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Based on Discontinuous Molecular Dynamics (DMD) simulations we present a phase diagram of two-

dimensional nano-particles with dipole-like short-ranged interactions. Similar to systems with true,

long-ranged dipolar interactions the present system undergoes a transition from an isotropic fluid phase

into a polymer-like fluid, characterized by an association of most particles into clusters. Further

decrease of the temperature leads to a percolated system which, moreover, displays dynamical

properties reminiscent of a gel. Specifically, we find a plateau in the mean-squared displacement and

a non-gaussian behavior of the self-part of the vanHove correlation function. In the high density region

we observe crystallization from the isotropic fluid into a solid phase with hexagonal order. Surprisingly,

the crystallization is accompanied by a global parallel ordering of the dipole moments, i.e.,

a ferroelectric phase. This behavior is in marked contrast to what is found in 2D systems with long-

ranged dipolar interactions. Our results allow insights into the design of gel-like or highly ordered

structures at interfaces, shells around droplets and bubbles and new-sheet like materials.

1 Introduction

The self-assembly of colloidal particles with anisotropic inter-

actions is a rapidly expanding research field.1,2 ‘‘Classical’’ real-

izations of such systems are (para- or ferro)magnetic

nanoparticles with and without magnetic fields, as well as

polarizable colloids in electric fields. In both cases, the dominant

interactions are dipolar in character. Another example is the

broad class of so-called ‘‘patchy’’ colloids consisting of nano-

particles with adhesive functional molecular groups,3,4 which

yield short-ranged directional interactions (such as, e.g.,

proteins5). Moreover, within the last few years there has been

significant progress in the synthesis of ‘‘Janus’’-like particles

consisting of two hemispheres with different physical or chemical

properties.6–8 Understanding the complex, self-assembled struc-

tures formed by such anisotropic particles9 and the manipulation

of these structures by external fields (and other factors such as

chemical composition and thermodynamic parameters) is

important e.g., for the development of new, ‘‘smart’’ or ‘‘stimuli-

responsive’’, materials,2 but also for the advancement of devices

such as sensors and nano-robots.10–12

From the theoretical perspective, model systems composed of

dipolar or patchy particles have been extensively studied both by

computer simulations (see e.g. ref. 4, 13–17) and by (semi-)

analytical approaches (see e.g. ref. 18–20). One focus is the

equilibrium self-assembly phenomena such as the (reversible)

formation of strings, rings, and percolated networks, as well as of

(possibly anisotropic) high-density phases. In addition, partic-

ular interest has been recently devoted to dynamic phenomena

such as gelation and structural arrest.21 Indeed, while most of the

above-mentioned models exhibit large and even percolated

clusters at sufficiently low densities and sufficient strengths of

anisotropic interactions, anomalous dynamic behavior charac-

teristic of gelation only occurs in specific systems.17 An example

of a dipolar system exhibiting (reversible) gelation is a fluid of

dumbbells which consists of a positively and negatively charged

sphere.22 On the other hand, to our knowledge, no gel-like

dynamics has so far been reported for systems of dipolar hard

spheres (DHS) and dipolar soft spheres (DSS).

In the present study we explore by computer simulations the

self-assembly and phase behavior of a two-dimensional (2D)

system of colloidal particles with modified dipolar interactions.

Specifically, we consider a model which was recently proposed in

ref. 23 to simulate dipole-like systems via the so-called Discon-

tinuous Molecular Dynamics (DMD) method,23–25 a special form

of (event-driven) MD. In this context, the true, continuous, long-

range dipolar potential is approximated by a discontinuous,

three-step potential which (roughly) preserves the directional

dependence of the original interaction, particularly the prefer-

ence of head-tail-arrangements, but restricts its range. The

resulting model may be seen as some sort of screened dipolar

system; in fact, in systems of polarizable colloids such a screening

induced by charges in the solvent is certainly realistic. Experi-

mental examples of such systems are reported in ref. 26 and 27. In

these studies induced dipolar particles are generated via applying

an AC electric field to dielectric particles. The particles are sus-

pended in water, yielding a pronounced screening which can be
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adjusted through the pH of the solvent. More generally, our

model may be considered as a simple representative of

a networking-forming system, the big advantage being that it is

computationally much less costly than corresponding models

with true electrostatic interactions. Indeed, investigating this

model in a three-dimensional (3D) set-up for a wide range of

parameters,23 a variety of complex (aggregated or positionally

ordered) states can be observed, and an even broader variety is

found in corresponding two-component systems.28

Here we investigate the (one-component) model of ref. 23 in

2D, focussing on both, static and dynamic phenomena. Our

motivation to explore in more detail to the 2D situation is driven,

on one hand, by the fact that many experiments involving self-

assembling colloids are actually done at surfaces and/or in thin

films.11,29–31 Moreover, from a conceptual point of view, research

on true dipolar systems has revealed that the spatial dimension of

the system strongly affects the (equilibrium) behavior; examples

being the absence of spontaneous, global polarization at high

densities in 2D,18,32,33 the preference of rings (relative to chains) at

low densities,15 and the confinement-induced shift of the vapor–

liquid coexistence curves in dipolar systems with additional van

der Waals interactions.34 We investigate the model system

through a number of order parameters. Based on these quanti-

tative measures, we are able to map out a sketch of a phase

diagram involving an isotropic fluid, a polymerized fluid,

a percolated gel, and a hexagonal crystal. Most notably, we show

that the dynamics in percolated phase has gel-like features.

Moreover, the crystalline phase is not only translationally

ordered, but also of ferroelectric orientation.

The rest of the paper is organized as follows. In Sec.2 we

describe our model and give some details of the DMD simula-

tions. Numerical results are presented and discussed in Sec. 3,

where we first consider (in Sec. 3.1) the low-density states and

corresponding dynamic properties. Section 3.2 is then devoted to

the ordering phenomena observed at high densities. Finally, in

Sec. 4 we summarize our results and present a brief outlook of

possible future work.

2 Model and simulation method

In the present study we employ the DMD simulation tech-

nique.23–25 This method is a fast alternative to traditional

Molecular Dynamics (MD) simulations, where the forces on the

particles are computed in each (constant) time step. In DMD, on

the contrary, we compute the forces only when two particles

collide. By solving the corresponding (Newton) equations of

motion we can then advance the positions and velocities of all

particles until the next collision occurs. In between two collisions

the particles move ballistically. Thus we significantly reduce the

amount of force computations and thereby save computational

time. In our earlier work34 we performed extensive Monte Carlo

simulations with true dipoles. The long-range interactions were

handled via the Ewald summation. The gain in simulation time of

the DMD method compared to the long-range interactions is

about 10–20 times faster. Before we go into some technical

details of the simulation method we describe the pair interactions

between particles.

We model each dipole-like colloid by two oppositely

‘‘charged’’ particles embedded in a hard sphere (HS). In Fig. 1(a)

we show a schematic representation of our model. Like charges

repel one another by a three-step square-shoulder potential

(USS), and unlike charges interact via an attractive three-step

square-well potential (USW). The HS potential is defined as

UHSðr1Þ ¼

�

N; if r1\s

0; if r1. s;
(1)

where r1 is the distance between twoHS and s is the HS diameter.

Further, the ‘‘charge–charge’’ interactions are defined by

USSðr2Þ ¼

N; if r2\s1

31; if s1\r2\ð1þ l1Þs1

32; if ð1þ l1Þs1\r2\ð1þ l2Þs1

33; if s2\r2\ð1þ l3Þs1

0; if r2. ð1þ l3Þs1
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and

USWðr2Þ ¼

N; if r2\s1

�31; if s1\r2\ð1þ l1Þs1

�32; if ð1þ l1Þs1\r2\ð1þ l2Þs1

�33; if s2\r2\ð1þ l3Þs1

0; if r2. ð1þ l3Þs1:
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(3)

In eqn (2) and (3), r2 is the distance between two embedded

charges of different HS particles. The charged particles have

a diameter s1 ¼ 0.3s. The potential steps are defined by their

magnitudes 31, 32, and 33, respectively, and the step widths are l1,

l2, and l3. To define the actual values of these parameters we first

need to introduce reduced units. We define a reference interac-

tion strength by 3* ¼ m2/s3, where m is the target dipole moment

we aim to model. Dimensionless potential steps are then defined

by 3a ¼ 3a/3
*, where a¼ 1, 2, 3. Further, the reduced temperature

Fig. 1 Schematic representation of our model. The dipole-like colloids

are represented by two oppositely charged spheres (shown by black and

grey) embedded into a hard sphere. The dashed lines indicate the

potential steps. In (b) and (c) we plot the total interaction potential (Uij in

units of m2/s3) on the y-axis and the distance (r/s) on the x-axis, related to

the most repulsive and attractive configurations of two particles

[see cartoons in (b) and (c)]. The dashed lines indicate the corresponding

potentials for true dipoles.
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is given by T* ¼ kBT/3
*, where kB is the Boltzmann constant and

T is the temperature. We reduce the density in the standard way

by r* ¼ Ns2/A, where A is the area of the simulation box. The

time in the simulations is also reduced by t* ¼ t=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2ðkBT=mÞ
p

,

where m is the mass of the particles.

The parameters appearing in eqn (2) and (3) are chosen in such

a way that the resulting total potential matches, as far as

possible, the full dipole–dipole interaction UDD(rij) ¼ (1/r3ij)

[mi$mj � (3/r2ij)(mi$rij)(mj$rij)]. Specifically, following an earlier

DMD study on dipolar-like colloids in three dimensions,23 we

choose l1 ¼ 0.500, l2 ¼ 1.887 and l3 ¼ 2.333. The potential

depths are 3
*
1 ¼ 2.000, 3*2 ¼ 1.500 and 3

*
3 ¼ 0.500. The resulting

total potential for two relevant configurations is plotted in

Fig. 1(b) and (c). To locate the embedded charges within the hard

spheres, we use the method proposed in ref. 35. Both charges

within the particle are bound to the sphere but their distance (in

units of s) is allowed to move between (1 � d/2).36 By this choice

it is guaranteed that the dipole vector always points through the

center of the nano-particles while some fluctuations in its length

are allowed. In our simulations we set d ¼ 0.04. Clearly, our

model does not account for the long-range character of the true

dipole–dipole interactions; however, it mimics the dipole–dipole

interaction locally. This is illustrated in Fig. 2 where we show the

pair energies for different configurations according to the true

dipole–dipole interaction, on the one hand (middle column), and

our model, on the other hand (right column). Within our model,

the uncertainty of the energy of the side-by-side configurations

results from fluctuations emerging from the parameter d. From

Fig. 2 it becomes clear that the head-to-tail configuration is the

energetically most favorable one, as it is the case for true dipoles.

Side-by-side configurations with parallel (antiparallel) orienta-

tions are less unfavorable (favorable) then for the true interac-

tion. A particularly important feature is that our model implies

a lower energy for the three-particle configuration shown in the

last row of Fig. 2. In the best case, depending on the positions of

the embedded charges, the energetic advantage compared to true

dipoles is 1.78 times larger.

In the present study, we employ DMD simulations in the

canonical ensemble. To this end we use a stochastic thermostat.37

This widely used method introduces collisions of the colloids

with ghost particles representing the heat bath. The ghost

particles stabilize the system at a predefined temperature. Details

of the DMD method in the canonical ensemble can be found in

ref. 25, 38, 39. Here we consider mainly system sizes of N ¼ 576,

1024, and 1600 particles. In a typical run we use 5–10 � 108

collisions to equilibrate the system and 5–10 � 108 collisions to

extract averages. In the low-temperature regime, longer equili-

bration times are required due to the aggregation and subsequent

network formation of the particles.

3 Results and discussion

3.1 Fluid phases

3.1.1 Polymerization. We first study the system at low and

medium densities. At high temperatures the colloids form

a completely disordered fluid phase corresponding to the

behavior of the pure HS system. Upon decreasing the tempera-

ture the anisotropic interactions between the dipole-like colloids

become more and more important. As a result the particles start

to connect into clusters, yielding a polymerization ‘‘transition’’.

In general, there are two different approaches which allow to

locate polymerization in the phase diagram. One strategy

consists of searching for a maximum in the specific heat.40 A

second technique foots on the so-called degree of polymeriza-

tion41,42 defined by

F ¼

�

Na

N

�

: (4)

In the above equation,Na is the number of particles associated

in clusters, and N is the total number of particles. We consider

two particles to be associated into the same cluster if the distance

between the HS is smaller that the ‘‘critical’’ radius rc ¼ 1.25s.

This value was chosen because it corresponds to a distance close

to the first minimum of the radial distribution function for

a broad range of temperatures and densities. We identify the

nearest neighbours by using a Voronoi decomposition. The latter

proves to be particularly useful in the high density regime.

In Fig. 3(a) we present results for the two quantities F and cV
(inset) as functions of the temperature and different densities.

Both quantities have been evaluated for three different system

sizes, N ¼ 256, 576, and N ¼ 1024. As seen from the inset of

Fig. 3(a), the specific heat does display a maximum, but only for

the largest system size considered. Moreover, the whole function

cV(T
*) is subject to strong statistical errors. We therefore focus on

the order parameter F, which turns out to be robust against

variation of N. The polymerization temperature is commonly

identified by the inflection point of the function F(T*) at a given

density.42 Inspecting the data in Fig. 3(a) one notes that, based on

the above criteria, a pronounced transition only occurs at low

densities (r* < 0.3). Upon increasing r*, the parameter F has

relatively large, non-zero values already at higher temperatures,

making the detection of an inflection point less obvious. Indeed,

an inspection of corresponding snapshots from the simulations

Fig. 2 Interaction energies Uij for various two-particle configurations,

shown in the left column. The middle column gives the energy values

according to the true dipole–dipole interaction, while the right column

gives the values according to our model. Within the latter, the uncertainty

of the energies appearing at the side-by-side configurations arises from

the fluctuations of the embedded charges within the HS.

This journal is ª The Royal Society of Chemistry 2012 Soft Matter, 2012, 8, 1521–1531 | 1523
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reveals aggregation into small clusters already at large T*.

Nevertheless, upon lowering T* we observe a change of F from

intermediate values to a value close to 1, indicating a sudden

increase of the largest cluster size. As an additional criterion for

polymerization particularly at high densities, we have investi-

gated the cluster-size distribution, that is, the probability to find

a cluster of size NCluster. In Fig. 3(b) we plot corresponding

numerical results for r* ¼ 0.4 and three different temperatures (at

the system size N ¼ 576). Above the polymerization temperature

T* ¼ 0.314 [as determined via the inflection point of the function

F(T*)] most particles are already associated into small clusters of

size 2 <NCluster < 10.Within the polymerized state (T*¼ 0.25) the

distribution reflects the presence of a small number of large

clusters with NCluster � 250 [see crosses on the right hand side of

Fig. 3(b)]. By further cooling the system one then observes the

emergence of a second peak in the cluster-size distribution,

indicating the presence of a significant amount of large clusters.

This occurs slightly above the percolation temperature (T*
perc ¼

0.194, see next section). The estimated transition line T*(r*)

which separates the non-aggregated high-temperature regime

(region I) from the aggregated polymerized ‘‘state’’ (region II) is

shown in Fig. 4. Interestingly, these predictions from our DMD

simulations are quite consistent with those from a recent integral

equation study18 for a two-dimensional system of DHS. In the

latter study, the temperatures related to aggregation have been

estimated on the basis of the reference hypernetted chain

approximation for the pair correlation function.

3.1.2 Percolation and related dynamics. By further decreasing

the temperature within the low and medium density region, the

small clusters characterizing the polymerized state start to

connect into large clusters that span the whole system. The

parameter range of the resulting low-temperature state is indi-

cated by region III in Fig. 4. The two snapshots shown in Fig. 5

illustrate the change of microstructure between region II and III.

If one cluster connects two opposite ends of the simulation cell

we consider the system as percolated.

In order to determine the percolation transition more quan-

titatively, we plot in Fig. 6(a) the percolation probabilityP at the

density r* ¼ 0.3 for two different system sizes as function of the

temperature T*. In principle, the transition temperature is

determined by the crossing point of the curves for different

system sizes. However, to restrict the computational effort we

limit the system size to N ¼ 1024 at r* > 0.2 and N ¼ 576 at r* <

0.2. For these systems, we determine the transition temperatures

by the point where P(T*) � 0.5 (see, e.g., ref. 43 for a similar

strategy). Nevertheless, as seen from Fig. 6(a), rather large

system sizes (N ¼ 1024–2500) are required to identify the

percolation temperature from the plots ofP(T*); for smaller sizes

(N ¼ 576, 1024) the data are plagued by pronounced statistical

errors. Indeed, from the perspective of reducing finite-size effects

it turns out to be advantageous to consider the percolation

probability as function of the density (rather than as function of

T*). Corresponding data are plotted in Fig. 6(b). By increasing

Fig. 3 (a) Degree of polymerization as function of temperature at

different densities. From bottom to top: r* ¼ 0.05, 0.15, 0.25, 0.35, 0.55.

(b) Specific heat cV of the system at r* ¼ 0.1 and three system sizes. (c)

Probability PCluster of finding a cluster with size NCluster at r
* ¼ 0.4 and

a system size of N ¼ 576. Circles correspond to T* ¼ 0.35, crosses to T* ¼

0.25, and triangles to T* ¼ 0.2. AtNCluster¼ 2, there is a pronounced peak

for all three temperatures considered. In the range NCluster � 200–576,

there is essentially no peak atT*¼ 0.35 (circles) and only a small non-zero

probability at T* ¼ 0.25 (crosses). On the other hand, at T* ¼ 0.2

(triangles) a clear peak arises at NCluster � 400.

Fig. 4 Phase diagram of the system at low and medium densities.

Regions I, II and III correspond to the homogeneous fluid (I), the string

fluid (II), and the percolated fluid (III), respectively. The upper (lower)

line denotes the temperatures T*(r*) related to the polymerization

(percolation).

1524 | Soft Matter, 2012, 8, 1521–1531 This journal is ª The Royal Society of Chemistry 2012
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the density the percolation temperature continuously increases.

Finally, at the density r* � 0.55 the polymerization and the

percolation lines collapse.

We now turn to the question whether the percolation (and

accompanying network formation) in our system leads to gela-

tion. Indeed, previous studies of a variety of aggregating

colloidal systems21 have shown that percolation is prerequisite of

gelation, however, it is not sufficient. A gel or glass is charac-

terized by transient networks that change the dynamic properties

of the system. Due to the network structure the motion of the

particles slows down significantly. Network formation can

become enhanced in systems with long-ranged particle interac-

tions; such systems are therefore more likely to build gel phases.43

Another factor that favors gelation is branching. Recent studies

of systems of dipolar dumbbells have shown that even a modest

elongation of the particles leads to branching and, at very low

temperatures, to gelation.22,43 Since our model allows the charges

within the colloidal particles to fluctuate, the particles have some

similarities with dumbbells, and branching may occur more

likely than in point–dipole systems.

As an important indicator of anomalous dynamical behavior

within the percolated phase we determine the mean-squared

displacement (MSD), defined by

Dr2ðtÞ ¼

*

1

N

X

N

i¼1

½riðtÞ � rið0Þ�
2

+

: (5)

In gel-like systems the MSD shows a plateau at intermediate

times between the ballistic and diffusive regime.17 This slowing-

down mechanism can be explained by particles trapped in tran-

sient networks.

In Fig. 7 we plot the MSD of our system at r* ¼ 0.1 and

r* ¼ 0.5 at different temperatures in a double-logarithmic

Fig. 5 DMD simulation snapshots of the system at r* ¼ 0.1 at two

temperatures close to the percolation transition occurring at T*
perc ¼

0.134. In (a) the system is close above the transition (T* ¼ 0.15) while in

(b) it is close below the percolation threshold (T* ¼ 0.125).

Fig. 6 (a) Percolation probability P as function of the temperature at

r* ¼ 0.3 for two different system sizes. (b) Percolation probability as

function of the density r* at temperature T* ¼ 0.2.

Fig. 7 The MSD defined according to eqn (5) at (a) r* ¼ 0.1 and (b)

r* ¼ 0.5 in a double-logarithmic representation. The lines correspond to

different temperatures T* ¼ 0.3,0.25,0.20,0.10,0.05 from top to bottom.

The dashed lines show ideal ballistic (slope 1) and diffusive (slope 2)

behavior. The inset of (b) shows the MSD at r* ¼ 0.5 at larger time scales

for the temperatures T* ¼ 0.2, 0.15, 0.10, 0.05 (from top to bottom).

This journal is ª The Royal Society of Chemistry 2012 Soft Matter, 2012, 8, 1521–1531 | 1525
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representation. At small times all systems show regular ballistic

behavior characterized by Dr2(t) f t2. At very high temperatures

(T* > 0.3) this ballistic behavior changes directly into diffusive

behavior Dr2(t) f t. At lower temperatures we observe (for both

densities) deviations from this simple behavior, as seen in Fig. 7

(a) and (b). Specifically, the MSD of the dilute system [see Fig. 7

(a)] displays a time-dependence with exponent less than one at

intermediate times (t* � 0.1–1) for all temperatures T* < 0.25.

This implies that already the string formation occurring below

the polymerization (T*
poly ¼ 0.247) somewhat slows down the

dynamics. An even more pronounced slowing-down is seen at the

temperatures T* ¼ 0.10 and T* ¼ 0.05, where the system is within

the percolated phase (T*
perc ¼ 0.137). At the medium density r* ¼

0.5 the effects in the afore-mentioned temperature range are less

pronounced. However, by further cooling the denser system

towards T* ¼ 0.05 we again observe a pronounced plateau in the

MSD. This is even better revealed by the inset of Fig. 7(b). The

time range related to the trapping of the particles is almost two

orders of magnitude larger than in the low-density case (r*¼ 0.1).

Only at very long times the particles can escape their cages,

yielding eventually a diffusive regime. Another interesting point

concerns the ‘‘cage size’’, that is, the typical length related to the

plateau in theMSD. As seen from Fig. 7(b) [and, less clearly, also

from Fig. 7(a)], this length is significantly smaller than one

particle diameter. Such small cage size is reminiscent of what one

finds in various polymeric,44 dipolar,45 and glass-forming44

systems. On the other hand, much larger cage sizes of the order of

one particles diameter are observed in typical colloidal gels.43,46

The appearance of transient networks in our system is also

reflected by the self-part of the van Hove function,47 Gs(r, t). In

a purely diffusive or ballistic system, Gs(r, t) is a gaussian func-

tion. Results for Gs(r, t) are plotted in Fig. 8(a), where we

consider three typical times at r* ¼ 0.1. Deviations from the

standard gaussian behavior are seen particularly at the small time

t* � 6 and intermediate time t* � 45. In order to quantify these

deviations we determine the parameter a defined by

aðtÞ ¼

D

ðDrðtÞÞ4
E

3
D

ðDrðtÞÞ2
E2

� 1: (6)

The function a(t) is zero in both, the ballistic and diffusive

regime.

In Fig. 8(b) we plot a(t) at r* ¼ 0.1 and different temperatures.

At the highest temperature considered (T* ¼ 0.5) the a parameter

is very small, indicating that the van Hove function is nearly

gaussian at all times. Decreasing the temperature leads to an

emergence of two peaks at small and large times. The peak at

large times becomes particularly pronounced right below the

percolation transition which takes place at T*
perc ¼ 0.137. In

various recent simulation studies of aggregating systems,43,48

such peaks in a(t) have been interpreted as presence of different

‘‘populations’’ of particles (i.e. as dynamic heterogeneities). As

an attempt to identify such populations in the present system, we

have calculated the distribution of squared displacements,49

P(r2, t). However, we did not find any significant behavior (such

as a double-peak structure indicating presence of ‘‘slow’’ and

‘‘fast’’ particles) at the conditions considered.

To summarize our discussion about the appearance of gelation

in the present (model) system, we note that there are some

features pointing in this direction, whereas other are not. One

main feature typical for gels is the presence of percolated and

branched structures as seen in Fig. 5(b) [and also later in Fig. 9].

Moreover, particularly at intermediate densities we find that

these structures lead to plateau-like behavior of the mean-

squared displacement, accompanied by a peak of the alpha-

parameter. However, the typical cage size of a gel is not observed

in our system. Also, there is no evidence for dynamical hetero-

geneities, and the observed structures are transient rather than

stable (as it is the case, e.g., in gels of branched dendrimers). We

therefore consider the present model involving short-ranged,

fluctuating dipolar interactions as a system showing dynamic

anomalies with weak hints pointing into a gel-like behavior.

Fig. 8 (a) Self part of the van Hove function Gs(r, t) as function of the

distance and three times t* at r* ¼ 0.1 and T* ¼ 0.01. (b) Non-gaussian

parameter a(t) as function of the time at density r* ¼ 0.1 and different

temperatures.

Fig. 9 Snapshot at r* ¼ 0.3 and T* ¼ 0.13 (within the percolated phase).

The inset shows the order parameter J6 as function of T*.
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3.2 Ordered phases

At low temperatures and sufficiently high densities the dipole-

like colloids start to build crystalline structures characterized by

long-ranged positional ordering of the particles. The degree of

translational order can be studied by various bond-order

parameters. Here we focus on the hexagonal order parameter50

J6 ¼

*

1

Nb

�

�

�

�

�

X

Nb

i¼1

expði6qijÞ

�

�

�

�

�

+

; (7)

where Nb is the number of neighbours, and qij denotes the angle

of the bond vector rij between neighbouring particles i and j

relative to a fixed, but arbitrary, direction. We consider particles

as neighbours if their distance is smaller than the distance related

to the first minimum of the in-plane pair correlation function g

(r). If each particle is surrounded by six nearest neighbours the

order parameter J6 becomes one (hexagonal lattice (HL)),

whereas in a homogeneous state J6 is zero.

In addition to positional order, the degree and type of global

orientational order (if it occurs) is also of interest. To this end we

introduce the ordering matrix51

Q ¼
1

2N

X

N

i¼1

ð3m̂im̂i � IÞ: (8)

In eqn (8), m̂i corresponds to the unit vector of the orientation

of particle i, and I is the unity matrix. The global director d̂ is

obtained by normalizing the eigenvector corresponding to the

largest eigenvalue of the matrix Q. The first-rank orientational

order parameter is then defined by

P1 ¼

�

�

�

�

�

1

N

X

N

i¼1

m̂i$d̂

�

�

�

�

�

; (9)

which is unity in a ferroelectric state and zero in an anti-ferro-

electric or isotropic phase. The second-rank order parameterP2 is

defined as the largest eigenvalue ofQ, and describes the alignment

of the particles without carrying the information of the direction.

As we will show below, the present system has (only) a ferroelec-

tric phase. Hence, we focus on the order parameter P1.

The transition into a ferroelectric state is characterized by an

increase of the parameter P1 from zero to one. The corre-

sponding curves P1(T
*) turned out to be essentially independent

of the system size (presumably due to the short-ranged character

of the pair interactions in our model). We thus determine the

ferroelectric transition from simulations with N ¼ 1024. In

addition to the system size, we investigate the impact of the

geometry of the simulation box. To this end we implemented

a variable box-length Monte-Carlo algorithm.52 To preserve

a canonical ensemble, the area of the simulation box was kept

constant. We also performed a few simulations with a fixed,

rectangular shape of the simulation box. However, the order

parameter turned out to be robust against all these tests.

3.2.1 Low densities. As discussed in Sec. 3.1, the regime of

low and medium densities is characterized by a polymerization

and percolation transition. To complete the picture, we now

discuss the corresponding behavior of the orientational and

translational order parameters [see eqn (7) and (9)]. As an

example we consider the density r* ¼ 0.3. In Fig. 9, we present

a snapshot illustrating the structure of the system at temperature

T* ¼ 0.13, which is slightly below the percolation temperature

(see Fig. 4). As expected, one observes system-spanning clusters

consisting of dipolar chains. Interestingly, however, some of

these chains are merged into ‘‘bundles’’ characterized by

a parallel arrangement of pieces of chains. Within these bundles,

neighbouring chains are shifted relative to one another by half

a particle diameter. These arrangements correspond to an ener-

getically highly favorable situation, as reflected by the sketch in

the last row in Fig. 2. Having in mind that the present colloidal

particles lack of any isotropic attractive interactions, we

conclude that the bundle formation observed in Fig. 9 is driven

by the attractive, lateral interactions between (pieces of) dipolar

chains. It is clear that these lateral interactions and the resulting

bundles also favor branching and thus, gel-like behavior, as

reflected e.g. by the MSD (see Fig. 7(b)). A further consequence

of the pronounced local ordering is that the bundle structures

(such as those in Fig. 9 for r* ¼ 0.3) are characterized by rela-

tively large values of the hexagonal order parameter, J6. The

temperature dependence of J6 is plotted in the inset of Fig. 9.

From the inflection point of J6 we can determine a hexagonal

transition temperature at T*
hex ¼ 0.174, which is slightly higher

than the percolation temperature T*
perc ¼ 0.161. We note,

however, that the system at temperatures T* < T*
hex is not a solid;

rather it remains to be disordered down to the lowest tempera-

ture considered. Also, there is (obviously) no global orientational

order, that is, P1 � 0. Similar behavior of J6 and P1 is found at

other densities in the range r* < 0.4.

We note that bundle formation has also been observed in 2D

systems of dipolar particles with additional Yukawa interaction53

where, however, the density was higher and. In fact, our model

prefers bundle formation as compared to a system of true dipolar

spheres, where the chain-chain interaction is considerably

weaker. This becomes clear from Fig. 2 (bottom), where we

compare the energy of hexagonal-like configurations in the two

types of models. As a consequence, our model supports bundle

formation already at lower densities. Prominent real systems

where pronounced bundling and accompanying local hexagonal

order occurs, are ferro-colloids in external magnetic fields,54 but

also polarizable colloids26 and Janus colloids55 in electric fields.

3.2.2 High densities. In the density range discussed so far,

hexagonal ordering occurs only locally (i.e., within bundles).

This changes at densities r* T 0.6 where we find, at sufficiently

low temperatures, the formation of crystalline structures char-

acterized by long-range positional, hexagonal order. The change

from the isotropic high-temperature into the hexagonal low-

temperature state is illustrated in Fig. 10, where we present

various snapshots of systems at the representative density

r* ¼ 0.9. At the lowest temperature considered, the system is

nearly close-packed apart from small defects.

The hexagonal translational structure is, in fact, expected in

view of the behavior of the pure HS system underlying our

model. Note, however, that the HS systems freezes only at

a density56 r*z 0.91, that is, much later than the present system.

This is consistent with our findings in the previous paragraph,

according to which the dipole-like interactions tend to stabilize

the hexagonal-like ordering at lower densities (as compared

to HS).
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A further, and much more dramatic, consequence of the

dipole-like interactions is that the translational ordering at high

densities is accompanied by long-ranged ferroelectric order. This

can be directly seen from the (low-temperature-) snapshot in

Fig. 10(a) and 10(b), and, more quantitatively, from the behavior

of the parameters J6 and P1. In Fig. 11 we have plotted the

functions J6(T
*) and P1(T

*) for three (large) values of r*. In all

cases, one observes a sudden, pronounced increase of P1 upon

lowering the temperature from the isotropic high-temperature

state (P1 � 0.0). Moreover, the temperature where P1 starts to

deviate from zero, coincides with the temperature where the

parameter J6 increases significantly from the smaller (and

essentially T*-independent) values characterizing the high-

temperature state. In fact, the data in Fig. 11 suggest that the

order parameters increase from their high-T* values nearly

continuously, indicating presence of a second-order (or, at the

least, weak first-order) phase transition. Here, we did not attempt

to clarify that issue systematically. We note, however, that the

coupled hexagonal/ferroelectric transition is accompanied by

significant fluctuations. This is illustrated in Fig. 12, where we

plot the functions J6(T
*) and P1(T

*) together with the specific

heat cV (measuring fluctuations of the (potential) energy), and

the quantity x1 ¼ hP2
1i � hP1i

2 (the latter has been normalized by

its maximum value since the absolute values are rather small).

Both quantities display a pronounced peak at the temperature

related to the onset of the hexagonal/ferroelectric ordering.

Similar behavior is found at other values of r* in the high-density

regime, with the peak heights in cV and x1 becoming less

pronounced, the smaller r*.

The appearance of long-ranged ferroelectric order in our

model is in marked contrast to what is known about the behavior

of true dipolar spheres in 2D. In fact, while model systems like

dipolar hard and soft spheres do display ferroelectric order in the

3D case, MC simulations of corresponding 2D systems rather

reveal frustrated structures characterized by large domains of

local ferroelectric order, but no long-range order.57 The same

conclusion emerged from (MD) simulations of confined, slab-

like dipolar systems where the long-ranged ordering is lost upon

lowering the film thickness towards the 2D limit.58 Clearly, an

important technical issue particularly at very high densities and

low temperatures concerns the influence of the system size

considered in the simulations. Indeed, for true dipolar systems it

is well known that a too small simulations system can stabilize

ferroelectric ordering under conditions, where simulations

with larger systems would just reveal large domains. To

check this point, we have additionally run some simulations

with N ¼ 2000–4000 particles. Additionally we have

investigated the decay behavior of the two particle correlation

function of the dipolar vectors, that is, the function

g110ðrÞ ¼
D

X

i

X

jsi
dðr� rijÞm̂im̂j

E

=ðNrÞ, where m̂i is a unit

Fig. 10 Snapshots at r* ¼ 0.9 at different temperatures illustrating the

melting transition. The reduced temperature is T* ¼ 0.2 in (a), T* ¼ 0.3 in

(b), T* ¼ 0.4 in (c) and T* ¼ 0.5 in (d).

Fig. 11 (a) Order parametersJ6 and (b) P1 at densities r
* ¼ 0.9 (straight

line), 0.8 (dashed line) and 0.6 (dotted line).

Fig. 12 Transition from isotropic fluid to ordered phase at density r* ¼

0.9. In (a) we plot the specific heat cV, in (b) the fluctuations of the

orientational order x1. The order parameters at the transition are shown

in (c) J6 and (d) P1.

1528 | Soft Matter, 2012, 8, 1521–1531 This journal is ª The Royal Society of Chemistry 2012

P
u
b
li

sh
ed

 o
n
 1

2
 D

ec
em

b
er

 2
0
1
1
. 
D

o
w

n
lo

ad
ed

 b
y
 T

U
 B

er
li

n
 -

 U
n
iv

er
si

ta
et

sb
ib

l 
o
n
 3

1
/0

3
/2

0
1
6
 1

2
:2

5
:0

8
. 

View Article Online

http://dx.doi.org/10.1039/c1sm06576a


vector. In the limit of large r, this function should saturate to

a finite value determined by the order parameter P1.
59 In our

case, for systems of N ¼ 1500, the function g110(r) still revealed

additional peaks of the correlation function at half length of the

simulation box. For a system size of N ¼ 2500 these peaks

disappear. The system size of N � 2500 is thus sufficient to check

for true long-range ferroelectric order. Inspecting snapshots, it

turns out that the larger systems generally display more defects.

However, on the whole the combined hexagonal and ferroelectric

ordering remains.

4 Conclusion

We have used DMD computer simulations to study a system of

nano-particles with dipole-like interactions in two dimensions. A

prerequisite of the DMD technique (and the main reason for its

computational efficiency), are discontinuous, short-ranged

potentials. To this end we have approximated the true dipole–

dipole interaction by a short-ranged three-step potential sug-

gested in an earlier study of a corresponding 3D system.23 Based

on that model, which mimics the directional dependence of the

dipolar interactions on short length scales, we were able to study

a wide range of densities and temperatures. An overview of the

equilibrium behavior, that is, a rough (yet not complete) phase

diagram, is given in Fig. 13. Apart from a homogeneous,

isotropic high-temperature phase (I), we find a polymerized

(‘‘string’’) fluid (II), a percolated phase (III), and a hexagonal,

ferroelectric crystal (IV). An open point, which was beyond the

scope of the present study, concerns the transition between the

percolated and the crystal phase, as well as the occurrence of

glassy phases. We also note that we have seen no evidence for

a gas–liquid transition within the fluid phase, consistent with the

behavior of the corresponding 3D model23 and also with that of

true dipolar hard or soft spheres in two and three dimensions.14,15

On the other hand, the absence of gas–liquid condensation is in

contrast to many other aggregating systems such as, e.g. Janus

particles, which display a combined condensation–micellisation

transition.60 Similar models with short-ranged potentials, such as

patchy particles, also show a gas–liquid separation provided the

number of patches per particle is sufficient.16,61

As described in the previous sections, all lines in Fig. 13 have

been defined via a thorough analysis of suitable order parame-

ters. In particular, to define the polymerization line we used the

so-called degree of polymerization (measuring the number of

particles involved in clusters), which showed almost no finite-size

effects (contrary to the specific heat). Interestingly, the resulting

line agrees quite well with a corresponding result from a recent

integral equation study of 2D systems of true dipoles.18 More-

over, our polymerization temperatures are very close to those

found in the 3D version of the present model,23 although the

latter (DMD) study used a somewhat different order parameter,

namely a strong increase of the average cluster size. Less agree-

ment is found with respect to the percolation which occurs in

both, the 3D23 and the 2D system, at temperatures below the

polymerization. We have located the percolation threshold in the

‘‘traditional’’ way, that is, by monitoring the percolation prob-

ability. The resulting percolation temperatures are significantly

lower than those in the 3D model. We note however, that ref. 23

used a different definition of percolation such that the quanti-

tative comparison with our data has to be considered with care.

We would like to note that in the case of true dipoles in 2D ring

formation is observed in the polymerized fluid phase,62 contrary

to the 3D case, where this effect is less pronounced. A similar

system where such a behavior can be observed is a mixture of

patchy particles, with 2 and 3 patches. In these systems rings and

inter-cluster bonding is also very pronounced, which is due to

particles with 3 patches building connections.63 In our system,

however, the formation of rings is relatively weak in the poly-

merized fluid phase.

Given the preference of head-to-tail configurations and thus,

chain formation, in our model, the very appearance of poly-

merization and percolation at low temperatures and densities is

clearly expected. A less explored question concerns the corre-

sponding dynamics. While systems of true dipolar hard or soft

spheres (in zero field) display normal dynamics despite

pronounced chain formation,45 a recent MD study of dipolar

dumbbells43 revealed anomalous, gel-like dynamics accompa-

nying the formation of branched chains and networks. Our

model bears some similarity with the dumbbells insofar as the

‘‘dipoles’’ in our particles consist of two ‘‘charges’’ whose posi-

tion can fluctuate. Motivated by this fact we have investigated

the present system via various time-dependent (single-particle)

quantities. For some state points deep within the percolated

phase, we do indeed find features reminiscent of gels such as

plateau-like behavior of the mean-squared displacement,

accompanied by a peak of the alpha-parameter. The picture

emerging from these measures (and from a corresponding

structural analysis) is that the particles form transient networks

consisting of percolated chains and bundles thereof. Of course,

network formation also occurs in systems of true dipoles,15

including the dipolar dumbbells studied in ref. 43. However,

compared to the dumbbells it seems that the networks in our case

are less stable. One factor might be that the interactions in ref. 43

are of coulombic and thus, long-ranged nature, a factor which

tends to stabilize the networks. Concerning the dynamics, we

note that the present system shows no evidence of dynamical

heterogeneities, and that the cage sizes extractable from theMSD

are extremely small. Taken altogether, we conclude that the

dynamics do posses anomalous features, but that there is no clear

Fig. 13 Phase diagram involving all transition lines determined in this

paper. The labels I, II, III, and IV refer to the isotropic fluid, the poly-

merized fluid, the percolated phase, and the ferroelectric crystal, respec-

tively. We have not attempted to determine the transition between

percolated fluid and the crystal at low temperatures.
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gel ‘‘phase’’ such as in systems of dipolar dumbbells43 and patchy

particles.17,46

Finally, we have investigated the crystallization. As expected

in view of the 2D character of our model, the particles form

a hexagonal lattice. Interestingly, these solid-like structures

appear already at densities far below the freezing density of the

corresponding hard disk fluid. Moreover, the ordering into

a hexagonal lattice goes together with the onset of long-ranged

ferroelectric order. In this respect, our model behaves funda-

mentally different from 2D systems of true dipolar (hard or soft)

spheres where, at the most, large ferroelectric domains (rather

than true global polarization) are observed. In our view, the main

reason for this difference is that the present model slightly prefers

(relative to the true dipolar case) arrangements of parallel

oriented, shifted chains.

Taken altogether, our study reveals a complex static and

dynamic behavior of the colloidal model system under consid-

eration. Clearly, the short-ranged nature of our model is an

approximation, when one thinks about true dipoles; we note

however, that in a true colloidal system involving particles with

charges, the effective range of the interaction can be tuned by

parameters such as salt, pH, or concentrations of ionic adsorbing

species. From our view, one particularly interesting (and novel)

result is the gel-like behavior found in the percolated phase.

Indeed, the unusual dynamics observed, e.g., in the mean-

squared displacement (see Fig. 7) suggests a non-trivial, non-

linear behavior also in rheological properties such as the shear

viscosity and, more generally, the mechanical response of the

material to external stress. This is clearly an aspect which

deserves further attention and could also be studied via the DMD

method. Moreover, given the overwhelming variety of colloidal

particles being synthesized with increasing complexity and

precision,64 it would be very interesting to extend the present

study towards more complex particles which have, e.g., quad-

rupolar character.27 Work in these directions is in progress.

Acknowledgements

We gratefully acknowledge financial support from the Deutsche

Forschungsgemeinschaft through the International Research

Training Group 1524 ‘‘ Self-Assembled Soft Matter Nano-

Structures at Interfaces’’ (project C 3.1). CH and OV acknowl-

edge partial support for this research provided by the US-NSF’s

Research Triangle MRSEC (DMR-1121107).

References

1 M. Parthasarathy and D. J. Klingenberg, Mater. Sci. Eng., R, 1996,
17, 57–103.

2 S. C. Glotzer and M. J. Solomon, Nat. Mater., 2007, 6, 557–562.
3 A. van Blaaderen, Nature, 2006, 439, 545–546.
4 Z. L. Zhang and S. C. Glotzer, Nano Lett., 2004, 4, 1407–1413.
5 F. Romano, P. Tartaglia and F. Sciortino, J. Phys.: Condens. Matter,
2007, 19, 322101.

6 A. Walther and A. H. E. M€uller, Soft Matter, 2008, 4, 663–668.
7 P. Y. Keng, I. Shim, B. D. Korth, J. F. Douglas and J. Pyun, ACS
Nano, 2007, 1, 279–292.

8 A. Perro, S. Reculusa, S. Ravaine, E. Bourgeat-Lami and E. Duguet,
J. Mater. Chem., 2005, 15, 3745–3760.

9 Q. Chen, J. K. Whitmer, S. Jiang, S. C. Bae, E. Luijten and
S. Granick, Science, 2011, 331, 199–202.

10 J. R.Millman, K. H. Bhatt, B. G. Prevo and O. D. Velev,Nat.Mater.,
2005, 4, 98–102.

11 K. H. Bhatt and O. D. Velev, Langmuir, 2004, 20, 467–476.
12 J. J. Benkoski, R. M. Deacon, H. B. Land, L. M. Baird,

J. L. Breidenich, R. Srinivasan, G. V. Clatterbaugh, P. Y. Keng and
J. Pyun, Soft Matter, 2010, 6, 602–609.

13 D. Wei and G. N. Patey, Phys. Rev. Lett., 1992, 68, 2043–2045.
14 J. J. Weis and D. Levesque, Phys. Rev. Lett., 1993, 71, 2729–2732.
15 J. M. Tavares, J. J. Weis and M. M. Telo da Gama, Phys. Rev. E,

2006, 73, 041507.
16 E. Bianchi, J. Largo, P. Tartaglia, E. Zaccarelli and F. Sciortino,

Phys. Rev. Lett., 2006, 97, 168301.
17 C. Mayer, F. Sciortino, P. Tartaglia and E. Zaccarelli, J. Phys.:

Condens. Matter, 2010, 22, 104110.
18 L. Luo and S. H. L. Klapp, J. Chem. Phys., 2009, 131, 034709.
19 F. Sciortino, A. Giacometti and G. Pastore, Phys. Rev. Lett., 2009,

103, 237801.
20 J. M. Tavares, J. J. Weis and M. M. Telo da Gama, Phys. Rev. E,

2002, 65, 061201.
21 E. Zaccarelli, J. Phys.: Condens. Matter, 2007, 19, 323101.
22 R.Blaak,M.A.Miller and J.-P.Hansen,Europhys. Lett., 2007, 78, 26002.
23 A. Goyal, C. K. Hall and O. D. Velev, Phys. Rev. E, 2008, 77, 031401.
24 B. J. Alder and T. E. Wainwright, J. Chem. Phys., 1959, 31, 459–466.
25 H. S. Gulati and C. K. Hall, J. Chem. Phys., 1997, 107, 3930–3946.
26 S. O. Lumsdon, E. W. Kaler and O. D. Velev, Langmuir, 2004, 20,

2108–2116.
27 S. Gangwal, A. Pawar, I. Kretzschmar and O. D. Velev, Soft Matter,

2010, 6, 1413–1418.
28 A. Goyal, C. K. Hall and O. D. Velev, J. Chem. Phys., 2010, 133,

064511.
29 N. Osterman, D. Babi�c, I. Poberaj, J. Dobnikar and P. Ziherl, Phys.

Rev. Lett., 2007, 99, 248301.
30 J. J. Jurez and M. A. Bevan, J. Chem. Phys., 2009, 131, 134704.
31 O. D. Velev and S. Gupta, Adv. Mater., 2009, 21, 1897–1905.
32 S. H. Klapp, Mol. Simul., 2006, 32, 609–621.
33 C. Alvarez, M. Mazars and J.-J. Weis, Phys. Rev. E, 2008, 77, 051501.
34 H. Schmidle and S. H. L. Klapp, J. Chem. Phys., 2011, 134, 114903.
35 D. C. Rapaport, J. Chem. Phys., 1979, 71, 3299–3303.
36 A. Bellemans, A. Oraban and D. Vanbelle,Mol. Phys., 1980, 39, 781.
37 H. C. Andersen, J. Chem. Phys., 1980, 72, 2384–2393.
38 Y. Zhou, C. K. Hall and G. Stell, J. Chem. Phys., 1995, 103, 2688–

2695.
39 Y. Zhou, M. Karplus, J. M. Wichert and C. K. Hall, J. Chem. Phys.,

1997, 107, 10691–10708.
40 G. P. Johari, E. Tombari, S. Presto and G. Salvetti, J. Chem. Phys.,

2002, 117, 5086–5091.
41 S. S. Das, A. P. Andrews and S. C. Greer, J. Chem. Phys., 1995, 102,

2951–2959.
42 J. Stambaugh, K. Van Workum, J. F. Douglas and W. Losert, Phys.

Rev. E, 2005, 72, 031301.
43 M. A.Miller, R. Blaak, C. N. Lumb and J.-P. Hansen, J. Chem. Phys.,

2009, 130, 114507.
44 J. Baschnagel, C. Bennemann, W. Paul and K. Binder, J. Phys.:

Condens. Matter, 2000, 12, 6365.
45 J. Jordanovic, S. J€ager and S. H. L. Klapp,Phys. Rev. Lett., 2011, 106,

038301.
46 J. Russo, P. Tartaglia and F. Sciortino, J. Chem. Phys., 2009, 131,

014504.
47 J.-P. Hansen and J. R. McDonald, Theory of simple Liquids,

Academic Press, 2006.
48 S. C. Glotzer, J. Non-Cryst. Solids, 2000, 274, 342–355.
49 A. M. Puertas, M. Fuchs and M. E. Cates, J. Chem. Phys., 2004, 121,

2813–2822.
50 J. R. Errington, P. G. Debenedetti and S. Torquato, J. Chem. Phys.,

2003, 118, 2256–2263.
51 M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids,

Oxford University Press, 1986.
52 A. J. Schultz, C. K. Hall and J. Genzer, J. Chem. Phys., 2004, 120,

2049–2055.
53 J.-J. Weis, J. Phys.: Condens. Matter, 2003, 15, S1471.
54 D. Heinrich, A. R. Go~ni, A. Smessaert, S. H. L. Klapp,

L. M. C. Cerioni, T. M. Os�an, D. J. Pusiol and C. Thomsen, Phys.
Rev. Lett., 2011, 106, 208301.

55 S. Gangwal, O. J. Cayre and O. D. Velev, Langmuir, 2008, 24, 13312–
13320.

56 A. Jaster, Phys. Rev. E, 1999, 59, 2594–2602.
57 J. J. Weis, Mol. Phys., 2002, 100, 579.

1530 | Soft Matter, 2012, 8, 1521–1531 This journal is ª The Royal Society of Chemistry 2012

P
u
b
li

sh
ed

 o
n
 1

2
 D

ec
em

b
er

 2
0
1
1
. 
D

o
w

n
lo

ad
ed

 b
y
 T

U
 B

er
li

n
 -

 U
n
iv

er
si

ta
et

sb
ib

l 
o
n
 3

1
/0

3
/2

0
1
6
 1

2
:2

5
:0

8
. 

View Article Online

http://dx.doi.org/10.1039/c1sm06576a


58 R. A. Trasca and S. H. L. Klapp, J. Chem. Phys., 2008, 129, 084702.
59 J. J. Weis and D. Levesque, Phys. Rev. E, 1993, 48, 3728–3740.
60 F. Sciortino, A. Giacometti and G. Pastore, Phys. Rev. Lett., 2009,

103, 237801.
61 E. Bianchi, P. Tartaglia, E. Zaccarelli and F. Sciortino, J. Chem.

Phys., 2008, 128, 144504.

62 E. Lomba, F. Lado and J. J. Weis, Phys. Rev. E, 2000, 61, 3838–
3849.

63 P. Tartaglia and F. Sciortino, J. Phys.: Condens. Matter, 2010, 22,
104108.

64 I. Kretzschmar and J. H. K. Song, Curr. Opin. Colloid Interface Sci.,
2011, 16, 84–95.

This journal is ª The Royal Society of Chemistry 2012 Soft Matter, 2012, 8, 1521–1531 | 1531

P
u
b
li

sh
ed

 o
n
 1

2
 D

ec
em

b
er

 2
0
1
1
. 
D

o
w

n
lo

ad
ed

 b
y
 T

U
 B

er
li

n
 -

 U
n
iv

er
si

ta
et

sb
ib

l 
o
n
 3

1
/0

3
/2

0
1
6
 1

2
:2

5
:0

8
. 

View Article Online

http://dx.doi.org/10.1039/c1sm06576a

	Phase diagram of two-dimensional systems of dipole-like colloids
	Phase diagram of two-dimensional systems of dipole-like colloids
	Phase diagram of two-dimensional systems of dipole-like colloids
	Phase diagram of two-dimensional systems of dipole-like colloids
	Phase diagram of two-dimensional systems of dipole-like colloids
	Phase diagram of two-dimensional systems of dipole-like colloids
	Phase diagram of two-dimensional systems of dipole-like colloids
	Phase diagram of two-dimensional systems of dipole-like colloids
	Phase diagram of two-dimensional systems of dipole-like colloids
	Phase diagram of two-dimensional systems of dipole-like colloids

	Phase diagram of two-dimensional systems of dipole-like colloids
	Phase diagram of two-dimensional systems of dipole-like colloids


