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Phase diagram of water in carbon nanotubes

Daisuke Takaiwa, Itaru Hatano, Kenichiro Koga*, and Hideki Tanaka

Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan

Edited by Benjamin Widom, Cornell University, Ithaca, NY, and approved November 12, 2007 (received for review August 22, 2007)

A phase diagram of water in single-walled carbon nanotubes at
atmospheric pressure is proposed, which summarizes ice struc-
tures and their melting points as a function of the tube diameter
up to 1.7 nm. The investigation is based on extensive molecular
dynamics simulations over numerous thermodynamic states on
the temperature-diameter plane. Spontaneous freezing of wa-
ter in the simulations and the analysis of ice structures at 0 K
suggest that there exist at least nine ice phases in the cylindrical
space, including those reported by x-ray diffraction studies and
those unreported by simulation or experiment. Each ice has a
structure that maximizes the number of hydrogen bonds under
the cylindrical confinement. The results show that the melting
curve has many local maxima, each corresponding to the highest
melting point for each ice form. The global maximum in the
melting curve is located at =11 A, where water freezes in a
square ice nanotube.
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Water in well characterized pores is a system of general
interest because it serves as model systems for “nonbulk”
or inhomogeneous water ubiquitous in biological (1) and geo-
logical (2, 3) systems as well as in nanostructured materials (4).
Studies of such nonbulk water are of fundamental importance
because it is believed that confined or interfacial water is highly
relevant to properties and functions of the entire systems, e.g.,
those of ion channels (1) and clay minerals (2). X-ray diffraction
studies (5, 6) show that water can fill inner space of open-ended
single-walled carbon nanotubes (SWNTs) at ambient conditions
and freezes into crystalline solids often referred to as “ice
nanotubes.” The ice structures are characterized as stacked
n-membered rings or equivalently as a rolled square-net sheet
(7). The formation of the ice nanotubes in carbon nanotubes has
also been observed by NMR (8), neutron diffraction (9), and
vibrational spectroscopy (10) studies. A prediction of the spon-
taneous ice formation in carbon nanotubes was made in a
molecular dynamics (MD) simulation study (11). It was shown
that the confined water freezes into square, pentagonal, hexag-
onal, and heptagonal ice nanotubes, and unexpectedly it does so
either continuously (unlike any bulk substances, including bulk
water) or discontinuously (despite of the fact that it is essentially
in one dimension), depending on the diameter of carbon nano-
tubes or the applied pressure. Recent simulation studies pre-
dicted spontaneous formations of octagonal ice nanotubes (10,
12), ice nanotubes with hydrophobic guest molecules (13),
single-layer helical ice sheets (14), and multiwalled ice helices
and ice nanotubes (15-17). The versatility of ice we know for
bulk water seems to survive in the nano confinement.

Of the properties of water in the well defined nanopores, a
fundamental yet little known aspect is a global picture of the
phase behavior: we do not know pore-size dependence of the
melting point in the nanometer scale or conditions for gradual
and abrupt freezing. Previous results with other substances imply
that the melting point and the freezing behavior depend strongly
and nonmonotonically on the diameter of nanopores (18). Here
we perform extensive MD simulations of water in wide ranges of
nanotube diameter (9-17 A) and temperature (100-300 K) to
explore the phase behavior of water in the temperature—
diameter plane. The pressure is fixed at 0.1 MPa. We also
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examine the stability of resulting ice structures at 0 K as a
function of the SWNT diameter. From the MD results at finite
temperatures and the stability analysis at 0 K, we propose a
global phase diagram for water in carbon nanotubes under
atmospheric pressure. The pressure dependence of the phase
boundaries is briefly discussed.

The model system for water in carbon nanotubes comprises N
molecules in a portion of a cylindrical pore with diameter D. The
portion is of length L and is subject to a periodic boundary
condition in the direction of the cylinder axis. We assume that
the total potentlal energy U of interaction is the sum of pair
interactions E,<, ¢(r;, rj) among molecules and the external
potential E, 1 ¢wan(r;) of the interaction between a molecule and
the cylindrical wall, where r; stands for the coordinates of
molecule i, ¢ is the TIP4P potential function (19) multiplied by
a switching function (20), and ¢yan is the Lennard-Jones po-
tential for the water—pore interaction integrated with respect to
the positions of carbon atoms over the cylindrical surface with
an assumption of uniform distribution of carbon atoms (11).
Previous simulation studies indicate that resulting ice structures
are independent of the choice of smooth-walled or structured
pore models as well as the choice of water models (10-12). In the
present study, too, the stability of ice phases is confirmed with
the structured pore model of SWNTs from which the smooth-
walled model is derived. Validity of the present model in
predicting ice structures in SWNTSs has been verified in part by
experimental observations (5, 6).

The model system is studied by MD simulations that generate
microscopic states of an isothermal-isostress ensemble, in which
the temperature 7 and a component P.. of the pressure tensor
parallel to the cylinder axis are kept constant. The length L of
the cylindrical simulation cell, or the volume occupied by
molecules, varies so as to achieve a given P,,. The NP..T
ensemble is not isostress with respect to components normal to
the wall, for the pore diameter D is kept fixed. The NP..T-
constant MD simulation is a straightforward extension of the
standard isothermal—-isobaric MD simulation (21) and can easily
be implemented for molecules in a smooth-walled cylindrical
tube.

We perform the MD simulations for thermodynamic states
ranging from 100 to 300 K in temperature 7" and from 9.0 to 17.0
A'in diameter D. The pressure tensor component is fixed at P,, =
0.1 MPa. The number of thermodynamic states examined in the
T, D plane amounts to >460. The number N of molecules is 180,
200, or 210, depending on D; then the average length (L) of the
system (subJect to the perlodlc boundary conditions) is 246 A for

= 9.0 A'and 39 A for D = 17.0 A. To check the finite-size
effect on the phase behavior of water, MD simulations of the
twice larger system are performed at selected conditions.

Trajectories are generated by the Gear predictor—corrector
method with a time step of 0.5 fs. At each state point an
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Fig. 1.  Structures of the one-dimensional ices formed in the single-walled
carbon nanotubes of D = 9.0, 9.8, and 13.9 A under atmospheric pressure.
(a-c) Quenched (potential-energy local-minimum) structures of the ladder-
like (2, 0) ice nanotube (a), the helical (3, 1) ice nanotube (b), and the (8, 0) ice
nanotube (c). (Left) End view. (Right) Side view. H,O molecules are red (O) and
blue (H), and hydrogen bonds are yellow. The definition of the hydrogen
bonds is an energy criterion of —12 kJ/mol. Use of an alternative geometrical
criterion does not change the hydrogen-bond network structures in this figure
and Fig. 2. (d) lllustration of a square net with roll-up vectors (Left) and two
folded structures (Center and Right).

equilibration run is performed for at least 30 ns and in some
cases 1.6 us and then equilibrium properties are obtained from
10 to 300 ns of a production run. In general, P, is not equal to
the pressure P of a bulk fluid in equilibrium with the confined
fluid but the difference |P,, — P| is small when P., is very low
(22). Thus the thermodynamic states at P,, = 0.1 MPa examined
by the NP..T-constant MD simulation are essentially the same as
those at P = 0.1 MPa achieved by the NPT-constant simulation.
Structure analysis of ice phases is implemented for energy-
minimum (inherent) structures, which are free from vibrational
displacements that often obscure a fundamental structure; the
minimum structures are obtained by the steepest-descent
method (23). In the analysis, the hydrogen bond is defined by a
pair interaction energy criterion of —12 kJ/mol; it was checked
that an alternative geometrical criterion does not change the
results.

Spontaneous formation of crystalline ices from liquid water
under atmospheric pressure is monitored in the process of
decreasing T from 300 K for systems with D = 12 A and from
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Fig. 2. Structures of the multilayer ices formed in the carbon nanotubes of
D = 14.8 and 16.4 A under atmospheric pressure. Shown are quenched
structures of the double-layer (DL) ice (a) and the triple-layer (TL) ice (b). (Left)
View from the axial direction. (Right) Structures projected onto a cylindrical
surface coaxial with the nanotube. Colors indicate the same as in Fig. 1 a—c
except that H,O molecules in the inner layer(s) are pink (O) and light blue (H)
and that on the Right the hydrogen bonds within the outer layer, those
between the outer and inner layers, and those within the inner layer are black,
orange, and green, respectively.

lower temperatures for systems with D < 12 A (in the latter
systems at ~300 K, condensed phases are found to be unstable
and break into clusters). For each system we reverse the cooling
process from the lowest temperature to examine melting behav-
ior and hysteresis.

We find that nine ordered one-dimensional ices spontaneously
form in the carbon nanotubes at atmospheric pressure, five of
which are identical to polygonal ice nanotubes previously found
by simulation (10-12) or experiment (6), whereas the other four
seem to be new members of the “one-dimensional” ice (see Figs.
1 and 2). The ice that forms in the smallest diameter range has
a ladder-like structure in which each molecule has only three
hydrogen-bonding neighbors. This ice structure is refereed to as
the (2, 0) ladder-like ice. [We denote this and subsequent ice
structures by an index (n, m) for the reason explained below.] In
the next range of diameters, water freezes into a helical (3, 1) ice
nanotube, which, we suspect, is identical to the one in the SWNT
(9.46 A in diameter) reported by Noon ez al. (14). In the third to
sixth ranges of diameter there is formation of square (4, 0),
pentagonal (5, 0), hexagonal (6, 0), and heptagonal (7, 0),
respectively, ice nanotubes, which were found earlier at higher
pressures (11). In the seventh range of diameter the confined
water freezes into an octagonal (8, 0) ice nanotube, which was
suggested from an x-ray diffraction analysis (6) and recently
found in simulations (10, 12). The inner space of the (8, 0) ice
nanotube may have additional water molecules.

In the eighth and ninth ranges of the tube diameter, liquid
water freezes into double- and triple-layer (DL and TL) ices.
Unlike ice nanotubes, the outermost layer of DL and TL ices is
a hexagonal hydrogen bond network and so the number of
hydrogen bonds per molecule within the outermost layer is three;
another hydrogen-bonding neighbor is a molecule in the inner
layer (Fig. 2). In this regard the DL and TL ices are very similar
to the nanoice found in (22, 0) SWNT at high pressure (16); a
difference is that the outermost layer of DL and TL ices has
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helicity whereas that of the nanoice does not. In the case of DL
ice, molecules in the inner layer form a double-stranded helix,
and each water molecule has two hydrogen-bonding neighbors in
its single helix and the other two in the outermost layers. So,
except some defects, the DL ice has a fully connected hydrogen
bond network. In the case of TL ice, the structure of inner
molecules is less ordered than that of DL ice, but the average
number of hydrogen bonds, 3.9, is very close to 4.

At diameters around the border of seventh and eighth ranges,
one observes temporary formation of helical (8, 1) and straight
(9, 0) ice nanotubes, the inner space of which is occupied by a
chain of water molecules; but one cannot judge whether these are
stable phases even after exceptionally long simulations (2 us or
longer). As we will see from the structure analysis at 0 K, the
stabilities of these ice forms are very close to each other and to
those of the (8, 0) and DL ices at these diameters. Thus, the
resulting crystalline structure may fluctuate from one candidate
to another in a long time scale.

There is a common feature among all of the ice structures
except the DL and TL ices. That is, when a hollow tube-like
structure is projected onto a surface of a cylinder coaxial with the
nanotube, there appears a square-net structure, nodes and bonds
of which correspond to water molecules and their hydrogen
bonds, respectively. One then notices that what makes the ice
structures different from each other is the way of folding the
square-net sheet with a roll-up vector connecting two equivalent
nodes in the net. An n-gonal ice nanotube is obtained if the sheet
is folded by roll-up vector (n, 0), whereas a helical ice nanotube
is realized if the sheet is rolled by vector (n, m) with m # 0 and
m # n. The illustration is given in Fig. 1d. This is the reason that
one can specify each ice nanotube by an index (n, m). This
convention is entirely analogous to that to specify a single-walled
carbon nanotube by a roll-up vector on the hexagonal-lattice
sheet. The structures obtained by folding the square net clearly
satisfy the ice rule that each molecule has four hydrogen-bonded
neighbors. There are, however, two exceptions: the (2, 0) ladder-
like structure, in which each molecule has only three hydrogen-
bonding neighbors, and the “filled” ice nanotubes, which have
additional molecules in the otherwise hollow space of the (n, m)
ice nanotubes. We note that close-packed structures of spherical
molecules, such as argon and Cg, in cylindrical pores are also
characterized by a roll-up vector. In this case the sheet to be
rolled up is that of a triangular lattice, which is the close-packed
structure in two dimensions (18). The difference in unfolded
structure between water and simple liquids, i.e., square or
triangular lattice, reflects the fact that, even in the confining
geometry, solid structures of water are dominated by the intact
hydrogen bond network, whereas those of simple liquids are
governed by close packing.

Of special interest for the study of liquids in quasi-one
dimension is the nature of freezing. The proposition that freez-
ing is a first-order phase transition has no counterevidence
except for systems in less than two dimensions. We know from
theory of phase transitions (24) and experimental observations
(25) that freezing of a liquid (or in fact any first-order phases
transition) is rounded in a microscopic cylindrical (one-
dimensional) pore and the phase change becomes more obscure
as the diameter decreases. In nanopores, however, freezing
behavior is not simply explained by the general “rounded-off”
picture but differs from one system to another and can be much
richer than that in larger pores (18, 26). An earlier MD simu-
lation study showed that water in carbon nanotubes may freeze
either continuously or discontinuously, depending on diameter
and pressure (11). Another recent study demonstrated that
freezing behavior of argon in carbon nanotubes is sensitive to the
pore diameter: even an interval of 0.8 A in diameter [the
difference of (n, 0) and (n+1, 0) single-walled carbon nano-
tubes] is too large to reveal the diameter dependence of freezing
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Fig. 3. Plots of enthalpy vs. temperature for water at nine different diam-
eters of the single-walled carbon nanotube. The key in the figure denotes the
diameter for each data set. Open marks indicate hysteresis that appears upon
heating.

behavior. Thus we examine the freezing behavior of water at
successive diameters with an interval of 0.2 or 0.1 A.

We note that an extremely long MD simulation is required for
each state point around the phase transition (2 us in some cases)
to judge whether the freezing is continuous and to determine the
freezing point as accurately as possible, for its structure, density,
and energy may fluctuate in a time scale of a few hundred
nanoseconds. After a number of such simulations, a rich phase
behavior of water in the nanopore is unveiled.

Fig. 3 shows the enthalpy of the system as a function of
temperature at nine representative diameters at which the nine
ices form at low temperatures. It is clear that at some diameters
the enthalpy H changes continuously over the entire range of 7,
whereas at other diameters it exhibits an abrupt change. Some
of the latter cases are accompanied by pronounced hysteresis.
We also monitor the density, structure, and diffusion constant as
functions of T and find the same continuity or discontinuity as
in H (over all of the diameters examined). We then classify phase
changes into two types, i.e., the continuous and the discontinu-
ous (or first-order-like) transitions as follows: it is discontinuous
if sudden changes in H and other quantities are observed in AT =
5 K and otherwise it is regarded as continuous. We notice that
the criterion is not sufficient to judge a transition to be of
first-order (infinitely sharp) or not, but it is of practical conve-
nience because the resolution of 5 K would be as small as that
in common experimental observations of freezing in nanopores.

Based on the practical criterion, one finds that when the pore
diameter is >12 A, a liquid—solid phase change occurs discon-
tinuously in most cases. When the diameter is <12 A, however,
the freezing and melting occur continuously at most diameters;
exceptional discontinuous freezing may be observed at the
smallest end of a diameter domain for each ice. In the continuous
melting processes (D < 12 A), the diffusion constant increases
continuously until the density of water drops suddenly as the
condensate breaks into clusters. The diffusion constant just
before the sudden “sublimation” ranges from 3.2 X 1078 cm?/s
(T=160K,D =9.0 A) to 1.33 X 100 cm?%s (T = 290 K, D =
10.8 A).

We now examine diameter-dependent stability for the nine ice
forms and the other possible structures and determine phase
boundaries in the limit of 0 K. This is done by comparison of the
enthalpy H for the ices at 0 K. The structures of ices at 0 K are
the energy-minimum structures obtained by the steepest-descent
quench at the fixed pressure of 0.1 MPa. For (2, 0), (3, 1), filled
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Fig. 4. Plots of enthalpy vs. the nanotube diameter at 0 K for nine ices. The
index (n, m), DL, or TL on each curve denotes its ice structure. (Inset) Enthalpy
curves of the stable and metastable ices at ~14.5 A.

(8, 0), filled (8, 1), filled (9, 0), DL, and TL ices, instantaneous
structures given by the MD simulations are quenched to the
minimum structures. For (4, 0) to (9, 0) ice nanotubes, proton-
ordered crystalline structures consisting of stacked n-membered
rings are quenched. The proton arrangement is taken to be the
one that gives the lowest energy in the resulting quenched
structure (7) [in the nomenclature of ref. 7, it is ABAB arrange-
ment in (4, 0) ice and AABB otherwise].

Fig. 4 shows plots of H vs. D for the ice structures. They are
smooth curves concave upward, each intersects with neighboring
curves, and the part bounded by the intersections lies lower than
any other curves. In this way the entire range of the diameter is
divided into nine domains, each corresponding to a distinct ice
phase. The order of each ice’s range of D is in agreement with
that observed in the simulations. When each ice structure is
quenched in the structured pore it has essentially the same
potential energy as that in the smooth-walled pore (the differ-
ence is <0.04 kJ/mol). Listed in Table 1 are the phase-transition
diameters of ices in the carbon nanotube at 0 K. The Inset in Fig.
4 shows that the enthalpy curves of filled (8, 0), (8, 1), and (9, 0)
ices lie very close to the intersection of the curves of the (8, 0)
and DL ices. This finding is consistent with the temporary
formations of those ices as observed in the MD simulations.

The phase diagram for the model system of water in carbon
nanotubes is given in Fig. 5. The melting curves (solid lines in the

Table 1. Numerical results of the phase boundaries of ices
in single-walled carbon nanotubes

Ice phase Dimine A Dmax, A
(2, 0) — 9.0
(3.1 8.80 9.8
(4, 0) 9.69 11.1
(5, 0) 10.87 12.0
(6, 0) 11.68 13.1
(7,0 12.64 13.8
(8, 0) 13.38 14.6
DL 14.29 15.8
TL 15.54 —

The indices (n, m) denote ice phases that can be specified by a roll-up vector
(n, m) (Fig. 1d); DL and TL denote the double-layer and triple-layer ice phases.
Dmin is the minimum diameter of pore for each ice, which is a solid—solid phase
boundary at 0 K determined by energy-minimum structure analysis. Dmax is the
maximum diameter for each ice, which is the largest pore diameter at which
spontaneous formation of that ice is observed in MD simulation.
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Fig. 5. Calculated phase diagram of water in single-walled carbon nano-
tubes at atmospheric pressure in the diameter range 9-17 A. Filled circles
denote the freezing point at which liquid water freezes abruptly. Open circles
indicate the existence of hysteresis, i.e., the highest temperature at which an
ice does not melt upon heating. Triangles indicate continuous freezing and
melting at the inflection point of a continuous H vs. T curve. Squares denote
the temperature above which an ice phase becomes unstable and breaks into
clusters upon heating. Solid lines (simply connecting adjacent filled marks) are
the estimation of the melting curves, and the dashed lines (connecting the
transition points at 0 K and a finite T) are the estimate of the ice-ice phase
boundary.

figure) are approximated by connecting the successive freezing
points at discrete diameters. The freezing points (shown as filled
circles in the figure) are the highest temperatures at which an
abrupt freezing is observed in the simulations. When the system
freezes continuously from a liquid-like state, the freezing point
is taken to be the inflection point of the H vs. T curve (triangles
in the figure). In other cases in which an ice-like phase becomes
unstable and breaks into clusters when heated, the temperature
of the stability limit is chosen as the freezing point (squares in
the figure). When hysteresis exists in the freezing and melting
processes, the melting point (open circles) is also plotted. It is
confirmed at selected diameters that the melting point is unaf-
fected by doubling the number of water molecules, suggesting
that the finite-size effect is negligible in this range of system sizes.
It is also found that the Lindemann criterion, an empirical rule
for melting, remains valid for the quasi-one-dimensional ices: the
root-mean-squared vibrational displacement in the axial direc-
tion of molecules for each solid phase is always <10% of the
lattice constant. Solid—solid phase boundaries (dashed lines in
the figure) are estimated by connecting two transition points by
a straight line: the small-diameter limit of the melting curve of
a given ice and the minimum diameter D, of that ice at 0 K (a
boundary with another ice). The solid-solid boundaries and the
melting curves define the nine domains of ice phases (see Fig. 5).
Table 1 lists both minimum and maximum pore diameters (Dmin
and Dy, for the ices. The diameter range of each ice spans at
least 1 A, which is large enough to include physically realizable
diameters of carbon nanotubes.

Of the nine ices, the square ice nanotube has the highest
melting (sublimation) point, 290 K, at D = 10.8 A. The further
the diameter domain from that of the square ice (in both
directions) the lower the (highest or average) melting point
of other ices. For example, the (3, 1) ice at 9.2 A and the
triple-layer ice at 16.4 A have the melting points ~180 K, lower
by 110 K than that of the square ice. (It was checked that liquid
states just above the melting points are equilibrium states: their
thermodynamic and dynamical properties are independent of
whether the states are reached by cooling higher-temperature
liquids or heating ices.) In a local perspective, i.e., within a
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diameter domain of each ice typically 1 A in width, the melting
temperature is concave downward and lowest at either end of the
diameter range. A simple thermodynamic argument explains
why each ice’s melting curve is concave downward with the local
maximum. The slope of the melting curve is given by

ar . f*=f°

dD e —sP

where f is the average force on the wall (now the inner surface
of the carbon nanotube) and s is the entropy, both per water
molecule, in phase « or B as indicated by a superscript. (The
exact expression for dT/dD containing the pressure-tensor com-
ponent P in the axial direction reduces to the above expression
when P. is negligibly small as in the present condition.) Let « be
a liquid (or vapor) phase and 8 be an ice phase so that s — sP
> 0. When D is smaller than an optimal diameter for that ice, f?
is positive and larger in magnitude than |f*|, i.e., f* — f° < 0 and
sodT/dD > 0. When D is larger than the optimal value, f? would
be negative and |f*| > |f¥|, thereby dT/dD < 0. And finally when
the diameter is optimal such that f* — f8 = 0, i.e., the force
exerted on the confining wall is unchanged upon freezing/
melting of the confined substance, the melting point would be a
local maximum d7/dD = 0.

The estimated ice—ice phase boundaries have steep and pos-
itive slopes. This observation is explained by a similar thermo-
dynamic argument. Let now a and B be two adjacent ice phases
on the larger- and smaller-D side of the boundary, respectively.
Then f* — 8 > 0 on any such boundary. Each phase boundary
has a positive slope because s¢ — s# < 0, or equivalently 1% — hP
< 0 with % being the enthalpy per molecule, i.e., heat evolves
upon a structural transition from the small-D ice to the large-D
ice. The solid—solid phase boundaries are steeper in slope than
the solid-liquid and solid-vapor boundaries because the entropy
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difference |s* — sP| of two neighboring solid phases is smaller
than that of solid and liquid (or vapor) phases.

In contrast to bulk water, as demonstrated in the MD simu-
lations, water in carbon nanotubes at atmospheric pressure does
not show the density maximum before freezing and shrinks upon
freezing. The lack of the density maximum means the coefficient
of linear thermal expansion is always positive. The decrease in
volume upon freezing occurs suddenly or gradually, depending
on a first-order-like or continuous transition. Because the vol-
ume decreases and the entropy decreases upon freezing, the
melting point should increase with increasing pressure. This is
directly supported by the present and earlier results for different
pressures: water in the carbon nanotube of D = 12.6 A under 0.1
MPa freezes at 265 K (present study), whereas it freezes under
50 MPa at 275 K (11). In fact, one can estimate the slope of the
melting curve in the (P, T) plane from the simulation data by
another Clapeyron equation:

dT_v“—v‘B
dP s — P

where v is the volume and s again is the entropy, both per
molecule, in phase « or B as indicated by a superscript. The
volume change is directly given by the constant-NP,,T simula-
tion, whereas s — sP is equal to the corresponding enthalpy
change divided by 7, the latter of which is again directly given by
simulation. From the simulation data, the slope d7/dP of the
melting curve is 0.13 K/MPa at 0.1 MPa (and it is 0.1 K/MPa at
50 MPa). This estimate is consistent with the direct simulation
results of the freezing point at 0.1 and 50 MPa.
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