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Abstract: We report on numerical simulations of SU(2) lattice gauge theory with two

flavors of light dynamical quarks in the adjoint of the gauge group. The dynamics of this

theory is thought to be very different from QCD – the theory exhibiting conformal or near

conformal behavior in the infrared. We make a high resolution survey of the phase diagram

of this model in the plane of the bare coupling and quark mass on lattices of size 83×16. Our

simulations reveal a line of first order phase transitions extending from β = 0 to β = βc ∼ 2.0.

For β > βc the phase boundary is no longer first order but continues as the locus of minimum

meson mass. For β > βc we observe the pion and rho masses along the phase boundary to

be light, independent of bare coupling and approximately degenerate. We discuss possible

interpretations of these observations and corresponding continuum limits.
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1. Introduction

Non-abelian gauge theories at zero temperature and matter density can exist in a number of

distinct phases which can be distinguished by the characteristic dependence of the potential

energy on distance for two well separated static sources. These different behaviors of the

potential energy can be accessed by varying the number of colors and the number of flavors

of fermions. The collection of all of these different behaviors, when represented in the flavor-

color space, constitutes the Phase Diagram of the given gauge theory. Up to possible dualities

among different theories it uniquely defines each theory. In [1] the reader will find an up to

date review of all of the possible phases for a generic gauge theory.

Knowing the phase diagram of strongly coupled theories has an immediate impact on the

construction of sensible extensions of the standard model of particle interactions. Dynamical

breaking of the electroweak symmetry is a time-honored example. It is well known that scaled

up versions of QCD [2] are ruled out by electroweak precision data.1

Using fermions in higher dimensional representations of the gauge group opens up many

new phenomenological possibilities [4, 5, 6]. There are, in fact, a number of reasons to

recommend using higher dimensional representations in the underlying dynamics breaking the

electroweak theory: i) The dynamics is generally different from QCD; ii) A near conformal

behavior can be reached for a very low number of fermions naturally reducing the contribution

1The reader will find in [1, 3] an exhaustive review of all of the precision data results from LEP I and II

and how they constrain old and new models of dynamical breaking of the electroweak theory.
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to precision observables [4]; iii) The spectrum of spin one states of these theories leads to

interesting physical processes to be observed at the LHC [7, 8, 9].

An explicit phenomenological realization of this type of model is termed Minimal Walking

Technicolor (MWT) [9] and is based on an SU(2) gauge theory coupled to two flavors of

adjoint quarks. This model is thought to lie close in theory space to theories with non-trivial

infrared fixed points [4, 10]. Indeed it is possible that this theory already exhibits such a fixed

point. In the vicinity of such a zero of the beta-function the coupling constant flows slowly

or walks. Originally such models were introduced to alleviate the flavor changing neutral

current problem for extensions of the technicolor theory needed to give mass to the standard

model fermions [11, 12, 13, 14]. The MWT is thought to achieve such walking behavior with

a minimal number of light (techni)quarks [4]. This is the theory studied numerically in this

paper.

Another recent extension of the standard model which has attracted a great deal of

interest is unparticle physics [15]. One simply couples a new conformal sector to the standard

model. It is natural to identify this sector with a strongly coupled theory featuring an infrared

fixed point. Knowledge of the phase diagram is then essential to provide natural ultraviolet

completions of unparticle models. Making use of the analytic knowledge of the phase diagram

one finds, for example, that it is not easy to construct gauge theories with an infrared fixed

point able to produce spinor-type “unparticle stuff” [1].

It is hence crucial to gain information on the phase diagram of strongly interacting gauge

theories. Lattice methods and computational resources are now mature enough to provide

a “first principles” systematic study of such phase diagrams, with dynamical fermions in

the chiral limit on reasonably large lattices. Investigations of representations other than the

fundamental have just begun [16, 17, 18, 19], significantly extending older work on very small

lattices [20]. Simulation studies of many flavors in the fundamental representation have also

become more active of late [21, 22], extending the results of [23, 24].

In the current work we provide a high resolution scan of the mass/coupling phase diagram

(not to be confused with colors/flavors/representation discussed above) of SU(2) gauge theory

with two (Dirac) flavors of fermions in the adjoint (triplet) representation, using larger lattices

and higher statistics than were utilized in our earlier work [16]. We find clear evidence of a

phase boundary in the two dimensional plane of bare gauge coupling and quark mass. For

β < βc ∼ 2.0 the system undergoes a first order phase transition as this line is crossed. The

latent heat of this transition goes to zero for β → βc while the line continues to larger β as the

locus of minimum meson mass. For β < βc we see evidence for chiral symmetry breaking and

a Goldstone behavior of the pion. Conversely, for β > βc the Goldstone behavior m2
π ∝ mq

disappears in a a novel way as the system is tuned close to the phase boundary, the string

tension in lattice units is so small that we can only bound it from above, and the pion and

rho masses drop quickly to values that are degenerate, within statistical errors.

All this behavior is indicative of a theory that is very different from QCD, or even the

theories with fundamental flavors that have been studied on the lattice. We will describe the

various possible interpretations of the lattice data in the Discussion section at the end of this
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work, but here we would like to highlight the most interesting one: all of the lattice data

that we have obtained is consistent with either a nontrivial infrared fixed point where the

theory becomes conformal, or a theory with an asymptotically free beta function that is very

small for the range of scales accessible on our lattice (i.e., the coupling runs so slowly that

we cannot start at weak coupling and still have access to the confinement scale on lattice of

modest size).

Either way, if this theory were to provide the mechanism of dynamical electroweak sym-

metry breaking, the phenomenology would be radically different from a QCD-like technicolor

scenario, and most likely naive dimensional analysis arguments would not be valid. Thus,

the lattice results that we have obtained are quite exciting from this perspective and warrant

further studies on larger lattices, which are currently in progress.

In the next section we summarize some of the relevant analytical results. We then describe

our lattice model and present our numerical results. Finally, we end with a discussion and

interpretation of what we have found from our Monte Carlo study. A full tabulation of the

meson masses that we have obtained is presented in Appendices A and B.

2. Summary of the Analytical Results

Dynamical fermion lattice simulations of higher dimensional representations are at an ex-

ploratory stage and it is hence useful to compare the results with theoretical expectations

obtained using various analytical methods. To gain insight one can now use, for instance,

the conjectured all-order beta function for nonsupersymmetric gauge theories [10] together

with the constraints from the unitarity of the conformal operators. This method constitutes

a step forward with respect to the older approach based on the truncated Schwinger-Dyson

equation (SD) [25, 26, 27], which is also referred to as the “ladder approximation” in the

literature. In contrast to the ladder approximation, the all-order beta function allows one to

determine the fermion mass anomalous dimension for any strongly coupled gauge theory at

the infrared fixed point. Anomalous dimensions at fixed points are scheme independent since

they represent physical quantities. The analytical phase diagram obtained by this approach,

and a comparison of it to recent lattice results [16, 18, 19, 21, 22], is summarized in [1].

In the ladder approximation the SU(2) theory with two Dirac flavors of adjoint fermions

should be just below the conformal window where the theory develops an infrared fixed

point [4]. In the context of this approximation this means that the anomalous dimension

of the fermion mass exceeds unity. However, according to the all-order beta function, if

the infrared fixed point is actually reached then the anomalous dimension assumes the value

γ = 3/4, where γ = −d lnm/d lnµ and m is the running fermion mass. If we take γ = 1 as

the boundary of the conformal window, the all-order beta function suggests that the SU(2)

model is conformal in the infrared. However, the constraint coming from the unitarity allows

γ to be as large as two before conformality is lost. Thus it is an open question whether or not

a nontrivial infrared fixed point exists. As will be seen, the results of our lattice study suggest
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that this fixed point may exist, though further investigations will be required to strengthen

the case for that conclusion.

It is instructive to compare this theory with the case of the SU(3) gauge theory with two

Dirac fermions in the two index symmetric representation. In “theory space” the previous

gauge theory and the present one are very close, since the adjoint of SU(2) is equivalent to

the two index symmetric representation. Recent lattice results [18] suggest that this theory

may have an infrared fixed point, though more studies are needed here too. We note that

the ladder approximation predicts that this theory is nearly conformal (i.e. walking), and

further away from conformality then the SU(2) theory. Also, if one assumes that the theory

is conformal in the infrared, then the all-order beta function predicts that the anomalous

dimension of the fermion condensate is γ = 1.3, larger than the value of 3/4 that was found

in the SU(2) case above. If it is true that SU(3) has an infrared fixed point, it follows that

the SU(2) theory also has an infrared fixed point, since the screening due to fermions is even

greater in the latter case.

As an aside, we note that it is quite interesting that for SU(3) the anomalous dimension

γ is larger than unity. If true, this would be quite an important result, since large anomalous

dimensions are needed when constructing extended technicolor models that are able to account

for the heavy quark masses, as noted in [1]. If the preliminary indications of γ > 1 hold up

to further scrutiny, it would overturn the common lore—but no rigorous theorem—regarding

the anomalous dimension of the “quark” bilinear operator.

Other interesting cases to consider are those with eight and twelve Dirac fermions in the

fundamental representation of SU(3). The all-order beta function predicts that the conformal

window cannot be achieved for a number of flavors less then 8.25 (really, nine once the integer

constraint is imposed) for the fundamental representation of SU(3). This is confirmed by the

latest lattice results [21, 22]. In that work it was also suggested that the theory with twelve

flavors has an infrared fixed point. The prediction of the anomalous dimension of the quark

mass operator is then γ = 3
4 . Amusingly this theory has the same anomalous dimension as the

SU(2) two adjoint flavor theory that we study here (assuming they both possess an infrared

fixed point).

3. Lattice Implementation

3.1 Action and simulation algorithm

The lattice action we employ consists of the usual Wilson plaquette term

SG = −
β

2

∑

x

∑

µ>ν

ReTr
(

Uµ(x)Uν(x+ µ̂)U †
µ(x+ ν̂)U †

ν (x)
)

, (3.1)

with the link matrices Uµ(x) in the fundamental representation of SU(2), together with the
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Wilson action for two Dirac fermions in the adjoint representation:

SF = −
1

2

∑

x

∑

µ

ψ(x)
(

Vµ(x) (I − γµ)ψ(x+ µ) + V T
µ (x− µ) (I + γµ)ψ(x− µ)

)

(3.2)

+
∑

x

(m+ 4)
∑

x

ψ(x)ψ(x) . (3.3)

Here adjoint links Vµ(x) are used, which are related to the fundamental links by

V ab
µ (x) =

1

2
Tr

(

σaUµ(x)σbU †
µ(x)

)

, (3.4)

with σa, a = 1, 2, 3 the usual Pauli matrices.

We have simulated this theory over a range of gauge couplings β = 1.5 − 3.0 and bare

quark masses m ranging from −2.0 < m < 0.5 on 83 × 16 lattices using the usual Hybrid

Monte Carlo algorithm [28]. Typically we have generated between 400 − 2000 τ = 1 HMC

trajectories. Antiperiodic boundary conditions were used for the fermions in the time direction

(in order to ameliorate problems with exceptional configurations at the for small quark mass),

whereas all other boundary conditions are periodic.

All simuluations were run on the IBM BlueGene/L SUR machine at Rensselaer over a

period of four months. The simulation software used is a recent, BlueGene/L architecture-

specific version of the Columbia Physics System, modified such that SU(2) with any number

of adjoint (Wilson or domain wall) fermions can be studied. The code has been validated by

reproducing the results of [29] for the case of pure super-Yang-Mills. Indeed, the software was

developed for a large-scale follow-up study of pure super-Yang-Mills that is in progress [30].

The average compute rate was 70 Gflop/s, on a 128 node partition of the BlueGene/L.

3.2 Meson operators

We estimate the hadron masses by suitable fits to corresponding time sliced averaged corre-

lation functions

GO(t) =
∑

x,y

< ψ(x, t)ΓOψ(x, t)ψ(y, 0)ΓOψ(y, 0) > (3.5)

where ΓO = γ5 for the pion and ΓO = γµ, µ = 1, 2, 3 for the rho (the latter being averaged over

spatial directions µ). Errors are estimated by a jackknife procedure in which fits are made

to the meson correlators using subsets of the data, the mean and deviation of the resulting

mass distribution yielding a mean meson mass and error.

3.3 String tension

We estimate the string tension as a function of lattice scale R from the large distance asymp-

totic behavior of the Creutz ratio [31]

χ(R,R) = − ln
W (R,R)W (R− 1, R − 1)

W (R,R− 1)W (R − 1, R)
∼ σa2. (3.6)
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Here W (R,R′) is the expectation value of the R×R′ Wilson loop and a is the lattice spacing.

The asymptotic behavior on the r.h.s. of (3.6) assumes an area law for the Wilson loops. In

practice one looks for the Creutz ratios χ(R,R) to coalesce on an envelope where the area

law becomes dominant. This occurs for Ra of order or larger than the scale of confinement

ℓc = 1/Λ, where Λ is the usual dynamical scale of an asymptotically free gauge theory.

In the chiral limit where the fermions are massless, the lattice spacing is a function of the

bare lattice coupling β = 4/g2, through a ∼ Λ−1 exp(−2π2β/b) where b is the 1-loop beta

function coefficient. (Of course this estimate can be improved with high loop results, as

has been considered in [17].) Thus since σ and Λ are physical scales, one expects to see an

exponentially decreasing envelope for the Creutz ratios. Away from the chiral limit, there is

a threshold mass above which the running of the coupling is altered. In that case one would

have a = a(β,m), where m is the bare fermion mass. Finally, we should note that since we use

fundamental links in the Wilson loops, they are not screened by the adjoint fermions, and an

area law emerges at scales Ra > ℓc, provided the theory is asymptotically free. On the other

hand, if the theory has a nontrivial infrared fixed point, the only scale available is the finite

extent of the lattice, L3 × T (here, dimensionless quantities). One would therefore expect to

see that the Creutz ratio behavior depends strongly on L, T , in contrast to what happens in

the confining case where for σa2L2 and σa2T 2 very large the results become independent of

L, T .

4. Results

Our results were obtained as a series of bare Wilson fermion mass scans, at fixed bare gauge

coupling β = 4/g2. Perhaps the simplest observable to consider is the expectation value

of the plaquette or action. Fig. 1 shows a series of scans in the “quark” mass for different

values of β. (In what follows we will often refer to the elementary fermions as “quarks” and

composite states as “pions”, “rhos”, etc. Of course this is only by way of analogy, and we could

alternatively prefix these names with “techni-”.) Notice the appearance of a discontinuity for

small β < βc ∼ 2.0. The data indicates that a line of first order phase transitions exists

for small β. Further support for this conclusion comes from the latent heat, as measured by

the jump in the plaquette and displayed in Fig. 2. It appears to vanish as β → βc ∼ 2.0.

Beyond βc we observe that the phase boundary continues as the locus of minimum pion and

rho meson mass. The natural conclusion is that βc ≈ 2 is a second order end-point for the

line of first order transitions. In Section 5 we will interpret the first order behavior across the

phase boundary, at β < βc, as corresponding to a bulk phase transition in the effective SU(2)

gauge theory, in accordance with the well-known combined fundamental/adjoint plaquette

action phase diagram [32, 33].

In Fig. 3 we illustrate the behavior of the rho mass mρa by plotting it as a function

of the bare Wilson fermion mass ma at three representative points in the phase diagram:

β = 1.5, β = 2.0 and β = 2.5. (The full set of rho mass results from our studies is tabulated

in Appendix B.) The region of quark mass to the left of the minimum corresponds to an
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Figure 1: Plaquette expectation values as a function of the bare fermion mass, along lines of constant

lattice gauge coupling β = 4/g2. It can be seen that βc ≈ 2 marks a transition, below which a first

order phase transition is seen as the quark mass is varied. We therefore find that close to the phase

boundary, βc corresponds corresponds to a “bulk” transition, below which only a lattice phase exists.

This can be understood in terms of the dynamical generation of an effective adjoint plaquette term

in the gauge action, due to the radiative effects of nearly massless adjoint “quarks.” Of course, for

masses far enough away from the critical value the renormalization of the gauge action is relatively

small and the adjoint term will not lead to a bulk transition.

Aoki phase [34], except that here it is for adjoint Wilson fermions, which was recently studied

in [17]2 . In the case of β ≥ 2, as one approaches the minimum meson mass from above, there

is a rapid drop in mρ that is inconsistent with a simple linear variation with bare quark mass

mρ ∝ m−mc, as one would see in QCD, or in the case of two fundamental flavors observed

in [16] (cf. Fig. 5 of that reference). The data corresponds instead to a form

mρ ∼ (m−mc)
1/(1−ǫ), 0 < ǫ < 1. (4.1)

Similar results are obtained for the pion, illustrated for same three values of β in Fig. 4

below. (A full tabulation of pion masses is given in Appendix A.) The figure shows the

(mπa)
2 as a function of the bare quark mass ma, so it is important to keep in mind that the

dependence of the lattice spacing on β,m also enters into the plot. There is clear evidence of

a linear Goldstone dependence at strong coupling consistent with chiral symmetry breaking

for β < 2.0. Conversely at β = 2.5 the data near the phase boundary line is consistent

2Notice that the dependence of the rho mass on bare quark mass appears to depart from linear at strong

coupling which we attribute to the proximity of the first order phase transition
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Figure 2: The latent heat, which appears to vanish in the β → 2 limit.

with a simple linear dependence of the pion mass on bare quark mass and chiral symmetry

restoration. Again, the pion mass varies very rapidly with bare quark mass close to β = 2.0.

One interpretation, which we will discuss further below, is that the lattice spacing shrinks

significantly as one approaches the chiral limit, due to the comparable renormalization of the

gauge coupling by gluons and and quarks in this model. I.e., the coupling walks when the

quarks are very light, and does so over a large range of scales as the quarks approach zero

renormalized mass.

The behavior of the pion and rho masses along the entire phase boundary is shown in

Fig. 5. Two regimes are seen; a strong coupling phase with a light pion and heavy rho for

β < βc ∼ 2.0 and a phase for β > βc where the pion and rho are approximately degenerate

and independent of the bare coupling. The situation at β ∼ βc is somewhat unclear as the

statistical errors are large there. The phase boundary itself is shown below in Fig. 6.

We have also made estimates of the string tension as measured by Creutz ratios χ(R,R)

[cf. (3.6)] of various sizes. Fig 7 shows a plot of χ(R,R), R = 1, . . . , 5, as a function of β as we

move along the phase boundary mc(β). At distances of order or larger than the confinement

scale, these ratios should coalesce on the value of σa2 where σ is the string tension. For

β = 1.9, 1.95 this occurs, as it can be seen that χ(4, 4) and χ(5, 5) coincide. For β ≥ 2

the envelope where χ’s begin to converge cannot be seen, but the value of χ(5, 5) places an

upper bound on σa2. It may be that much larger R values in χ(R,R) are needed, which is

not possible on the 83 × 16 lattice that we study here. This would be the case if the lattice

spacing a has the very sensitive exponential dependence on β that would be expected from a

– 8 –



-2 -1.5 -1 -0.5 0 0.5
ma

0

0.5

1

1.5

2

2.5

3

m
rh

o

beta=1.50
beta=2.00
beta=2.50

Figure 3: The “rho” mass mρa, as a function of the bare Wilson fermion mass m, for three example

values of the bare lattice coupling β. Note that as β increases past the critical value βc ≈ 2, the ρ mass

on the phase boundary becomes small on the order of the inverse lattice size 1/L. This is consistent

with the ρ becoming a massless state in the thermodynamic limit

walking theory; for instance in the present theory using 2-loop running one would predict that

between β = 2 and β = 2.1, σa2 would decrease by an order of magnitude and between β = 2

and β = 2.5 it would decrease by five orders of magnitude. Given the trend in Creutz ratios

with R at β = 2, one can roughly estimate that χ(7, 7) or χ(8, 8) may be required before the

envelope at this value of β would be seen. This would require a lattice of size 163 × 32, which

we are currently studying. On the other hand, and this is the possibility that we would like

to emphasize, it could be that for β ≥ 2 one falls into the basin of attraction for a nontrivial

infrared fixed point, and the area law does not hold at any scale.

For β < 2 one has hints of the envelope, though the large statistical errors due to enhanced

fluctuations at small β prevent us from measuring the larger loops needed for χ(4, 4) and

χ(5, 5). Nevertheless, it would appear that the string tension σ is of order 1/a2, consistent

with a phase of the theory dominated by lattice artifacts.

In the next section we discuss further the possible interpretations of these observations.

5. Discussion

Generically a lattice gauge theory will have a confining phase at strong bare coupling, and we

believe this to be true for the present theory. Typically this is signaled by a non-zero string

tension extracted from the asymptotic behavior of Wilson loops, or correlation functions of
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Figure 4: The pion mass squared for example values of β. The very sharp behavior as the bare mass

is varied away from the phase boundary near β = 2 stands in contrast to the rounding that would

normally be expected from the effects of the finite size effects. The significant decrease in the slope of

the line as one approaches the phase boundary is presumably due to (mπa)
2/(ma) ∼ a, with a(β,m)

having a significant m dependence when the fermions are very light. This is particularly true since

the contribution of the quarks to the running of the coupling is quite close to that of the gluons.

Wilson/Polyakov lines. However at strong coupling the lattice theory will be dominated by

lattice artifacts. For instance, from Fig. 7 on sees that at β < βc ≈ 2, the Creutz ratios

indicate that σa2 = O(1), so that for small β (strong coupling) the string tension, and hence

scale of confinement, is of the same scale as the lattice spacing a. Similarly, in Fig. 3 on sees

that for β = 1.5 we obtain mρa ≥ 1, indicating that the rho also lies at the ultraviolet cutoff

scale.

To understand whether this confining strongly coupled phase survives the continuum limit

it is necessary to examine the behavior of, say, a Wilson loop, as the lattice spacing is sent

to zero holding the area of the Wilson loop fixed in physical units. For a theory exhibiting

asymptotic freedom this is accomplished by increasing β. In the case of QCD and on an

infinite lattice this process can be continued indefinitely until we end up at the fixed point

β = ∞, thereby removing the ultraviolet cutoff. However it is possible that this procedure is

interrupted by the presence of a first order phase transition at some finite bare coupling—so

that the signal of confinement at strong coupling is not a property of the continuum theory.

This appears to happen in this model, in the vicinity of the first order line. That is, our

results indicate that the strong coupling phase at β < βc is not continuously connected to a

phase with a continuum limit.
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Figure 5: Pion and rho masses along the phase boundary. Note that they become degenerate for

β >∼ 2.

On the other hand, it does appear that one can move smoothly into a continuum phase

if one starts sufficiently far away from phase boundary. In fact, this must be true since for

large enough mass the theory is an arbitrarily good approximation of the quenched theory

with just the Wilson plaquette action in the fundamental representation. Since that theory

does not have a discontinuity separating the strong and weak coupling phases, we know that

this is also true in our theory in this quenched limit.

It is also possible that the a continuum theory with massless quarks may be obtained by

tuning the bare quark mass in the regime β > βc. The fact that the minimum meson mass

appears to scale with the inverse lattice size is consistent with this.

All of this can be understood in terms of radiative effects of two flavors of adjoint fermions.

If the fermions are very light, they will generate a large adjoint plaquette term when they are

integrated out to obtain the long wavelength effective theory. As mentioned briefly above,

it is known that a first order transition occurs in the adjoint plaquette action theory [32]

and that in the mixed fundamental/adjoint plaquette theory there is a first order transition

line when the adjoint term is sufficiently large [33]. The interpretation of our results is

therefore clear: if the quarks are approximately massless, the adjoint fermions lead to a large

effective adjoint plaquette term, conventionally characterized by the coefficient βA. As one

passes through the phase boundary at small fundamental plaquette action coupling β, one

is actually moving back and forth across the first order line in the β–βA plane. Since in the

quenched fundamental/adjoint theory the first order line only exists for β < 1.6, βA > 0.7, we
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Figure 6: Here, the phase boundary is extracted from the minimum of rho mass at each β.

can understand why we too see that the first order behavior disappears for sufficiently large

β or mass m. The fact that the transition in our theory happens instead at βc ≈ 2 would

again be due to the radiative effects of the fermions, which will also renormalize β.

Since in a walking technicolor scenario we are interested in the theory with massless

fermions, the phase of the lattice theory that is relevant for continuum physics is the phase

where β > βc. For β → ∞ we expect that the theory is driven to the asymptotically free

fixed point known to exist in perturbation theory. However the behavior of the theory in

the infrared is less clear. If the theory admits a new conformal fixed point then one expects

that this will govern the long distance physics of the model and long distance features of

the theory will be insensitive to the bare lattice coupling. In addition such a theory has

no intrinsic scale, so that the only scales would be the lattice volume and the temperature.

It follows that both the string tension and meson masses would scale to zero in the zero

temperature, thermodynamic limit. This sort of behavior is certainly consistent with what

we see in the phase β > βc along the line of minumum meson mass m = mc(β). Thus,

our findings are consistent with the appearance of a new conformal fixed point in this theory,

though they also leave open the possibility of a walking theory.

However, one must be careful in drawing the conclusion that a nontrivial infrared fixed

point exists. To take the continuum limit along the critical line requires tuning the bare

coupling β with lattice spacing a such that finite size effects are under control. If this running

β(a) is sufficiently slow it can lead to extreme sensitivity in the dependence of the lattice

spacing on bare coupling, when inverted to give a = a(β). As was discussed in relation
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Figure 7: Here we show the Creutz ratios along the phase boundary corresponding to minimum meson

masses. For β = 1.9, 1.95 the envelope that determines σa2 can be seen from χ(4, 4) and χ(5, 5), since

they coincide. For β ≥ 2 the envelope where χ’s begin to coalesce cannot be seen, though the value

of χ(5, 5) places an upper bound on σa2. For β < 2 there is some indication of an envelope, though

large statistical errors prevent us from measuring the larger loops needed for χ(4, 4) and χ(5, 5).

to the Creutz ratio data above, small increases in the β would yield huge decreases in the

lattice spacing. It is difficult to analyze such changes of scale on a relatively small lattice. In

particular, large finite size effects can mask the true infinite volume, zero temperature physics.

For example, the physical box size can become so small that the system deconfines and looks

quasi-free, which would also be consistent with our data. In effect, the physics is indeed

being dominated by a conformal fixed point—not a new infrared stable point but the usual

infrared unstable asymptotically free fixed point. To distinguish amongst the possibilites will

require larger lattices and a thorough study of finite size effects, so one must be cautious in

interpreting our findings thus far.

Another way of restating this is that any theory whose coupling runs very slowly with

scale will necessarily generate a dynamical mass scale in lattice units (e.g., aΛ), which is very

small for a weak bare coupling. To distinguish a confining theory with a small scale from

a theory with a non-trivial infrared fixed point will then necessitate simulations on lattices

which are significantly bigger, in lattice units, than the inverse of this small mass scale, which

is a hard problem. And, indeed, on small lattices the physics will be governed by the usual

ultraviolet fixed point corresponding to asymptotic freedom. On the other hand, simulations

on larger lattices would allow us to perform a “step-scaling” analysis, in order to extrapolate

to the infinite lattice volume behavior. We have begun studies of 163 × 32 lattices with the
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purpose of distinguishing between the walking and conformal scenarios that we have just

described.

Finally we would like to conclude by discussing a possible phase diagram which might be

relevant in the situation where the theory does indeed contain a new conformal fixed point.

Fig. 8 shows a cartoon of fixed points and possible RG flows for this model projected to

the plane of bare coupling constants (β,m). The arrows denote the flow of couplings under

increases in length scale corresponding, for example, to a blocking transformation. The theory

certainly contains the usual infrared unstable fixed point corresponding to (β,ma) = (∞, 0).

A critical line corresponding to massless quarks extends out of this fixed point to smaller β

or stronger coupling. If a conformal fixed point exists it should form a sink for these flows as

shown.

In the picture we also show as a dashed line the line of first order phase transitions. Our

data supports the conjecture that this line ends on a critical point corresponding to another

infrared unstable fixed point.

Furthermore, our results are consistent with the first order line and the critical line joining

together at the critical endpoint. Any putative conformal fixed point would then serve as a

infrared sink for massless flows out of these fixed points as shown3.

Notice that all these fixed points are also unstable in the direction orthogonal to the

critical line; i.e. under a mass deformation. Recognizing this fact actually allows us to draw

a RG flow that would automatically permit a walking dynamics even in a theory inside the

conformal window. One merely allows the theory to start near one of ultraviolet fixed points

with a small but non-zero mass. Under blocking such a trajectory would flow initially towards

the conformal fixed point in the vicinity of which the flow would slow before eventually flowing

out along a direction corresponding to a mass deformation. Of course a walking scenario that

introduces a mass for the fermions is not what is desired when trying to use the theory studied

here for breaking the electroweak symmetry dynamically. Nevertheless, the possibility of a

nontrivial infrared fixed point in the present theory would be interesting in its own right.

However, there are technicolor models which make use of different gauge dynamics realizing

this possibility as explained in [35, 36].

In conclusion, we have found that the present theory at critical fermion mass either has a

very slowly running gauge coupling (walking) or a nontrivial infrared fixed point (conformal).

The behavior is drastically different from theories that do not sit near the conformal window.

However, special difficulties emerge in the present theory due to extreme sensitivity of the

lattice spacing on the bare gauge coupling, due to the slow running. Studies on larger lattices

and a careful step-scaling analysis is needed, and indeed underway, in order to clarify these

issues.
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Appendix A: Pion masses

m pion error

0.50 2.821 0.013

0.25 2.699 0.033

0.00 2.547 0.019

-0.25 2.403 0.026

-0.50 2.229 0.022

-0.75 2.028 0.023

-1.00 1.793 0.027

-1.25 1.538 0.037

-1.50 1.197 0.027

-1.65 0.873 0.070

-1.70 1.109 0.021

-1.75 1.181 0.027

-1.80 1.195 0.020

-1.85 1.187 0.022

-1.90 1.150 0.020

Pion masses for β = 1.50.

m pion error

0.50 2.802 0.019

0.25 2.693 0.018

0.00 2.527 0.029

-0.25 2.370 0.029

-0.50 2.200 0.032

-0.75 1.999 0.024

-1.00 1.744 0.041

-1.25 1.481 0.033

-1.40 1.242 0.012

-1.45 1.161 0.017

-1.50 1.061 0.015

-1.55 0.951 0.014

-1.60 0.711 0.048

-1.65 1.304 0.029

-1.70 1.312 0.017

-1.75 1.291 0.020

Pion masses for β = 1.75.

m pion error

-1.20 1.457 0.011

-1.25 1.385 0.012

-1.30 1.305 0.010

-1.35 1.195 0.011

-1.40 1.048 0.015

-1.45 0.82 0.42

-1.50 1.250 0.026

-1.55 1.351 0.016

-1.60 1.380 0.0075

-1.65 1.386 0.016

-1.70 1.360 0.012

-1.75 1.3367 0.0079

Pion masses for β = 1.90.

m pion error

-1.15 1.492 0.014

-1.20 1.430 0.016

-1.25 1.340 0.018

-1.30 1.229 0.018

-1.35 1.094 0.027

-1.40 0.67 0.13

-1.45 1.146 0.025

-1.50 1.320 0.016

-1.55 1.392 0.020

-1.60 1.402 0.018

-1.65 1.378 0.026

-1.70 1.358 0.028

Pion masses for β = 1.95.
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m pion error

-1.05 1.550 0.015

-1.10 1.466 0.018

-1.15 1.384 0.012

-1.20 1.249 0.025

-1.25 1.041 0.028

-1.30 0.437 0.068

-1.35 0.693 0.014

-1.40 1.119 0.017

-1.45 1.322 0.020

-1.50 1.409 0.027

-1.55 1.416 0.032

-1.60 1.428 0.012

Pion masses for β = 2.05.

m pion error

-1.00 1.569 0.014

-1.05 1.488 0.012

-1.10 1.385 0.025

-1.15 1.254 0.022

-1.20 1.062 0.038

-1.25 0.592 0.043

-1.30 0.413 0.018

-1.35 0.915 0.021

-1.40 1.228 0.016

-1.45 1.386 0.028

-1.50 1.419 0.017

-1.55 1.441 0.017

Pion masses for β = 2.10.

m pion error

0.50 2.776 0.026

0.25 2.632 0.031

0.00 2.489 0.024

-0.25 2.328 0.027

-0.50 2.144 0.030

-0.75 1.923 0.032

-1.00 1.662 0.030

-1.10 1.540 0.027

-1.15 1.445 0.028

-1.20 1.363 0.029

-1.25 1.243 0.019

-1.30 1.077 0.046

-1.35 0.327 0.035

-1.40 0.969 0.039

-1.45 1.247 0.030

-1.50 1.378 0.033

-1.55 1.399 0.025

-1.60 1.383 0.019

-1.65 1.394 0.041

-1.75 1.315 0.050

-2.00 0.936 0.043

Pion masses for β = 2.00.

m pion error

0.50 2.735 0.025

0.25 2.582 0.023

0.00 2.448 0.039

-0.25 2.254 0.030

-0.50 2.013 0.035

-0.75 1.733 0.041

-0.90 1.488 0.018

-0.95 1.392 0.019

-1.00 1.265 0.022

-1.05 1.112 0.026

-1.10 0.889 0.032

-1.15 0.571 0.026

-1.20 0.245 0.0058

-1.25 0.5721 0.0054

-1.30 1.018 0.017

-1.35 1.283 0.020

-1.40 1.421 0.021

-1.45 1.476 0.025

-1.50 1.494 0.026

-1.75 1.309 0.052

-2.00 0.903 0.072

Pion masses for β = 2.25.
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m pion error

-0.80 1.520 0.021

-0.85 1.414 0.030

-0.90 1.303 0.015

-0.95 1.171 0.022

-1.00 0.989 0.016

-1.05 0.787 0.026

-1.10 0.497 0.015

-1.15 0.2383 0.0085

-1.20 0.499 0.011

-1.25 0.882 0.032

-1.30 1.193 0.026

-1.35 1.388 0.019

Pion masses for β = 2.35.

m pion error

-0.75 1.525 0.023

-0.80 1.441 0.039

-0.85 1.322 0.026

-0.90 1.187 0.047

-0.95 1.049 0.029

-1.00 0.859 0.047

-1.05 0.623 0.030

-1.10 0.319 0.012

-1.15 0.310 0.011

-1.20 0.634 0.024

-1.25 0.998 0.029

-1.30 1.286 0.031

Pion masses for β = 2.40.

m pion error

0.50 2.646 0.026

0.25 2.474 0.023

0.00 2.302 0.031

-0.25 2.063 0.037

-0.50 1.809 0.025

-0.70 1.490 0.012

-0.75 1.388 0.016

-0.80 1.287 0.018

-0.85 1.136 0.016

-0.90 0.992 0.017

-0.95 0.814 0.013

-1.00 0.585 0.012

-1.05 0.3278 0.0089

-1.10 0.2660 0.0069

-1.15 0.5422 0.0066

-1.20 0.895 0.027

-1.25 1.205 0.022

-1.50 1.524 0.048

-1.75 1.252 0.094

-2.00 0.820 0.040

Pion masses for β = 2.50.

m pion error

0.50 2.556 0.030

0.25 2.383 0.037

0.00 2.177 0.031

-0.25 1.916 0.034

-0.50 1.569 0.040

-0.65 1.252 0.028

-0.70 1.109 0.039

-0.75 1.002 0.049

-0.80 0.860 0.033

-0.85 0.686 0.033

-0.90 0.494 0.020

-0.95 0.3026 0.0092

-1.00 0.243 0.013

-1.05 0.428 0.017

-1.10 0.736 0.020

-1.15 1.040 0.040

-1.20 1.273 0.044

-1.25 1.448 0.051

-1.30 1.563 0.036

-1.35 1.579 0.042

-1.50 1.529 0.035

-1.75 1.260 0.061

-2.00 0.777 0.032

Pion masses for β = 2.75.
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m pion error

0.50 2.482 0.018

0.25 2.275 0.023

0.00 2.019 0.030

-0.25 1.731 0.041

-0.50 1.340 0.050

-0.60 1.064 0.045

-0.65 0.941 0.045

-0.70 0.799 0.050

-0.75 0.641 0.022

-0.80 0.496 0.033

-0.85 0.330 0.014

-0.90 0.231 0.010

-1.00 0.327 0.020

-1.05 0.541 0.013

-1.10 0.823 0.039

-1.15 1.100 0.047

-1.20 1.357 0.042

-1.25 1.488 0.058

-1.30 1.572 0.021

-1.50 1.441 0.35

-1.75 1.279 0.045

-2.00 0.690 0.024

Pion masses for β = 3.00.
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Appendix B: Rho masses

m rho error

0.50 2.830 0.011

0.25 2.718 0.014

0.00 2.5605 0.0070

-0.25 2.418 0.013

-0.50 2.252 0.010

-0.75 2.0551 0.0072

-1.00 1.841 0.019

-1.25 1.622 0.024

-1.50 1.323 0.016

-1.65 1.110 0.010

-1.70 1.506 0.013

-1.75 1.499 0.013

-1.80 1.463 0.015

-1.85 1.420 0.010

-1.90 1.347 0.018

Rho masses for β = 1.50.

m rho error

0.50 2.8119 0.0074

0.25 2.7012 0.0080

0.00 2.5366 0.0093

-0.25 2.387 0.013

-0.50 2.221 0.025

-0.75 2.029 0.014

-1.00 1.796 0.016

-1.25 1.557 0.017

-1.40 1.3633 0.0051

-1.45 1.302 0.012

-1.50 1.221 0.0099

-1.55 1.149 0.0078

-1.60 1.389 0.28

-1.65 1.567 0.015

-1.70 1.530 0.014

-1.75 1.4803 0.0092

Rho masses for β = 1.75.

m rho error

-1.20 1.534 0.0073

-1.25 1.474 0.020

-1.30 1.428 0.022

-1.35 1.344 0.018

-1.40 1.215 0.017

-1.45 1.247 0.058

-1.50 1.560 0.045

-1.55 1.620 0.011

-1.60 1.596 0.020

-1.65 1.569 0.018

-1.70 1.526 0.032

-1.75 1.474 0.014

Rho masses for β = 1.90.

m rho error

-1.15 1.5674 0.0059

-1.20 1.513 0.012

-1.25 1.439 0.011

-1.30 1.351 0.014

-1.35 1.2269 0.0099

-1.40 0.65 0.41

-1.45 1.408 0.018

-1.50 1.6033 0.0091

-1.55 1.635 0.010

-1.60 1.6084 0.0078

-1.65 1.564 0.013

-1.70 1.527 0.012

Rho masses for β = 1.95.
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m rho error

-1.05 1.6170 0.0077

-1.10 1.542 0.011

-1.15 1.4678 0.0046

-1.20 1.344 0.012

-1.25 1.157 0.012

-1.30 0.470 0.048

-1.35 0.754 0.011

-1.40 1.329 0.012

-1.45 1.597 0.013

-1.50 1.6527 0.0066

-1.55 1.627 0.010

-1.60 1.604 0.012

Rho masses for β = 2.05.

m rho error

-1.00 1.6278 0.0044

-1.05 1.5596 0.0050

-1.10 1.461 0.011

-1.15 1.346 0.012

-1.20 1.162 0.015

-1.25 0.645 0.031

-1.30 0.424 0.010

-1.35 1.042 0.029

-1.40 1.4635 0.0093

-1.45 1.647 0.016

-1.50 1.644 0.011

-1.55 1.626 0.011

Rho masses for β = 2.10.

m rho error

0.50 2.786 0.014

0.25 2.647 0.019

0.00 2.501 0.017

-0.25 2.341 0.013

-0.50 2.174 0.017

-0.75 1.960 0.015

-1.00 1.714 0.014

-1.10 1.604 0.014

-1.15 1.519 0.011

-1.20 1.449 0.016

-1.25 1.353 0.012

-1.30 1.201 0.0081

-1.35 0.384 0.018

-1.40 1.142 0.032

-1.45 1.519 0.029

-1.50 1.635 0.014

-1.55 1.630 0.013

-1.60 1.590 0.011

-1.65 1.565 0.015

-1.75 1.449 0.022

-2.00 0.995 0.033

Rho masses for β = 2.00.

m rho error

0.50 2.739 0.012

0.25 2.597 0.014

0.00 2.456 0.025

-0.25 2.276 0.015

-0.50 2.038 0.013

-0.75 1.774 0.027

-0.90 1.538 0.013

-0.95 1.452 0.012

-1.00 1.331 0.010

-1.05 1.1794 0.0080

-1.10 0.953 0.023

-1.15 0.606 0.021

-1.20 0.2456 0.0035

-1.25 0.5973 0.0058

-1.30 1.132 0.012

-1.35 1.497 0.018

-1.40 1.654 0.012

-1.45 1.683 0.010

-1.50 1.671 0.021

-1.75 1.420 0.032

-2.00 0.919 0.054

Rho masses for β = 2.25.
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m rho error

-0.80 1.5653 0.0088

-0.85 1.459 0.017

-0.90 1.3524 0.0067

-0.95 1.226 0.011

-1.00 1.039 0.016

-1.05 0.830 0.028

-1.10 0.519 0.017

-1.15 0.230 0.0058

-1.20 0.5212 0.0080

-1.25 0.951 0.017

-1.30 1.364 0.029

-1.35 1.612 0.013

Rho masses for β = 2.35.

m rho error

-0.75 1.566 0.013

-0.80 1.481 0.018

-0.85 1.366 0.016

-0.90 1.228 0.019

-0.95 1.100 0.029

-1.00 0.895 0.040

-1.05 0.645 0.016

-1.10 0.320 0.013

-1.15 0.3028 0.0058

-1.20 0.6610 0.0094

-1.25 1.099 0.019

-1.30 1.471 0.020

Rho masses for β = 2.40.

m rho error

0.50 2.652 0.014

0.25 2.4906 0.0077

0.00 2.315 0.017

-0.25 2.085 0.011

-0.50 1.8351 0.0068

-0.70 1.5231 0.0075

-0.75 1.422 0.010

-0.80 1.3252 0.0094

-0.85 1.1699 0.0097

-0.90 1.030 0.012

-0.95 0.8384 0.0059

-1.00 0.605 0.012

-1.05 0.3239 0.0055

-1.10 0.2584 0.0033

-1.15 0.5430 0.0067

-1.20 0.952 0.012

-1.25 1.331 0.013

-1.50 1.647 0.024

-1.75 1.345 0.040

-2.00 0.807 0.023

Rho masses for β = 2.50.

m rho error

0.50 2.563 0.0057

0.25 2.390 0.019

0.00 2.190 0.012

-0.25 1.926 0.025

-0.50 1.597 0.018

-0.65 1.282 0.027

-0.70 1.121 0.028

-0.75 1.016 0.031

-0.80 0.900 0.019

-0.85 0.689 0.030

-0.90 0.4899 0.0078

-0.95 0.2935 0.0099

-1.00 0.2271 0.0073

-1.05 0.4207 0.0071

-1.10 0.742 0.011

-1.15 1.088 0.041

-1.20 1.417 0.033

-1.25 1.638 0.030

-1.30 1.740 0.019

-1.35 1.736 0.023

-1.50 1.636 0.024

-1.75 1.310 0.026

-2.00 0.761 0.018

Rho masses for β = 2.75.
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m rho error

0.50 2.490 0.010

0.25 2.281 0.011

0.00 2.028 0.015

-0.25 1.750 0.017

-0.50 1.358 0.024

-0.60 1.069 0.028

-0.65 0.953 0.016

-0.70 0.807 0.032

-0.75 0.629 0.011

-0.80 0.488 0.015

-0.85 0.317 0.012

-0.90 0.2123 0.0060

-0.95 0.305 0.011

-1.00 0.527 0.013

-1.05 0.835 0.018

-1.10 1.147 0.032

-1.15 1.465 0.033

-1.20 1.652 0.033

-1.25 1.738 0.025

-1.30 1.764 0.020

-1.50 1.621 0.022

-1.75 1.301 0.031

-2.00 0.681 0.015

Rho masses for β = 3.00.
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