quark masses) the transition from low- to high-temperature phases
of QCD need not proceed through a singularity. Lattice simulations do indeed show that the
transition is a crossover for µB = 0 (most recently and decisively Ref.4, see also Ref.2 for a
review).a Recent terminology for the QCD state near the crossover (T ∼ (1 − 2)Tc) is strongly

coupled quark-gluon plasma (sQGP).

Transport properties of sQGP have attracted considerable attention. For example, generally,
the shear viscosity η is a decreasing function of the coupling strength. The dimensionless ratio
of η/~ to the entropy density s tends to infinity asymptotically far on either side of the crossover
– in dilute hadron gas (T → 0) and in asymptotically free QGP (T → ∞). Near the crossover
η/s should thus be expected to reach a minimum 5. The viscosity can be indirectly determined
in heavy ion collisions by comparing hydrodynamic calculations to experimental data. Such
comparison 6 indeed indicates that the viscosity (per entropy density) of this “crossover liquid”
is relatively small, and plausibly is saturating the lower bound conjectured in Ref. 7.

2.4 Physical quark masses and the critical point

The first order transition line is now ending at a point known as the QCD critical point or end
point.b The end point of a first order line is a critical point of the second order. This is by far
the most common critical phenomenon in condensed matter physics. Most liquids possess such
a singularity, including water. The line which we know as the water boiling transition ends at
pressure p = 218 atm and T = 374◦C in a critical point.

Beside the critical point, the phase diagram of QCD in Fig. 1 has other similarities with the
phase diagram of water. A number of ordered quark matter phases must exist in the low-T high-
µB region, which are akin to many (more than 10) confirmed phases of ice. For asymptotically
large µB, QCD with 3 quark flavors must be in color-flavor locked (CFL) state 8,3.

aThis fact is technically easier to establish than the order of the transition in the chiral limit – taking the
chiral limit is an added difficulty.

bThe QCD critical point is sometimes also referred to as chiral critical point which sets it apart from another
known (nuclear) critical point, the end-point of the transition separating nuclear liquid and gas phases (see Fig. 1).
This point occurs at much lower temperatures O(10MeV ) set by the scale of the nuclear binding energies.



3 Locating the critical point: the sign problem

The critical point is a well-defined singularity on the phase diagram, and it appears as an
attractive theoretical, as well as experimental, target to shoot at. Theoretically, finding the
coordinates (T, µB) of the critical point is a straightforwardly defined task. We need to calculate
the partition function of QCD and find the singularity corresponding to the end of the first order
transition line. But it is easier said than done.

Of course, calculating such a path integral analytically is beyond present reach. Numerical
lattice Monte Carlo simulations is an obvious tool to choose for this task. At zero µB Monte
Carlo method allows us to determine the equation of state of QCD as a function of T (and show
that the transition is a crossover). However, at finite µB the Nature guards its secrets better.

The notorious sign problem has been known to lattice Monte Carlo experts since the early
days of this field. Calculating the partition function using Monte Carlo method hinges on the
fact that the exponent of the Euclidean action SE is a positive-definite function of its variables
(values of the fields on the lattice). This allows one to limit calculation to a relatively small set
of field configurations randomly picked with probability proportional to the value of exp(−SE).

In QCD with µB 6= 0 the Monte Carlo action SMC (playing the role of SE) is complex. With
SMC complex, how does one pick configurations? A number of ways to circumvent the problem
have been tried. For example, using the modulus of exp(−SMC) as a probability measure, or
the value of exp(−SMC) at zero µB, when it is still positive. Unfortunately, none of the methods
can be expected to converge to correct result with the increasing lattice volume V , unless this
limit is accompanied by an exponential exp(const ·V ) increase of the number of configurations,
rendering Monte Carlo technique useless.

In the absence of a reliable first-principle approach model calculations have been the main
source of knowledge about the QCD phase diagram 9,10,11,12,13,14,15,16,17,18. This situation has
began to change recently.

4 Lattice approaches to finding the critical point

This section is devoted to brief (and necessarily incomplete) descriptions of currently developed
lattice methods for reaching out into the TµB plane. For a more comprehensive description of
these methods, as well as other methods not discussed here, the reader may consult the most
up-to-date reviews 19,20 as well as an earlier review by Philipsen 21, which also contain further
references to original papers.

4.1 Reweighting

The first lattice prediction for the location of the critical point was reported by Fodor and Katz
in Ref. 22. The assumption is that, although the problem becomes exponentially difficult as
V → ∞, in practice, one can get a sensible approximation at finite V . In addition, simulations
at finite T might suffer lesser overlap problem because of large thermal fluctuations 23. One can
hope that if the critical point is at a small value of µB, the volume V may not need to be too
large to achieve a reasonable accuracy.

4.2 Imaginary µB and Nf = 3

By the universality argument of Ref. 1, the finite temperature transition is 1st order for mu =
md = ms = 0. By continuity, it must remain 1st order in a finite domain of the msmud plane
(taking mu = md ≡ mud) surrounding the origin – the plot of this domain is known as Columbia
plot24,2. For physical quark masses and µB = 0 the temperature driven transition is a crossover,



which means that the physical point is outside of the 1st order domain in the msmud plot.
Reducing quark masses should pull the point into the 1st order domain.

What happens to the critical point when (ms, mud) is in the 1st order domain? It is still
a singularity of the partition function as a function of µB, but it moves out into the complex
µB plane. More precisely, it moves onto imaginary µB axis. This remarkable fact allows one
to look at (the complex descendant of) the critical point in a direct Monte Carlo simulation –
since there is no sign problem for imaginary µB. This observation is at the core of the method
developed by de Forcrand and Philipsen 25,26.

4.3 Taylor expansion

Taylor expansion in µB is another method to circumvent the sign problem. Derivatives of
pressure (or other thermodynamic quantities) are calculated at µB = 0 and assembled into a
Taylor series expansion to obtain dependence of that quantity on µB

27,28,29

At fixed temperature, the convergence radius of the Taylor expansion in µB is limited by
the nearest singularity in the complex plane of µB. Assuming that at the temperature TE , at
which the critical point (TE , µE) occurs on the phase diagram, this critical point is the nearest
singularity to µB = 0, one could use Taylor expansion to determine µE

27,28,29,19, if TE is known.

Assuming that the radius of convergence µR can be approximated using the first few terms
of the Taylor expansion, the main remaining problem is to determine the value of TE i.e., to
identify at which value of T the complex singularity reaches the real axis in the µB plane. This
question has been addressed using universality arguments, as well as an example random matrix
calculation in Ref30.

5 Scanning QCD phase diagram in heavy ion collisions

Even though the exact location of the critical point is not known to us yet, the available the-
oretical estimates suggest that the point is within the region of the phase diagram probed by
the heavy-ion collision experiments. This raises the possibility to discover this point in such
experiments 31.

It is known empirically that with increasing collision energy,
√

s, the resulting fireballs tend
to freeze out at decreasing values of µB, i.e., decreasing baryon-antibaryon asymmetry. This is
easy to understand, since the amount of generated entropy (heat) grows with

√
s while the net

baryon number is limited by that number in the initial nuclei.

The information about the location of the freezeout point for given experimental conditions
is obtained by measuring the ratios of particle yields (e.g., baryons or antibaryons to pions), and
fitting to a statistical model with T and µB as parameters 32.

As with any critical point, measurement of fluctuations can be used to determine when the
system is in the vicinity of the critical point. By measuring variables sensitive to the proximity
of the critical point as a function of monotonically increasing

√
s of the collision, and observing

non-monotonic dependence, one discovers the critical point31. The values of TµB corresponding
to the freezeout at such a value of

√
s give the coordinates of the critical point.
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