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Sound driven gas bubbles in water can emit light pulses. This phenomenon is called
sonoluminescence~SL!. Two different phases of single bubble SL have been proposed: diffusively
stable and diffusively unstable SL. We present phase diagrams in the gas concentration versus
forcing pressure state space and also in the ambient radius versus gas concentration and versus
forcing pressure state spaces. These phase diagrams are based on the thresholds for energy focusing
in the bubble and two kinds of instabilities, namely~i! shape instabilities and~ii ! diffusive
instabilities. Stable SL only occurs in a tiny parameter window of large forcing pressure amplitude
Pa;1.2–1.5 atm and low gas concentration of less than 0.4% of the saturation. The upper
concentration threshold becomes smaller with increased forcing. Our results quantitatively agree
with experimental results of Putterman’s UCLA group on argon, but not on air. However, air
bubbles and other gas mixtures can also successfully be treated in this approach if in addition~iii !
chemical instabilities are considered. All statements are based on the Rayleigh–Plesset ODE
approximation of the bubble dynamics, extended in an adiabatic approximation to include mass
diffusion effects. This approximation is the only way to explore considerable portions of parameter
space, as solving the full PDEs is numerically too expensive. Therefore, we checked the adiabatic
approximation by comparison with the full numerical solution of the advection diffusion PDE and
find good agreement. ©1996 American Institute of Physics.@S1070-6631~96!02011-9#

I. INTRODUCTION

A. The phenomenon

A gas bubble levitated in a strong acoustic field

P~ t !5Pacosvt ~1!

can emit bursts of light so intense as to be observable by the
naked eye.1–8 Here,Pa is the forcing pressure amplitude and
v/2p the frequency of the forcing field. This phenomenon is
called single bubble sonoluminescence~SL!. The light pulse
is shorter than 50 ps.2,9 Precise experiments by Putterman’s
group at UCLA2–7 have revealed many surprising and in-
triguing properties of sonoluminescing bubbles. SL only oc-
curs in a narrow parameter range. The adjustable experimen-
tal parameters we focus on here are the forcing pressure
amplitude Pa and the gas concentrationc` far from the
bubble. Single bubble SL is found only for large~compared
to the ambient pressureP0) forcing pressurePa;1.2–1.5
atm and small~compared to the saturationc0) gas concen-
tration c` .

We report the results on argon bubbles first. Two distinct
phases of single bubble SL have been proposed on account
of experimental observations:5 ~i! Unstable SLoccurs in the
concentration rangec` /c0'6%–26%. This phase is char-
acterized by an increase of the relative phase of light emis-
sion with respect to the driving pressure on the slow diffu-
sive time scale;1s, followed by a rapid breakdown and
another subsequent increase. The light intensity itself be-
haves in the same way and the bubble is reported to be danc-
ing or jiggling.1,5 This state of SL is also unstable in the
sense that often all of a sudden the bubble dies.~ii ! Stable SL
occurs in argon bubbles at very low gas concentrations

c` /c0;0.4%. The diffusively stable state is characterized
by the constancy of the relative phase of light emission over
billions of cycles. The same is true for the light intensity.

For air bubbles the same two phases exist, however,
for gas concentrations about two orders of magnitude
larger than for argon bubbles: Stable SL is observed for
c`
air/c0;10%–20%,5 unstable SL for even higher concentra-
tions.

Another controllable parameter is the temperature of the
liquid. Upon decreasing the temperature of the ambient water
from room temperature to slightly above freezing, the light
intensity may increase by two orders of magnitude.3 Abrupt
transitions in the light intensity with the liquid temperature
are found for SL in nonaqueous fluids.10 Using different flu-
ids ~but the same gas species! also results in great differences
in SL intensity.10,11

B. A hydrodynamic approach

The goal of this paper is to figure out which features of
SL can be accounted for in a purely hydrodynamic approach6

and to which extent they may reflect other, non-
hydrodynamic effects, e.g., chemistry.

Our main result is the phase diagram Fig. 1 in the
Pa2c` phase space. It is obtained from hydrodynamic cal-
culations of the bubble dynamics and the fluid dynamical and
diffusive processes outside the bubble. For given forcing
pressure amplitudePa and gas concentrationc` we predict
with this diagram whether the bubble is in the diffusively
unstable SL state, the diffusively stable SL state, or in no SL
state at all.

Besides the forcing pressure amplitudePa and the gas
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concentrationc` , two further parameters have to be ad-
dressed here: The frequencyv/2p of the forcing field and
the ambient radiusR0 of the bubble, i.e., the bubble radius at
ambient normal conditions ofP051atm and 293 K. The
frequency is set to a fixed value so that the forcing acoustic
field ~1! corresponds to a resonance of the container, in order
that the bubble remains trapped in a pressure antinode. All of
the analysis corresponds tov52p 26.5 kHz as applied in
Barberet al.’s experiment;5 the period of the forcing field is
thusT52p/v538 ms.

The ambient radiusR0 of the bubble is not an adjustable
parameter but the system choosesR0 dynamically. The ap-
proach followed here includes this~diffusive! dynamics, so
that we can predict the ultimate ambient radius. Our results
are consistent with Mie scattering radius measurements.5

What are the necessary requirements for SL to occur?
First, the bubble has to be stable toward shape
oscillations.12–17We have identified three types of shape in-
stability: Two instabilities of a parametric type acting on
relatively slow time scales of;12100 ms. As discussed
below, these instabilities are quite gentle and the bubble can
survive them by pinching off microbubbles. This pinch off
causes the aforementioned break in the relative phase of light
emission in the unstable SL state5 and the recoil of the re-
maining bubble is the origin of the observed ‘‘jiggling’’ or
‘‘dancing’’ of the bubble. The third type of shape instability,
however, acts on a very short time scale&1029 s. It is so
violent that it ejects the bubble from the trapping sound field.
We call it the Rayleigh–Taylor instability as it occurs when
gas from inside the bubble is accelerated towards the fluid.

What is the energy focusing process in the bubble?
Many speculations abound in literature.18,19 Jarman20 ~for
multi bubble SL! and later Greenspan and Nadim21 and Wu
and Roberts22 suggest thatshocksdetach during the compres-
sion of the bubble and focus to the center of the bubble,
thereby compressing the gas so strongly that light can be
emitted, either by ionization and subsequent
bremsstrahlung22,6or by blackbody radiation.11 In Ref. 23 we
suggest an alternate energy focusing mechanism. The idea is
that the bubble acts as a driven acoustic resonator which
switches on when the damping losses through viscosity and
acoustic radiation are smaller than the energy input during

the collapse. The acoustic energy accumulates and finally
results in light pulses. This theory offers an explanation for
the possibility of the above mentioned abrupt transition in
the SL intensity with increasing temperature,10 as well as for
the dependence of the light intensity on different liquids and
gases. We refer to Ref. 23 for a detailed discussion.

In this paper we take as criterion for energy focusing and
the resulting light production that the Mach number of the
bubble wall~with respect to the speed of sound in the gas!
has to be larger than one.24 This criterion corresponds to the
onset of SL within conventional shock theories20–22 and
within our alternate energy focusing mechanism.23 Together
with the requirement of bubble stability, it gives the bound-
ary of the stable SL regime of Fig. 1. For argon bubbles the
narrow parameter range where stable SL exists is in agree-
ment with experiments of Barberet al.5 A qualitative argu-
ment for this agreement was previously given by Lo¨fstedt
et al.7

C. Chemical instabilities

For air bubbles there are severe deviations between the
hydrodynamically calculated phase space diagram and the
experimental measurements.5 The parameter regime where
stable air bubbles should exist is close to that of argon; how-
ever, experimentally stable SL is found for gas concentra-
tions as large asc`

air/c0;20%.5 Because of this discrepancy,
Löfstedtet al.hypothesize7 a ‘‘yet unidentified mass ejection
mechanism.’’ In Ref. 25 we have suggested that this mecha-
nism is chemical. Indeed, when considering besides~i! shape
instabilities and~ii ! diffusive instabilities also~iii ! chemical
instabilities, our results can be extended to gas mixtures and
are then in quantitative agreement with the UCLA experi-
ments, as shown in detail in Ref. 26. The idea is that because
of the high temperatures achieved in the bubble nitrogen
and/or oxygen is destroyed and reacts to NO3

2 , NO2
2 , and/or

NH4
1 and only pure argon remains in the bubble. Thus for air

which contains about 1% argon the gas concentrationsc`
air in

water have to be about two orders of magnitude higher than
for pure argon. The central parameter is thus the argon~or
inert gas! concentrationc`

Ar5qc`
mixture in the dissolved gas.

Here, q is the percentage of argon in the mixture; for air
q50.0151%. The nitrogen dissociation theory suggests that
when adjustingq properly, no degasing is necessary any
more.25,26

In this paper we work out the basics of our hydrody-
namic approach and restrict ourselves to pure argon bubbles
for which no chemical instabilities~i.e., reactions! can occur.
However, by considering the chemical instabilities
properly,25,26our results here can directly be extended to any
gas mixture and are found to agree with the UCLA experi-
ments.

D. Necessary approximations

How can we examine the huge multi–dimensional pa-
rameter space (Pa , c` , andR0)? Given that the dynamics
involve time scales spanning eleven orders of magnitude
~from the time scale of the light flash~,50 ps! to the diffu-
sive time scale~;1 s!!, it is necessary to make approxima-

FIG. 1. Phase diagram in thec` /c0 vs Pa /P0 parameter space. The three
phases represent stable SL, unstable SL, and no SL. For lucidity we do not
draw the upper and the right borderline of the unstable SL regime toward a
no SL regime as they are less precisely defined.
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tions in modeling the hydrodynamics of sonoluminescence.
The full hydrodynamic problem involves solving the three-
dimensional~3-D! Navier–Stokes equations both inside and
outside the bubble, coupled with equations of heat transfer
and gas transfer, accompanied by the correct boundary con-
ditions at the interface and at infinity and the equations of
state. Moreover, at least in principle the radiation fields need
to be coupled to the fluid. This set of equations must be
studied not only as a function of parameters but also over
millions of oscillation periods of the bubble; it should be
emphasized that the relevant question for sonoluminescence
experiments is not the transient that occurs for the first few
cycles but rather the nature of the long time limit. This com-
plete formulation is both computationally and theoretically
intractable. In order to make progress, the problem must be
simplified. To date, two different avenues have been pur-
sued.

The first approximation was proposed long ago by Lord
Rayleigh27 and elaborated upon by Plesset,28 Taylor,29

Lauterborn,30 Prosperetti31,16 and others,32 in the context of
studies of cavitation. The idea is to consider the bubble as a
perfectly spherical cavity, with the pressure inside the bubble
having no spatial variations. The temporal variation of the
pressure follows from an equation of state. In this approach
the full dynamics is reduced to the Rayleigh–Plesset~RP!
ODE.33 This formulation allows very long time calculations
of the bubble dynamics, but it completely ignores the dy-
namics inside the bubble producing the light. Later on,
Plesset,12 Strube,15 and Prosperetti16 extended this type of
approach to deal withshape oscillationswhile Epstein and
Plesset,34 Eller and Crum,35,14Crum and Cordry36 and finally
Fyrillas and Szeri37 and Löfstedt et al.7 included diffusive
effects.We call this approach theRP-SL-bubble approach.
Clearly, shock formation20,21or the building up of the acous-
tic waves23 inside the bubble will modify the dynamics of
R(t), because strictly speaking, the RP equation only holds
for a Mach number smaller than one. But it is our belief that
the results of this paper are robust towards the resulting
changes and it is only within this RP-SL bubble approach
that the exploration of the full SL parameter space and the
calculation of phase diagrams are currently manageable. Full
numerical simulations as in Refs. 38 and 39 are by far nu-
merically too expensive to do such an analysis.

The second type of approximation traditionally made is
complementary to the first, and focuses on the interior of the
bubble and above mentioned shock formation
processes.21,22,39,40The spherically symmetric gas dynamics
equations are solved inside the bubble and coupled to the
Rayleigh–Plesset equation. Simplifications are typically em-
ployed in modeling the gas dynamics, for example neglect-
ing heat and viscous dissipation. These calculations can only
be carried out for a few oscillation periods, and thus are not
able to resolve cumulative effects building up over many
oscillations.

E. The Rayleigh–Plesset equation

The Rayleigh–Plesset~RP! equation,6,27,30on which the
entire analysis of this paper is based, describes the dynamics
of the bubble radius,

RR̈1
3

2
Ṙ25

1

rw
~p~R,t !2P~ t !2P0!1

R

rwcw

3
d

dt
~p~R,t !2P~ t !!24n

Ṙ

R
2

2s

rwR
. ~2!

Typical parameters for an argon bubble in water at room
temperature are the surface tensions 5 0.073 kg/s2, the wa-
ter viscosityn51026 m2/s, densityrw51000 kg/m3, and
speed of soundcw51481 m/s. The driving frequency of the
acoustic field isv/2p526.5 kHz and the external pressure
P051atm. These parameters show a weak dependence on
the temperature of water which is assumed to be constant
throughout. We assume that the pressure inside the bubble
varies according to

p~R~ t !!5P0S R0
32h3

R3~ t !2h3D
g

, ~3!

whereh5R0/8.86 is the hard core van der Waals radius for
argon bubbles.6 The exponentg is the effective polytropic
exponent of the gas. Plesset and Prosperetti31 calculated how
it depends on the~thermal! Péclet number Pe5R0

2v/k which
gives the ratio between the bubble length scaleR0 ~which we
take as'5mm for the estimates in this paragraph! and the
thermal diffusion lengthAk/v. The thermal diffusivityk for
argon isk'231025 m2/s, which yields Pe'0.2 and ac-
cording to Fig. 1 of Ref. 31, the effective polytropic expo-
nent g51. As discussed below, the RP equation contains
much smaller time scales thanv21. One could therefore ar-
gue that these smaller time scales may enter into the calcu-
lation of Pe, so that the frequencyv should be replaced by
uṘu/R. This estimate would lead to Pe(t) as large as 104 at
instants of rapid bubble wall movement which implies
g'5/3 for argon. However, since Pe(t)@1 only holds in
very small time intervals;1 ns, the global dynamics are not
affected by setting the effective polytropic exponentg51
uniformly in time. Note that withg51 Eq.~3! should not be
thought of as an equation of state but rather as a process
equation parametrizing the isothermal conditions at the
bubble wall, induced by the large heat capacity of water. The
choice ofg51 is confirmed by the full numerical simula-
tions of Vuong and Szeri38 and by the approximation of Ka-
math et al.41 Note that, as a consequence, there are heat
fluxes back and forth across the bubble wall.

Another approximation in~2! and in the dynamical equa-
tion below for the nonspherical distortions is that transla-
tional movements of the bubble are not taken into account. If
present they may cause further instability, but the experi-
ments in which the bubble is fixed in the center of the cell
seem to justify that we neglect translational motion.

The radiusR(t) corresponding to the forcing pressure
~1! with Pa51.15atm is shown in Fig. 2~b!. Four time scales
are hidden in the~linearized! RP equation: The period
T538 ms of the external forcingP(t) ~Fig. 2~a!!, the in-
trinsic frequencyA3gP0 /(rwR0

2)/2p'(1.8 ms)21 of the
oscillating bubble which is the frequency of the after-
bounces, the time scale of viscous dampingR0

2/n'25 ms,
and the duration;0.121 ns of the bubble collapse, esti-
mated in Ref. 6. A fifth time scale, determined by the surface
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tensionAR0
3rw /s'1.3 ms is only important for larges or

smallR; for typicalR0, it only slightly changes the intrinsic
time scale which is of the same order of magnitude.

Also diffusive processescan be understood within the
RP approach to the SL bubble.7,37,42 At first sight this is
surprising because there is no diffusive time scale in the RP
equation. For a qualitative understanding why this works
nevertheless, look at the bubble radiusR(t) ~Fig. 2~b!!, re-
sulting from ~2!. For largeR(t) the pressure inside the
bubble will be low and gas diffuses into the bubble~rectified
diffusion!. For smallR(t), on the other hand, the bubble will
shrink because of the enormous pressure inside.43 This con-
cept was made quantitative by Fyrillas and Szeri37 and Löf-
stedtet al.7 The main idea is a separation of the slow diffu-
sive time scale from all time scales in~2!. We therefore call
this approach theadiabatic approximation of diffusion. As
we will see the balance between growth and shrinking is
very delicate. In Fig. 2~c! we present the ambient radius~cal-
culated in Section V! R0(t) which represents the mass
m54pR0

3r0/3 of the bubble, with the ambient density
r0'1.6 kg/m3 for argon. It corresponds to theR(t) curve in
Fig. 2~b!. The exchange processes between the bubble and
the liquid can be very violent. In Fig. 2~c! the bubble’s mass
increases to 100.5% of its initial value and decreases to
99.8% thereof while after one full cycle it again takes its
initial value. These are representative values for argon
bubbles near the onset of the SL regime; for larger forcing,
the exchange processes become even more violent.

F. Organization of the paper

The paper is organized as follows. In Section II we ana-
lyze the bubble stability with respect to shape oscillations.
We then give as necessary criterion for light emission energy
focusing in the bubble, either through a shock or through
acoustic resonance~Section III!. Section IV constitutes the

main part of the paper. We calculate the diffusive instability
with Fyrillas and Szeri’s37 and Löfstedt et al.’s7 adiabatic
approximation. The main results are phase diagrams in the
c`2Pa , the R02Pa , and theR02c` parameter spaces.
Only in a very small parameter domain does stable SL occur.
To analyze unstable SL we calculate growth rates and com-
pare them to Putterman’s measurements of diffusively un-
stable SL argon bubbles.5 Concentration profiles from a full
numerical solution of the advection diffusion PDE are pre-
sented in Section V, where we also check the validity of the
adiabatic approximation by comparison with full numerical
solutions of diffusive dynamics. We find experimentally un-
detectable discrepancies which vanish in the Schmidt num-
ber Sc→` limit. Section VI presents conclusions.

II. SHAPE STABILITY

For sonoluminescence to occur and for the bubble to
remain oscillating for billions of cycles, the bubble must be
stable to shape oscillations. First, following the pioneering
work of Plesset,12 Strube,15 and Prosperetti,16 we derive
equations for the deviations of the bubble from a spherical
shape, and then proceed to analyze them.

A. Dynamical equations

We focus on the stability of the radial solutionR(t).
Consider a small distortion of the spherical interfaceR(t),

R~ t !1an~ t !Yn~u,f!,

whereYn is a spherical harmonic of degreen. The goal is to
determine the dynamicsan(t) for each mode. Plesset’s12

derivation follows the same spirit as the derivation of the
Rayleigh–Plesset equation. The potential flow outside the
bubble is constructed to satisfy the boundary condition that
the velocity at the bubble wall isṘ1ȧnYn . This potential is
then used in Bernoulli’s law to determine the pressure in the
liquid at the bubble wall. Applying the pressure jump condi-
tion across the interface yields the Rayleigh–Plesset equation
for R(t) as well as a dynamical equation for the distortion
amplitudean(t),

än1
3Ṙ

R
ȧn2F ~n21!

R̈

R
2

bns

rwR
3Gan50, ~4!

wherebn5(n21)(n11)(n12). However, viscous effects
have been neglected in Plesset’s derivation.

Viscosity was later taken into account by Prosperetti.16

The intrinsic difficulty in its consideration is that viscous
stresses produce vorticity in the neighborhood of the bubble
wall.44 In principle, vorticity spreads both by convective and
by diffusive processes all over the fluid and the problem
becomes nonlocal. However, for small viscosity the gener-
ated vorticity will be more or less localized and we can in-
troduce a bubble boundary layer approximation of the non-
local equations which we do in the next subsection.

Here, we give the dynamics of the nonlocal problem,
closely following Prosperetti.16 It is advantageous to decom-
pose the vorticity field in the fluid in a poloidal and a toroidal
part, which are conveniently represented by scalar fields
S(r ,t) andT(r ,t), respectively,

FIG. 2. ~a! Forcing pressureP(t)5Pacosvt, Pa51.15 atm for two cycles
and the corresponding~b! R(t) and ~c! R0(t). The bubble is near an equi-
librium state. The gas concentration isc` /c050.035.
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v5¹3¹3@S~r ,t !Yn
m~u,f!er#

1¹3@T~r ,t !Yn
m~u,f!er#. ~5!

Only the latter,T(r ,t), contributes to the long term dynamics
of the bubble. Its dynamics are given by the PDE

] tT~r ,t !1R2Ṙ] r S 1r 2TD5n] r
2T2

nn~n11!

r 2
T, ~6!

by the nonlocal boundary condition atR(t),

T~R,t !12Rn21E
R

`

s2nT~s,t !ds

5
2

n11 F ~n12!ȧn2~n21!
an
R
ṘG , ~7!

and by the boundary condition at infinity,T(`,t)50. At
t50 the fluid is assumed to be at rest. The collapseṘ(t) of
the bubble transports vorticityv into the fluid, see Eq.~6!.

Once created, the vorticity acts back on the dynamics of
an(t). These indirect viscous corrections together with the
direct ones modify Eq.~4! to yield

än1Bn~ t !ȧn2An~ t !an1n~n11!~n12!
n

R2T~R,t !

2n~n11!
Ṙ

R2E
R

`F12SRs D
3G SRs D

n

T~s,t !ds50 ~8!

with

An~ t !5~n21!
R̈

R
2

bns

rwR
3 12bnn

Ṙ

R3 , ~9!

Bn~ t !5
3Ṙ

R
22bn

n

R2 . ~10!

B. Boundary layer approximation

For an exact stability analysis the coupled Eqs.~6!–~8!
together with the RP Eq.~2! must be solved. However, con-
siderable vorticity is only to be expected in a small boundary
layer of thicknessd around the bubble.

Within this boundary layer approximation the space in-
tegrals in~7! and~8! can be approximated by the~integrand
atR)3d. The integral in~7! thus is'R2nT(R,t)d while the
one in ~8! vanishes. We obtain

än1Bn~ t !ȧn2An~ t !an50 ~11!

with

An~ t !5~n21!
R̈

R
2

bns

rwR
3 2

2nṘ

R3 F2bn1n~n21!

3~n12!
1

112d/RG , ~12!

Bn~ t !5
3Ṙ

R
1
2n

R2 F2bn1
n~n12!2

112d/RG . ~13!

The viscous contribution toAn(t) is not important and only
causes a tiny shift, as the ratio between the third and the
second term of the rhs in ~12! is typically
nrwR0v/s;1022. However, in~13! it introduces a damping
rate

jn~ t !5
2n

R2 F2bn1
n~n12!2

112d/RG , ~14!

acting on the shape oscillations. That only the second term in
~13! contributes to the damping rate of the oscillator can
formally best be seen after the substitution12 bn(t)
} (R(t))3/2an(t). Physically this is not surprising, as the first
term is a mere consequence of spherical geometry. Two
physical effects contribute to the damping rate:~i! Stabiliz-
ing, local damping by viscous dissipation. If this process is
dominant, the viscous boundary layer around the bubble van-
ishes (d50) and the damping rate becomes
jn(t)52n(n12)(2n11)/R2.0. ~ii ! The movement of ed-
dies around the bubble, generated by the shape oscillations
itself. With increasing boundary layer thicknessd ~i.e., with
increasing viscosity! this destabilizing effect becomes stron-
ger.

How does one approximate the thicknessd of the bound-
ary layer when we have non-vanishing vorticity? For large
bubbles R@d it is set by the diffusive length scale
An/v52.5 mm in Eq.~6!.45 As a typical frequency scale we
choose the forcing frequencyv. Higher frequencies are of
course also present in the RP dynamics, but a Fourier analy-
sis of theR(t) signal shows that the forcing frequency is
dominant. Because of the angular contribution to the dissi-
pation~the second term on the rhs of Eq.~6!! we also expect
a slight dependence on the spherical moden which we ne-
glect here.

For small bubblesR!d we do not expect the boundary
layer around the bubble to be larger than the bubble itself.
We thus have to introduce a cutoff.46 We choose

d5minSAn

v
,
R

2nD . ~15!

The n-dependence of the cutoff can be understood from the
quasi-static limit which holds for small bubbles, as for small
bubbles the bubble dynamics is strongly damped by viscosity
andR(t) does not change much. In this quasi-static limit the
lhs of ~6! vanishes andT(r )5T(R)(r /R)2n is the static so-
lution. It decays to half its boundary valueT(R) at
r521/nR. Thusd5R(21/n21)'Rln2/n'R/(2n) as in~15!.
More precisely, forT(r )5T(R)(r /R)2n we can calculate
T(R) from Eq. ~7!, and obtain essentially the samed. The
exact values of our results depend on details of the cutoff
~15!. However, the general features of the solution are invari-
ant.

With the approximation~15! we can Taylor-expand~12!
and ~13! and finally obtain as approximate dynamical equa-
tion for an(t) Eq. ~11! with

17
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An~ t !5~n21!
R̈

R
2

bns

rwR
3 2

2nṘ

R3 F ~n21!~n12!

12n~n12!~n21!
d

RG , ~16!

Bn~ t !5
3Ṙ

R
1
2n

R2 F ~n12!~2n11!22n~n12!2
d

RG .
~17!

Our results are based on these equations.

C. Rayleigh–Taylor, afterbounce, and parametric
instabilities

Three types of shape instabilities are hidden inside these
equations. We call them the Rayleigh–Taylor instability, the
afterbounce instability, and parametric instability, for rea-
sons which will become clear later. They are distinguished
by the widely different time scales over which they act. The
transition between these instabilities is often gradual rather
than abrupt. Nevertheless, we think that our classification is
physically important as the difference in their time scales
results in a difference of the typical velocities of the bubble
fragments after the shape instability has destroyed the
bubble. We estimate this velocity as typical length scale
;1mm of a collapsed bubble divided by the typical time
scale of the pinch off.

The goal of this subsection is to find criteria for the
occurrence of the three shape instabilities. Their nature be-
comes clear from Fig. 3, where we show the dynamics of

a2(t) ~which is the most unstable spherical mode in the pa-
rameter range discussed in this paper, so we restrict our-
selves to it! for the three different regimes of instability. We
normalizea2(t) to the current bubble radiusR(t) to get a
measure of bubble distortion. The upper part displays the
dynamics of the distortion amplitudea2(t), normalized to
R(t), in a Rayleigh–Taylor unstable, parametrically stable
case, obtained from a numerical solution of Eqs.~2!, ~11!,
~16!, and ~17!, with addition of small amplitude noise. We
chose Gaussian distributed microscopic fluctuations with a
typical size ofa2;1nm which is not visible on the scale
shown in Figure 3. The middle part shows the dynamics of
the distortion in the regime of the afterbounce instability, and
the lower part typifies the dynamics of a parametrically un-
stable, Rayleigh–Taylor stable bubble. Clearly, very differ-
ent time scales are responsible for the distortion of the
spherical shape of the bubble. Of course there are regimes in
the R02Pa parameter space where the bubble is stable~or
unstable! towards two or even all three instabilities.

First we focus on the Rayleigh–Taylor instability, occur-
ring near the minimum bubble radius when the gas acceler-
ates into the fluid. The strongest destabilization occurs just
when the bubble radius reaches its minimum. The accelera-
tion of gas towards the fluid during this time is enormous,
motivating the name Rayleigh–Taylor instability. Closer
analysis of this section of bubble movement47 reveals that
the time scale of the Rayleigh–Taylor instability can be es-
timated by the expansion time scale ofR(t) just after the
collapse which istRT;h/cw with the van der Waals hard
core radiush5R0/8.86. Thus,tRT;1029210210 s, which is
confirmed by the numerical results. In order to take into ac-
count microscopic fluctuations we added a random displace-
ment of size;0.1 nm to the distortiona2(t) after each in-
tegration time step.

For lower Pa the destabilization during the violent
bubble collapse may not be strong enough to immediately
overwhelm the bubble. But as seen from Fig. 3 further peri-
ods of destabilization occur during the afterbounces. As
pointed out above, in the afterbounce regimeR(t) oscillates
on the bubble’s intrinsic time scalet I;ArwR0

2/P0;1ms.
This is too fast for viscous effects to smooth out the shape
distortions, so after a couple of afterbounces the bubble may
be overwhelmed. This type of instability shows features of
parametric instability, however, the afterbounces are not
strictly periodic. As an approximate criterion for thisafter-
bounce instabilitywe give that microscopic fluctuations can
overwhelm the bubble within one periodT,

max
$t8ut,t8,t1T%

S ua2~ t8!u
R~ t8! D*1. ~18!

Our results only weakly depend on the exact strength of the
microscopic fluctuations.

The transition between Rayleigh–Taylor and after-
bounce instabilities is illustrated in Fig. 4. Thea2 /R time
series shows violent behavior at the main bubble collapse
and the first afterbounces. Then, the behavior ofa2(t)/R(t)
becomes oscillatory and locks into the periodicity of the
R(t) afterbounces with twice their period~the same is true

FIG. 3. Time development of the normalized distortion amplitude
a2(t)/R(t) for ~a! a Rayleigh–Taylor unstable, parametrically stable bubble
(R052.5 mm, Pa51.5 atm!, ~b! an afterbounce unstable, parametrically
stable bubble (R054.0 mm, Pa51.3 atm! and ~c! a Rayleigh–Taylor
stable, parametrically unstable bubble (R055.2 mm, Pa51.0 atm!. In ~a!
we also showa2 /R in a blow up of the time scale to demonstrate that the
typical time scale of the Rayleigh–Taylor instability is nanoseconds. The
typical time scales of afterbounce~b! and parametric instability~c! is in the
microsecond, and millisecond range, respectively.
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for a2(t) itself!. This is to be expected from a Mathieu type
instability, which is most effective for a driving with twice
the intrinsic frequency of the driven equation.

Figure 5 depicts a phase diagram of shape instabilities as
a function of the ambient bubble radiusR0 and the forcing
pressure amplitudePa for n52. The dashed line gives the
combined stability threshold for Rayleigh–Taylor and after-
bounce instabilities~the ‘‘fast’’ instabilities with time scales
!T). The global features of the phase diagram are easily
understood. Small bubbles are more stable than large ones
thanks to viscosity, as the second term in~17! becomes
dominant for small radiiR. Evidently, weakly forced bubbles
are more stable than strongly forced ones.

A pure parametric shape instability acts on the much
longer time scale of the forcingT'38 ms. It corresponds to
a net growth of a nonspherical perturbation over one oscilla-
tion period, so that after many periods perturbations over-
whelm the bubble. The time scale of the parametric instabil-

ity tPI is thus many forcing periodsT52p/v. However, as
the finally resulting pinchoff occurs during afterbounces, its
time scale is the same as for the afterbounce instability, i.e.,
the intrinsic time scale of the bubble motiont I;1ms.

In the relevant parameter regime for the parametric in-
stability R(t) and thus alsoAn(t) andBn(t) are strictly pe-
riodic in time with frequency 1/T. Thus Eq.~11! is an ODE
of Hill’s type and the parametric instability can be rigorously
analyzed. It occurs whenever the magnitude of the maximal
eigenvalue of the Floquet transition matrixFn(T) of Eq. ~11!
is larger than one. The Floquet transition matrixFn(T) is
defined by

S an~T!

ȧn~T!
D 5Fn~T!S an~0!

ȧn~0!
D . ~19!

By numerically computing the eigenvalues of the Floquet
transition matrix we mapped out the phase diagram of stabil-
ity. Figure 5 shows the stable and unstable domains in the
R02Pa parameter space.

In the SL parameter range ofPa'1.2 to 1.5 atm the
bubble becomes parametrically unstable at about
R0
PI'425 mm. This number is not to be understood as a

prediction of the exact value, as within our approximations
we can only predict the order of magnitude and trends.

For smallerPa the threshold for instabilityR0
PI does de-

pend on the forcing pressure. We discussed phase diagrams
in those regimes in Ref. 17 and also showed that in the small
forcing limit Eq. ~11! reduces to a Mathieu equation.

That R0
PI does not significantly depend onPa for large

Pa can be understood from the dynamics ofR(t) andan(t)
and from Eq.~17!. If R(t) is small, the second term in~17!
dominates and stabilizesan(t). For smallPa the minimal
radiusRmin5mint(R(t)) still decreases with increasingPa .
But after the van der Waals hard core radiush5R0/8.86 has
once been reached for large enoughPa , Rmin becomesPa

independent.47

All calculations have been performed for the viscosity of
watern51026 m2/s. Of courseR0

PI and the other thresholds
strongly depend onn, e.g., for a viscosity five times that of
water we haveR0

PI'10 mm, but we won’t discuss this de-
pendence here.

D. After the shape instabilities

All types of shape instabilities result in the pinching off
of microbubbles. In other experimental configurations such
as the Faraday experiment,24 parametric instability can satu-
rate at a finite amplitude. This is also possible for larger
bubbles which are driven with small forcing pressure
Pa,1atm.1,33 However, we believe the nonlinear saturation
is unlikely in the present experiment because the bubble size
changes by two orders of magnitude during a single oscilla-
tion period. Saturation would require that the amplitudean is
much smaller than theminimumradiusRmin ; however, since
the bubble spends most of the cycle withR@Rmin , the non-
linearities mainly act at larger radii.

FIG. 4. Time development of the bubble radiusR(t) ~upper part! and dis-
tortion amplitudea2(t) ~lower part! for a R054.4 mm bubble driven at
Pa51.1 atm. Note the transition from Rayleigh–Taylor~time scale ns! to
afterbounce perturbations~time scalems! during the afterbounce part of the
bubble dynamics. It is also seen that the dynamics of the distortiona2(t) has
half the frequency of its forcing bubble dynamicsR(t) as typical for an
instability of the Mathieu type.

FIG. 5. Borderline of the parametric instability~solid!, the afterbounce in-
stability according to criterion~18! ~short dashed!, and theM51 criterion
~22! for a supersonic bubble collapse~long dashed!. The Re510- criterion
~24! for the persistence of a shock~dot-dashed! is found to be less stringent
than theM51 criterion. Also shown is the perturbation velocity threshold
~21! ~dotted!. In case of unstable SL, to the right of this curve the bubble is
thrown out of the trap as the pinch off of microbubbles is too violent. The
region where SL is possible is shaded.
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The major question, therefore, is what happens after the
pinch off of a microbubble. Will the bubble remain trapped
at the antinode of the pressure field, or will it escape from the
system?

The force holding the bubble in the trap is the so-called
Bjerknes force given by33,48

F52 4
3 pR3¹P. ~20!

Both R(t) and“P(t) are oscillating with time. The combi-
nation of both will lead to an effective, period averaged force
^F& which pushes bubbles smaller than the resonance radius
(;100 mm here! to the pressure antinode.33 The bubbles are
thus trapped.

During the collapse the forcing pressure is positive and
the force ~20! repulsive. If microbubbles pinch off at this
instant, will they and the recoiled bubble be fast enough to
escape from the node before the force becomes attractive
again? If so, they must travel a quarter of the acoustic wave-
lengthcwT/4 in timeT/2, thus their velocity must be of order
;cw;103 m/s. Assuming a typical length scale of
R0;1mm for the microbubble and the remainder, we obtain
as a critical time scale of the collapse 1029 s: If the collapse
is faster, the bubble cannot survive in the trap, if it is slower,
it is likely to survive as a smaller bubble. From the estimates
of the relevant collapse time scale in the last subsection we
conclude that the bubble will survive the afterbounce and the
parametric instability where the pinch off occurs on the in-
trinsic time scalet I;1ms. We assume that the pinched off
microbubble from those shape instabilities will dissolve by
diffusion ~see below!, but the remainder of the bubble may
survive with some probability~i.e., if it is large enough! and
grow by rectified diffusion. Another possibility is that the
bubble fragments may remerge. Note that the recoil of the
bubble on fragmentation is the origin of the jiggling or danc-
ing of the bubble as we will discuss later.

The bubble fragments can, however, also be ejected
from the trap after a RT instability (tRT;1029 s). To get a
more stringent criterion for ejection, we computed the maxi-
mal velocity uṘ1ȧ2u. For a bubble split apart by shape in-
stabilities, this will also give the typical fragment velocity.
The outward velocity is dominated by theȧ2 term; Ṙ does
not exceed 0.1cw .

47 Therefore, we assume that the fragments
will escape if

max
$t8ut,t8,t1T%

S uȧ2~ t8!u
cw

D *1 . ~21!

Figure 6 depicts the lhs of this inequality as a function of
Pa andR0. The perturbation speed exceeds the sound speed
in two clearly distinct regions of parameter space: at large
radii, where the parametric instability leads to high velocity,
and at small radii and high pressures, wherecw is reached
during Rayleigh–Taylor instability. Only the latter region
will determine the escape of the bubble, because parametri-
cally unstable bubbles already shed microbubbles long be-
fore the high velocities associated with the RT instability
discussed here are reached~these high velocities would only
occur for ua2u@R). We extract auȧ2u5cw isoline from this
graph and add it to the phase diagram in Fig. 5~dotted line!.

In accord with the estimate fortRT in the preceding section,
bubbles with smallerR0 have faster instability time scales
and thus higher values ofuȧ2u. However, for very smallR0,
the bubble dynamics is stabilized by surface tension, and the
perturbation velocity drops again. The exact position of this
line is not meant to be quantitative, because it is extracted
from dynamical data for bubble velocities where the RP
equation is not a good approximation to bubble dynamics
any more.

III. ENERGY FOCUSING MECHANISM

Although this paper is primarily concerned with stability
constraints on a bubble obeying the Rayleigh–Plesset equa-
tion, in order to relate the calculations to the sonolumines-
cence experiments it is necessary to adopt an onset criterion
for the light emission. The light production is triggered by a
hydrodynamicenergy focusing mechanism, which concen-
trates the input energy enough so that light is produced. The
mechanism through which the focused energy produces light
is outside the scope of this paper; many suggestions such as
bremsstrahlung or blackbody radiation are present in
literature.22,6

Two theories of hydrodynamic energy focusing have
been proposed: The original theory was that during the col-
lapse of the bubble shocks detach from the gas-water inter-
face and focus to the bubble’s center.21,22 Strictly speaking
the shock does not ‘‘detach’’ from the wall but forms
slightly afterwards. The motion of a focusing shock is de-
scribed by Guderley’s similarity solution to the hydrody-
namic equations,49,24 which dictates that the temperature at
the shock diverges asT } Rs

2p whereRs is the distance of the
shock from the origin andp;1 is an irrational scaling ex-
ponent. The amount of energy focusing in this theory is de-
termined by the minimum distanceRs,min to which the shock
approaches the origin.

The second theory of energy focusing23 posits that the
bubble is an ‘‘acoustic resonator,’’ and that acoustic energy
builds up in the bubble over many oscillation periods. Within
this picture the amount of energy focusing is set by the total
stored energy in the bubble.

FIG. 6. Maximum perturbation velocity according to~21! as a function of
Pa andR0. This calculation was done with ana2 noise amplitude of 1 nm.
Note the two distinct regions of the parametric instability~left! with its rapid
onset and the Rayleigh–Taylor instability~right, high pressures and small
R0). In the latter region the bubble is thrown out of the trap when the pinch
off occurs. It corresponds to the region right of the dotted line in Fig. 5.
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The crucial issue for the present paper is the onset crite-
rion for how strongly the bubble must be forced for signifi-
cant energy focusing to occur. Energy can only be trans-
ferred from the liquid to the gas if the time scale of motion of
the bubble wall is of the order of the time scale of acoustic
modes in the gas. The forcing time scale isR/uṘu and the
intrinsic acoustic resonator time scale isR/cgas, wherecgasis
the speed of sound in gas. Thus the inward bubble wall ve-
locity uṘu must be~at least! of order ofcgas, or introducing
the Mach numberM ,

M5
2Ṙ

cgas
*1. ~22!

From the above discussion of the time scales in the RP equa-
tion it follows that all time scales betweenR/uṘu andT are
present in theR(t) dynamics; thus~22! is the correct crite-
rion for energy focusing. The speed of sound near the bubble
wall is

cgas
2 5g

p

r

R3

R32h3
. ~23!

As in Eq. ~3!, we have assumed that the gas near the bubble
wall can be parametrized with an isothermal van der Waals
equation; an approximation which clearly breaks down dur-
ing compression in the center of the bubble.

For large enough forcing the energy focusing criterion
~22! is fulfilled once per cycle, namely shortly before the
bubble achieves its minimum radius which in the relevant
Pa domain is very close to the hard core radiush. This is
where the light pulse is emitted1,2,36 which gives support to
the criterion~22!. In Fig. 5 we plotted the threshold for the
M51 criterion in thePa2R0 parameter domain.

Let us check two further conditions which should be
fulfilled within the shock wave theory. First, another require-
ment besides~22! is that the shock must persist. Dissipative
mechanisms inside the bubble must therefore be weak. A
measure for the relative strength of inertial and dissipative
mechanisms is the Reynolds number Re. Viscous effects
dominate for small Re. As crossover for nonlinear effects
such as shocks to take over we take24

Re5
RuṘu
ngas

*10. ~24!

The kinematic viscosity of argon isngas5 113 1026 m2/s.
We neglect its temperature dependence. In the center of the
bubble this is a poor approximation andngas will be lower.
The Re.10 criterion will then be fulfilled earlier. However,
~22! is the more stringent criterion anyhow as seen from Fig.
5.

Second, we have to compare the thickness of a shock
with the bubble’s size. The thickness of a shock is of the
same order of magnitude as the mean free pathl of a gas
molecule.24 We have l;V/(Ns0) where V is the bubble
volume, N the number of particles in the bubble, and
s0;10219 m2 the collision cross section of argon atoms.
Thus

l5 l 0S RR0
D 3. ~25!

With l 0;1027 m we obtainl;10210 m during the stron-
gest compression, i.e., a very sharply defined shock with a
width !R in spite of viscosity.

We now come back to Fig. 5. That plot summarizes the
criteria we suggest to be necessary for SL to occur:~i!
Bubble wall Mach numberM.1 to ensure energy focusing
to reach the high temperatures necessary for SL.~ii ! Short
time scale shape stability~Rayleigh–Taylor and afterbounce!
and ~iii ! parametric stability.~iv! Finally, the perturbation
speed must not exceedcw , in order to keep the bubble or its
fragments trapped in the sound field.

There is only a small domain in parameter space where
the bubble fulfills all four criteria. This domain is shaded in
Fig. 5. It is this domain where we expect SL to be possible
~within our RP-SL approach!. However, up to now no state-
ment on thediffusive stabilityhas been made. We will ad-
dress this subject in the next sections and find that forlow
enough gas concentrationthe bubble in the shaded domain is
also diffusively stable.

IV. DIFFUSIVE STABILITY

Two types of SL in argon bubbles have been observed:5

For large argon concentrationsP`5200 mmHg or
50 mmHg the SL bubble is diffusively unstable whereas for
low concentrationsP`53 mmHg the bubble is diffusively
stable and the relative phase of light emission stays constant
for hours, see Fig. 11~c! for the experimental result. With the
ambient pressureP05760 mmHg5 1 atm these three gas
concentrations translate into relative concentrations of
c` /c050.26, 0.06, and 0.004, respectively, where
c050.061 kg/m3 is the saturation~mass! concentration of
argon in water for room temperature.

In this section we set out to quantitatively understand the
difference between the high and low concentration. Our goal
is to calculate aphase diagramin the parameter space of the
two experimental control parameters concentrationc` /c0
and forcingPa /P0. For given concentration and given forc-
ing we will thus be able to predict which of the three phases
‘‘diffusively stable SL,’’ ‘‘diffusively unstable SL,’’ and
‘‘no SL’’ will be realized. The third parameter, the ambient
bubble radiusR0 is not at the experimenter’s disposal but the
system will chooseR0 itself. The ambient radius will follow
from our analysis. First, we will present phase diagrams in
the ambient radius—concentration and ambient radius—
forcing pressure phase space.

We again stress that it is the application of theadiabatic
approximationof the diffusive problem37,7 which allows for
the exploration of the whole 3-D phase spaceR02c`2Pa .
Strictly speaking, it only holds in the limit of zero diffusion
constantD→0. However, in the next section we will show
that for the physical diffusion constantD5DAr52
3 1029m2/s the deviations between the exact solution and
the adiabatic approximation are tiny, so that we can apply it
here.
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A. Formulation of the diffusive problem

Assuming spherical symmetry, the mass concentration
of gasc(r ,t) dissolved in the liquid at distancer.R(t) from
the center of the bubble obeys the advection diffusion equa-
tion

r 2] tc1R2Ṙ] rc5D] r~r
2] rc!. ~26!

As a boundary condition at the bubble wall we assume Hen-
ry’s law

c~R,t !5c0p~R,t !/P0 . ~27!

The concentration atr→` is given byc` ,

c~`,t !5c` . ~28!

The concentration gradient at the moving boundary gives the
mass loss/gain of the bubble

ṁ54pR2D] rcuR~ t ! . ~29!

The bubble is driven by the RP Eq.~2!. Together with the
initial conditionsR(t50)5R0, Ṙ(t50)50 and c(r ,t50)
5 c` this set of equations completely defines the problem.

With the transformation to the Lagrangian coordinate35

h~r ,t !5 1
3 ~r 32R3~ t !! ~30!

the advection diffusion PDE~26! simplifies to the diffusive
equation

] tc~h,t !5D]h@~3h1R3~ t !!4/3]hc~h,t !#. ~31!

Equation~31! can still not be solved analytically. A numeri-
cal treatment of this equation is sketched in Appendix A.

B. Adiabatic approximation

The main idea of Fyrillas and Szeri37 and Löfstedtet al.7

is to treat the diffusive PDE by the method of separation of
time scales.50 They split the concentration field in an oscil-
latory partcosc(r ,t) changing on the~fast! time scaleT of the
driving field and a smooth partcsmo(r ,t) changing on a slow
diffusive time scaletD@T,

c~r ,t !5cosc~r ,t !1csmo~r ,t !. ~32!

This approach can be thought of as having introduced an
‘‘adiabatic’’ or slow time t̄. The smooth profilecsmo only
depends on the adiabatic time,csmo(r , t̄). In the PDE for
csmo(r , t̄) the fast time scale;T is averaged out. We define
tD5R0

2/D as diffusive time scale. Then the Schmidt number
Sc52ptD /T is a measure of the quality of time scales sepa-
ration. Sc→` or D→0 means perfect separation.

It turns out to be useful to introduceweightedtime av-
erages,

^ f ~ t !& t,i5
*0
Tf ~ t !Ri~ t !dt

*0
TRi~ t !dt

, ~33!

which may still depend on the adiabatic timet̄. Here, one
only needŝ • & t,0and^ • & t,4.

7,37

The main result of Ref. 37 is that in the asymptotic limit
t̄→` the smooth profilecsmo(h, t̄) converges to

c̄smo~h!5c`1Fc0 ^p~ t !& t,4
P0

2c`G

3H 12

E
0

h dh8

^~3h81R3~ t !!4/3& t,0

E
0

` dh8

^~3h81R3~ t !!4/3& t,0

J . ~34!

From ~34! the adiabatic growth of the bubble can be calcu-
lated as

d

dt̄
R0~ t̄ !5

Dc0

r0R0
2~ t̄ !

Fc`

c0
2

^p~ t !& t,4~ t̄ !
P0

G
E
0

` dh8

^~3h81R3~ t !!4/3& t,0

. ~35!

The determination of the adiabatic growth rate has thus been
reduced to solving the RP ODE~2! for R(t), calculating time
averageŝ • & t,i of functions ofR(t), and the solution of a
space integral. We thus understand the adiabatic approxima-
tion as being in the spirit of the RP approach.

C. Equilibrium points

We now apply Eq.~35! to the acoustically driven argon
bubble.5 Let us disregard the shape instabilities discussed in
Section II for the time being.

The ambient bubble radius is in equilibrium~within the
adiabatic approximation!, if

c`

c0
5

^p~ t !& t,4
P0

. ~36!

Note that within the adiabatic approximation the condition
does not depend on the diffusion coefficientD. However, the
smaller theD, the better the adiabatic approximation holds.
The equilibrium is stable, if

b5
d^p~ t !& t,4
dR0

~37!

is positive. Scaling laws for̂p& t,4 andb are discussed in the
next subsection and in Ref. 47; here we concentrate on the
physical consequences.

In Fig. 7 we plot̂ p(t)& t,4 as a function ofR0 for various
forcing pressure amplitudesPa . We first focus on small
Pa'0.8atm and high gas concentration ofc` /c0'0.7. There
exists anunstableequilibrium atR0

e'6mm. Smaller bubbles
shrink and finally dissolve, larger bubbles grow by rectified
diffusion. For largerPa the averagê p(t)& t,4(R0) behaves
quite differently in the smallR0 regime. It starts to show
characteristic wiggles, which can also be seen inRmax(R0).
Here, Rmax is the maximal radius over one period,
Rmax(t)5max$R(t8)ut<t8<t1T%. The origin of the
wiggles is a kind of resonance phenomenon in the RP equa-
tion and can quantitatively be understood in detail.47 Here we
only discuss their consequences for the oscillating bubble.
They mean that the bubble may stabilize through a tangent
bifurcation: Imagine a fixed forcingPa and then decrease
c` /c0. Thec` /c0 line will finally touch ^p& t,4 /P0 at a local
maximum and create a pair of stable and unstable fixed

2817Phys. Fluids, Vol. 8, No. 11, November 1996 Hilgenfeldt, Lohse, and Brenner

Downloaded¬14¬Apr¬2005¬to¬130.89.126.94.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://pof.aip.org/pof/copyright.jsp



points which will separate for decreasingc` /c0. This pro-
cess can repeat many times. The fixed points vanish through
inverse tangent bifurcations, i.e., stable and unstable fixed
points merge. The full bifurcation diagram is shown in Fig. 8
for Pa51.1 atm and forPa51.3 atm.

The interpretation of theR0–c` phase diagram is as fol-
lows. The line signals equilibrium for the given driving pres-
surePa . Again, we denote the equilibrium radius asR0

e . It is
stable if the slope]R0

e/]c`uPa is positive, and unstable if it is
negative. To the left of the line the bubbles shrink, to the
right of it they grow by rectified diffusion. The shrinking or
growing bubbles can hit a stable fixed point and thus stabi-
lize. The basin of attraction of the stable fixed points is con-
siderably larger for larger forcingPa , see Fig. 8.

A similar looking phase diagram results when fixing
c` /c0 and varyingPa . In Fig. 9 we show such a bifurcation
diagram in theR02Pa parameter space for large concentra-
tion c` /c050.5, for lower concentrationc` /c050.02, and
for very low concentrationc` /c050.002. Again, the lines
signal equilibrium; stable equilibrium for positive slope
]R0

e/]Pauc`
, unstable equilibrium for negative slope. To the

right of the line we have growth, left of it shrinking. Increas-
ing Pa at fixed c` again leads to stabilization through a

series of tangent bifurcations and later on destabilization by
inverse tangent bifurcations.

From Figs. 8 and 9 we immediately understand why
there isnodiffusively stable SL forlargeAr concentration.42

No diffusively stable bubble radii exist in the large
Pa–smallR0 parameter regime where the energy focusing
condition for SL~22! is fulfilled. Note that there are stable
equilibria, but for smallerPa and largeR0. Note also that the
basin of attraction of these stable equilibria is tiny.

For small concentrationc` /c0 the situation is quite dif-
ferent. As seen from Figs. 8 and 9 now there are stable equi-
libria in the highPa–lowR0 regime where the bubble is both
stable towards shape oscillations and fulfills the energy fo-
cusing criterion.

In order to predict which SL regime is realized for given
c` andPa , we also have to take the above shape instabilities
into consideration. Therefore, in Fig. 10 we plot an enlarge-
ment of Fig. 9 together with the thresholds for the shape
instabilities and the energy focusing condition, taken from

FIG. 7. ^p& t,4 /P0 as a function of the ambient radiusR0 for small forcing
pressure amplitudesPa50.8 atm toPa51.15 atm~left, top to bottom, in
steps of 0.05 atm! and for largePa51.2, 1.25, 1.3, 1.4, 1.5 atm~right, top to
bottom!. Note the different ordinate scales.

FIG. 8. Bifurcation diagrams in theR02c` parameter plane for a forcing
pressure ofPa51.3 atm ~left! and Pa51.1 atm ~right!. Tangent bifurca-
tions are seen. The regimes with positive slope are stable. To the left of the
curves the bubbles shrink, to the right of them they grow.

FIG. 9. Bifurcation diagrams in theR02Pa parameter space. Tangent bi-
furcations are seen. The regimes with positive slope are stable. Gas concen-
trations arec` /c050.002 ~right!, c` /c050.02 ~middle!, and c` /c050.5
~left!. To the left of the curves the bubbles shrink and finally dissolve, to the
right of them they grow by rectified diffusion.

FIG. 10. The figure shows the discussed effects for argon all together:
Beyond theM51 curve ~long dashed! SL is possible. The bubble grows
thanks to rectified diffusion right of the diffusive stability curves~shown for
c` /c050.5, 0.02, and 0.002, left to right!. At the parametric shape instabil-
ity ~solid! and the shape instability according to criterion~18! ~dashed!
microbubbles pinch off, but the bubble can survive in the trap forPa&1.4
atm. SL is possible in the shaded region, stable SL, if in addition the slope
of the diffusive equilibrium curve is positive. Here, this occurs for
c` /c050.002 for Pa'1.33 atm andR0'3mm. Right of the dotted line
~criterion ~21!! the bubble is thrown out of the trap in case of a pinchoff.
Consequently, if at all, onlystableSL is possible in this highPa regime.
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Fig. 5. In the relevant parameter regimePa.1.0 atm the
critical R0

PI is about 425mm. Only for largePa*1.4 atm
does the Rayleigh–Taylor instability becomes relevant, see
below for the consequences. As worked out in Sects. II and
III, SL can only occur in the shaded region in Fig. 10. In this
region only for very low concentration c̀/c0;0.002 the
bubble is diffusively stableand only then can we have diffu-
sively stable SL. For larger concentration we have diffu-
sively unstable SL.

The different regimes of diffusively stable and unstable
SL and no SL can easily be read off from Fig. 8. Take fixed
Pa51.1: growing bubbles are possible forc` /c0.0.07, if
they are large enough. They finally run into the parametric
shape instability at;5mm and a microbubble will pinch off.
If the remaining bubble is still large enough, i.e., above the
stability line in Fig. 8, the process will repeat. The allowed
size of the bubble after the pinch off is very much restricted;
for c` /c050.1 it is only in theR0 range between 4.6mm and
5mm. If the pinched off microbubble is larger, the remaining
bubble will dissolve. No diffusively stable regime exists.

For Pa51.3 the situation is quite different. For concen-
trations in a window 0.003,c` /c0,0.005 bubbles in the
R0 regime;2mm up to 5mm will grow andstabilize. As in
this Pa regime the energy focusing criterion is fulfilled, we
have stable SL. Here we are at the very core of Barber’s
finding5 that stable SL is only possible for lowc` and high
Pa . If the relative concentration is even smaller than
0.003, bubbles will dissolve and no SL is possible. For larger
concentration large enough bubbles*1.8 mm ~almost inde-
pendent ofc`) will grow up to;5mm where microbubbles
pinch off. In contrast to smallerPa;1.1 atm, the remaining
bubble is very likely to end up in the~now much larger!
growing R0 regime. Pinched off microbubbles with
R0,1.8mm will dissolve.

The same domains no SL, unstable SL, and stable SL
can be identified from Fig. 9 or Fig. 10; also these plots
make it very evident that highPa /P0 and low c` /c0 are
necessary to obtain stable SL.

The total phase diagram in thec` – Pa phase space, our
main result, was already presented in Fig. 1. The notation in
that diagram is as follows: If we denote a regime with stable
SL or unstable SL we mean that there are bubbles of certain
radius which are diffusively stable or growing, respectively;
other, smaller bubbles dissolve. ForPa&1.17 thec` /c0 win-
dow of stable SL shrinks to zero. For very lowc` the no SL
regime~i.e., no bubble regime! is very extended. If one now
slightly increasesc` , one immediately enters a regime
where the energy focusing condition is fulfilled. This may be
the prime reason why it is so much easier to find SL, diffu-
sively stable or not, for low concentration.

The experimental observations of Fig. 4 in Ref. 5 are in
agreement with our analysis. For that figurePa is in the
range of 1.3 atm. Then we have unstable SL for large con-
centrationsc` /c0526% and 6.6% and stable SL for low
concentrationc` /c050.4%.

What happens for very large forcing amplitudesPa?
From Fig. 10 we see that the SL regime~shaded! intersects
with the regime where bubbles cannot survive the mi-
crobubble pinchoff~right of the dotted line~21! in Fig. 10!

because of the violent short time scale Rayleigh–Taylor in-
stability. Consequently, in this highPa regime onlystable
SL should be possible, a prediction which is worthwhile be-
ing tested experimentally. Extremely low argon concentra-
tions c` /c0&0.0006 are necessary to guarantee diffusively
stable equilibria in this regime. According to the approxi-
mate curve~21! of the onset of the RT instability in Fig. 10,
this regime starts at aboutPa'1.4 atm, but as pointed out in
Section II D, this number should not be taken too strictly.
For lucidity we did not put in the right borderline of the
unstable SL regime in the phase diagram Fig. 1. The upper
borderline of the unstable SL regime is discussed in Section
IV E.

In our former publication42 we have stressed the impor-
tance of wiggles such as those in the graphs in Figs. 5–10.
As a consequence, for large enoughPa and small enough
R0 one may have stable SL with different, discreteR0; i.e.,
multiple stable equilibria. We will present some results of
full numerical simulations on this issue in Section V.

Possibly an experimental hint to multiple stable equilib-
ria has been found by Crum and Cordry.51 After registering
SL light from a bubble for a few seconds, they distorted the
bubble and observed the SL intensity to jump from one con-
stant value to another~smaller! one. They suggested that the
discrete light intensities corresponded to discrete diffusively
stable radii.

For the dynamics chosen here the multiple stable equi-
libria are just parametrically unstable as they lie beyond
R0'5mm. This should not be taken too strictly, as a slight
change of the model may allow for observable multiple
stable equilibria. However, we see that the wiggles are not
necessary for stabilization. An increase of^p& t,4(R0) with
R0 is sufficient, i.e.,b.0. If there are wiggles, we in addi-
tion have discretization of the equilibria.

D. Scaling laws

The average slope and the wiggles in Fig. 7 can be un-
derstood in detail as shown in Ref. 47. Here we only quote
scaling laws for the running average of^p& t,4(R0) which
smooths out any wiggles,

^p& t,45
1

2DR0
E
R02DR0

R01DR0
^p& t,4~R01x!dx ~38!

with DR0>0.5mm. For very smallR0 the surface tension
term dominates in the RP Eq.~2! and ^p& t,4 } R0

21. For
slightly largerR0,R0

crit we have^p& t,4 } R0
23/2. For large

R0.R0
crit ~where wiggles occur and the running average be-

comes necessary! the first and the second term on the rhs of
~2! balance and

^p& t,4}R0
6/5, ~39!

i.e., the average slopeb is positive and equilibria are stable.
The critical ambient radiusR0

crit beyond which wiggles occur
and stability is achieved scales like47

R0
crit}

1

Pa2P0
, ~40!
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the corresponding average pressure like

^pcrit& t,4}S 1

Pa2P0
D 9/2. ~41!

The scaling law~39! directly reflects the average slopeR0

} c`
5/6 in Fig. 8. Thus for large enoughR0 there is always

diffusive stabilization, but only for lowc` and highPa this
will be in a parametrically stable domain where the energy
focusing condition is fulfilled.

A detailed discussion of these types of scaling laws will
be presented elsewhere.47

E. Diffusively unstable SL bubbles

In the previous subsections we saw that our theoretical
stability diagram is in agreement with experiment. What
about the growth rates in the unstable SL regime where the
bubble grows by rectified diffusion and finally hits the para-
metric instability line at aboutR055mm? Because of the
growth ~i! the relative phaseof light emissionf(R0) will
slightly change,~ii ! the light intensity will increase as more
and more gas is in the bubble, and~iii ! the maximal radius
will increase. When the shape instability line is hit, a mi-
crobubble pinches off, giving the bubble a recoil. As this
repeats again and again on the diffusive time scale of;1s,
the bubble seems to ‘‘dance.’’

Within the adiabatic approximation we now calculate
f(R0( t̄))5f( t̄). According to the energy focusing mecha-
nisms discussed in Section III light can be emitted if the
~inward! bubble wall velocity becomes supersonic,
M52Ṙ/cgas*1. We define the time whenM51 holds as
ts . The relative shift of this time to the forcing phase defines
fs . As the waves and shock waves in the bubble are very
fast, we take the timets of the detachment of the~shock!
wave as the time of the light pulse. The error we make by
this approximation is of the order ofDt;R0 /cgas;1 ns, as
follows from a simple estimate.

Next we calculateR0( t̄) from Eq. ~35! for discrete adia-
batic timest̄5nT. Take fixedR0 and calculate the time av-
erageŝ • & t,i from the RP equation. The integral

I5E
0

` dh8

^~3h81R3~ t !!4/3& t,0
~42!

can be calculated numerically. Its convergence, however, is
slow. In order to speed up the numerical calculation, for
calculations over a long period of time we approximate the
integral I by I5a/Rmax1(12a)/R01(3hmax)

21/3. Here,
a'0.9 is an adjustable parameter, which slightly depends on
R0 andPa , andhmax@Rmax

3 must be sufficiently large. The
approximation is very well controlled and the results are in-
distinguishable from the exact result. The growth during the
time intervalT finally reads

DR0~ t̄ !5
TDc0

r0R0
2~ t̄ !I

Fc`

c0
2

^p~ t !& t,4~ t̄ !
P0

G . ~43!

DR0 is added toR0 and the procedure is repeated until
R0( t̄) hits the parametric instability curve. Here from Fig. 5
we tookR0

PI55mm as a very good approximation. A random
fraction of the bubble will pinch off. In Fig. 11 we show the

ambient radiusR0( t̄) and the relative phase of the light pulse
fs( t̄) for three different relative gas concentrationsc` /c0.

Figure 11 should be compared to the corresponding ex-
perimental Fig. 4 of Ref. 5. Unfortunately, for that figure the
precise forcing pressure amplitudePa and the ambient

FIG. 11. The phase of the light pulsefs( t̄) ~upper! and the corresponding
ambient radiusR0( t̄) ~lower! for ~a! Pa51.3 atm and for~b! Pa51.2 atm,
for three different gas concentrationsc` /c050.00395,c` /c050.0658, and
c` /c050.26, corresponding to a gas pressure of 3 mmHg, 50 mmHg, and
200 mmHg, respectively. These values are chosen as in experiment to which
these figures compare very well. ForPa51.2 atm we had to choose 12
mmHg as smallest concentration, as for 3 mmHg the bubble would still
dissolve. Diffusively stable SL is only seen for the lowest concentration.
The strength of the microbubble pinch-off atR055mm, i.e., the decrease of
the ambient radius, is chosen randomly.~c! Experimental result for the
phases of light emission for the same three gas concentrations as in~a!. This
figure is reproduced from Fig. 4 of Barberet al. ~Ref. 5! with kind permis-
sion by the authors. It also shows the relative phase of light emission for air
bubbles: Stable SL is achieved for much higher concentrationc`

air/c050.2,
corresponding to 150 mmHg. The discrepancy between air and argon can be
resolved by also considering chemical instabilities~Refs. 25 and 26!.
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bubble size are not known. So we try bothPa51.3 atm~Fig.
11~a!! and Pa51.2 atm ~Fig. 11~b!!. For Pa51.3 atm we
have very good agreement with experiment: stable SL for 3
mmHg, growth for 50 mmHg and for 200 mmHg. For
Pa51.2 atm a bubble in a fluid with 3 mmHg argon concen-
tration would dissolve according to our approximation, see
Fig. 1, so we choose 12 mmHg as smallest concentration and
find stable SL.

Let us compare thegrowth rateswith the experimental
values. As in experiment, for larger gas concentration the
growth rates ofR0 and fs strongly increase. Quantitative
estimates from Fig. 11 for the growth rates of the phases for
both forcing pressures and both concentrations are compared
to the experimental ones in Table I. They are slightly larger
from what is found in experiment, but agree in order of mag-
nitude. Rather than focusing on an exact quantitative agree-
ment here, the important point is that for lower concentration
c` /c050.0165~corresponding to 3mmHg! the phase of light
emission isstabledue to the diffusively stable ambient ra-
dius ~for Pa51.3 atm!. In this example, the bubble is locked
at R054.31mm, and, theoretically, the phase of the light
pulse is stable for ever. A practical restriction to this stability
is that the cell is not gas tight and additional gas will dis-
solve, leading to an increase ofc` which finally leads to
bubble destabilization.

What is the physical consequence of the large bubble
growth rates obtained for large argon concentrationc` /c0
~Table I!? The shape instability line will be hit more fre-
quently per unit time and the bubble’s dancing frequency
will thus become larger, as more microbubble pinch-offs and
resulting bubble recoils will take place per unit time. As
noted above, with a certain probabilityper pinch-off the
pinched off microbubble~s! are too large so that the remain-
ing bubble dissolves. Thus with increased pinch off fre-
quency this probabilityper timeincreases. We speculate that
this mechanism sets the upper threshold of the unstable SL
regime~towards a no SL regime! in the phase diagram Fig.
1. Table I teaches us that the growth rates increase drastically
with c` /c0, so the probability of having a long living bubble
for high gas concentration becomes very low. Indeed,
Gompf52 reported that the larger the concentration is for
fixed Pa , the faster the unstable SL bubble dies. Ifc` is big
enough, it will thus be very unlikely for the bubble to survive
an appreciable time. From experiment5 we know that the
upper concentration threshold of unstable SL is beyond
c` /c050.26.

This hypothesis also explains why the water in the SL
container ‘‘ages,’’52 in case the container is not gas tight. By
‘‘aging’’ it is meant that stable SL and finally also unstable
SL becomes impossible with ‘‘old’’ water. The reason is that
external air diffuses into the water, dissolves, andc` /c0 in-
creases. Consequently, the originally stable bubble is pushed
into the unstable regime and starts to ‘‘dance,’’ shedding off
microbubbles. The dancing frequency becomes higher and
higher and finally the bubble dissolves after a too large pinch
off. Bubbles may be reseeded, but will also die very soon.

What we do not understand in the unstable regime is the
dependence of the light intensity on the gas concentration as
e.g., measured in Fig. 2 of Ref. 10. We speculate that it
depends on the ambient size of the bubble which is sup-
ported by Fig. 6 of Ref. 7. In that figure Lo¨fstedtet al. show
that the maximal radius and the SL intensity are correlated.

Finally we address the question whether the growth of
fs has to be monotonous. In fact, it does not. For larger
R0 ('6mm, where the bubble is already parametrically un-
stable! the growth rate offs is wiggly. Similar oscillations
show up in the maximal radius
Rmax(t)5max$R(t8)ut<t8<t1T%, as e.g., seen in Fig. 4 of
Barberet al.3 This wiggly structure as a function oftime is a
direct consequence of the wiggly structure offs andRmax as
a function ofambient radius R0 which is due to a resonance
phenomenon in the RP equation.47 The growingR0 probes
the wiggles infs(R0) andRmax(R0).

In experiment no or hardly any oscillatory structure in
fs is seen.5 Consequently, the ambient radiusR0 does not
seem to be in the wiggly regime. Thus multiple stable diffu-
sive equilibria may only be important in the shape unstable
regime in theR02Pa parameter space. Indeed, the wiggly
structure inRmax(R0(t̄))

3 is only revealed when boosting the
bubble in the unstable SL regime where it becomes shape
unstable after a few ms and bursts~cf. Fig. 4 of Ref. 3!.

V. COMPARISON OF THE ADIABATIC
APPROXIMATION TO THE FULL NUMERICAL
SOLUTION

A. Concentration profiles

To compare our results within the adiabatic approxima-
tion with the exact solution, we must numerically solve the
PDE ~26! with the boundary conditions given above. We
sketch our numerical method in Appendix A. Here we report
on results. We do not consider shape instabilities in this sec-
tion.

In Fig. 12 we show concentration profiles of the gas
outside the bubble during expansion and collapse. We take
an argon bubble driven at 1.15 atm close to diffusive equi-
librium. The corresponding dynamics of the bubble radius
R(t) and the ambient radiusR0(t) have already been shown
in Figs. 2~b! and 2~c!, respectively. Near the bubble radius
minimum the concentration gradient at the bubble wall is
negative and the bubble ejects gas which accumulates near
the bubble wall as the diffusive time scale is slow compared
to the bubble motion. When the bubble is reexpanding, it
pushes away the accumulated gas together with the fluid.
During the expansion phase the concentrationc(R(t),t) at

TABLE I. Growth rates for the phase of light emissionfs for two forcing
pressure amplitudesPa and two concentrationsc` near the pinch off of the
microbubble in comparison with the experimental data~Ref. 5! for which
the forcing is not exactly known. Stronger forcing and larger argon concen-
tration enhance the growth. We find order of magnitude agreement. We also
give the growth rates for the radii which are not experimentally available.

c` Pa51.2 atm Pa51.3 atm Experiment5

fs 50 mmHg 1.7ms/s 2.7ms/s 0.5ms/s
200 mmHg 9ms/s 11ms/s 5ms/s

R0 50 mmHg 2.4mm/s 4.7mm/s •••
200 mmHg 11mm/s 18mm/s •••
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the bubble wall decreases due to Henry’s law~27!. At some
point the gradient becomes positive and the mass content of
the bubble grows. The wall of gas outside the bubble is thus
~i! pushed away from the bubble,~ii ! deaccumulates
~towards smallerr ) because of bubble growth, and~iii !
shrinks because of diffusion~towards largerr ).

Apart from the diffusive processes in the fluid these pro-
files only mirror the time and space dependence of
cosc(r ,t). The width of the boundary layer in whichcosc is a
dominant feature of the concentration profile can be readily
estimated as

dD5AD

v
, ~44!

which is the characteristic length for diffusive processes on a
time scale;T.

B. Comparison on diffusive equilibria

First, let us focus on the equilibrium radii for diffusively
stable bubbles. Can we find the multiple equilibria predicted
in Section IV in the full numerical simulation, i.e., different
stable situations for the same physical parameters? Figure 13
showsR0(t) for several different initial ambient radii. The
diffusion constant has the physical valueD5231029m2/s,
corresponding to a Schmidt number of Sc'3000 in the re-
gime of interest~v'2p 26.5 kHz,R0'6 mm!. We indeed
observe several stable and unstable equilibria. However, they
deviate slightly from those calculated in the adiabatic ap-
proximation.

The deviation, however, is tiny, less than 0.06mm as
seen from Fig. 14 and clearly not detectable with today’s
experimental possibilities. Thus for all practical reasons we
can consider the adiabatic approximation of the equilibrium
radii as exact.

Nevertheless, let us wonder what the origin of the devia-
tion is. It can be explained by considering higher order cor-
rections to the adiabatic theory:53 the equilibrium condition
~36! is modified, lowering the required mean pressure at the
bubble surface for stability to

^p~ t !& t,4
P0

5
c`

c0
2

1

Sc1/2
4

c0
K 1

R3E
0

`

cosc
0 ~ h̃,t !dh̃L

t,4

, ~45!

FIG. 12. Gas concentration profiles outside the bubble for expanding~a! and
collapsing~b! bubble radius, respectively. The bubble is near diffusive equi-
librium, driving pressure isPa51.15 atm. Profiles are shown at intervals of
0.75ms ~a! and 10 ns~b!.

FIG. 13. Three different stable equilibria are approached both from above
and from below. Shrinking or growth are hardly noticable. The six initial
radii are 6.035mm, 6.05mm; 6.32mm, 6.34mm; 6.65mm and 6.665mm, re-
spectively. Otherwise, all conditions are the same. Again, we choose
Pa51.15 atm. In Fig. 2~c! the sameR0(t) dynamics has already been shown
for the much shorter time 2T. The detailed growth and shrinking processes
resolved in that figure cannot be seen here any more as the time scale of
500T chosen here focuses on long time behavior. Therefore, the curves
R0(t) seem to ‘‘shade’’ theR0 regime between their minimal and their
maximal values.

FIG. 14. Location of an equilibrium radius for variousD ~solid line!. At the
upper end of the error bar the bubble is shrinking, at the lower end it is
growing. The theoretical value from adiabatic approximation is indicated by
the dashed line. Note that the tiny difference of'60 nm ~for the physical
diffusion coefficientD5231029m2/s) is not experimentally detectable at
the moment. The bubble is driven at 1.15atm with a gas saturation in water
of c` /c050.035. The inset shows the deviationR0

adiab2R0
e drawn in a log-

log diagram, together with our estimate~B1! ~solid line!.
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cosc
0 being the zeroth order~in Sc21/2) solution of the oscil-
latory part of the profile, depending onh̃[Sc1/2h.53 The shift
in ^p(t)& t,4 causes a corresponding shiftR0

adiab2R0
e in the

equilibrium radiusR0
e .

To analyze the deviations from the equilibrium position
~36! further, we redid the numerical PDE calculation for
smaller~unphysical! D. As expected, in theD→0 limit the
(D independent! adiabatic fixed point is approached as can
be seen from Fig. 14. For that figure the numerical equilib-
rium radii are ‘‘measured’’ by detecting either ‘‘shrinking’’
or ‘‘growth’’ for slightly different radii. The stable equilib-
rium is determined by linear interpolation between the
growth rates of a growing and a shrinking bubble. In prin-
ciple, we can achieve arbitrarily small error bars in our nu-
merical results. This is confirmed by the excellent agreement
of theD→0 limit with the adiabatic approximation.

There is a theoretical possibility that the deviation of the
full PDE dynamics from the adiabatic approximation mat-
ters, namely when multiple stable equilibria are to be re-
solved. For completeness we discuss this point in Appendix
B.

C. Comparison on growth rates and profiles

To detect the location of an equilibrium point along the
R0 axis, starting with a constant gas concentration profile
c(h)5c` is obviously a good choice, becausec̄smo will ap-
proach that value for allh in equilibrium ~apart from higher
order corrections!. The sign ofṘ0(t) will be correct after a
small number of oscillation cycles. If one is, however, inter-
ested in the actual value of the bubble growth rate, i.e.,
bubble dynamics far from equilibrium points, choosing
c̄smo(h) as initial concentration profile will avoid transients
on diffusive time scales. Indeed,

^c~h,t !& t,4→ c̄smo~h! ~46!

holds to very good accuracy for such a calculation~see Fig.
15!. Moreover, the observed growth rateṘ0(t) is in very
good agreement with the value calculated from~35!, as indi-
cated in Fig. 16.

VI. CONCLUSIONS

This paper works out a hydrodynamic approach towards
SL, based on the Rayleigh–Plesset equation. This allows us
to explore a considerable part of the phase space and to study
long term dynamics. As necessary conditions for SL we de-
manded shape stability and energy focusing. The adiabatic
approximation37,7 allows us to study also diffusive stability
within the RP approach.

Phase diagrams in thec`2Pa , R02Pa , andR02c`

parameter spaces have been presented. Three phases can be
identified: stable SL, unstable SL and no SL. Stable SL only
occurs in a tiny domain of the parameter space which is in
good quantitative agreement with the UCLA SL experiments
on argon bubbles.5

For molecular gases besides~i! shape instabilities and
~ii ! diffusive instability also~iii ! chemical instabilities have
to be considered. Then the present hydrodynamic approach
can be extended to gas mixtures such as air as demonstrated
in Refs. 25, 26. Again, good agreement with the UCLA
experiments4,3,5,7,11is achieved. Our theoretical thresholds of
stability may slightly shift if the gas dynamics inside the
bubble are more rigorously taken into consideration, e.g.,
within the acoustic resonator theory23 there is an additional
pressure caused by the acoustic waves inside the bubble.54

We suggest to experimentally map out phase diagrams in
the c` /c0 versusPa /P0 parameter space for various gas
mixtures. More experimental data on the borderlines be-
tween the stable, unstable, and no SL regimes will lead to
further refinements and improvements in our understanding
of the dynamics of a sonoluminescing bubble. We believe
that it is crucial to start a detailed search for discrepancies to
the present hydrodynamical~and chemical! theory to judge
whether further physical effects which are not considered
here play a major role in single bubble sonoluminescence.

The central question which cannot be answered within
the present approach is howhot the gas inside the bubble can
become. Progress on this point will require more sophisti-
cated understanding of the gas dynamicsinside the bubble.
Understanding how the gas temperature depends on experi-
mental parameters such as forcing pressure, gas concentra-
tion, or liquid temperature will allow for the creation of tem-

FIG. 15. Comparison of̂ c(r ,t)& t,4 ~solid line! and the smooth profile
csmo(r ,t) from the adiabatic approximation~dashed!. The bubble ambient
radius shows pronounced growth in this case. The inset shows an enlarge-
ment of the smallr regime.

FIG. 16.R0(t) for c` /c050.001 and forc` /c050.3 resulting in shrinking
and growth of the bubble, respectively. We chosePa51.15 atm and a
bubble with R0(t50)55.5mm. The adiabatic approximations are also
shown as straight lines. By definition they do not follow the violent mass
exchange processes during one cycle of timeT.
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perature controlled environments for chemical reactions
within the bubble.
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APPENDIX A: NUMERICAL SCHEME FOR THE
ADVECTION DIFFUSION EQUATION

A. Transformation

To numerically solve Eq.~26! with the boundary condi-
tions ~27! and ~28! we first transform the independent space
variabler . Following Ref. 38, we choose

r5F~x,t !5~~R~ t !!32Ru
3ln~12x!!1/3, ~A1!

whereRu is an adjustable length parameter. All lengths are
measured as multiples of 1mm, all times in units of
T52p/v, and all pressures in atm. After the transformation
r5F(x,t) the advection diffusion equation~26! reads, if
written as a local conservation law,

] t~ f c!1]x~gc!2]x~h]xc!50, ~A2!

where

f ~x,t !5F2]xF,

g~x,t !5ṘR22F2] tF, ~A3!

h~x,t !5DF2/]xF.

The transformation~A1! is chosen to makeg(x,t) identically
vanish and thus to obtain a pure diffusion equation. We have

f ~x,t !5Ru
3/~12x!,

g~x,t !5 0, ~A4!

h~x,t !5D~12x!~F~x,t !!4/Ru
3 .

The time dependent ranger P @R(t),`# has been
mapped to the constant rangex P @0,1#. The boundary con-
ditions are Henry’s law ~27! which now reads
c(x50,t)5c0p(R,t)/P0 andc(x51,t)5c` . The mass loss
of the bubble, expressed in the new independent variablex,
is

ṁ54pDRu
23R4]xcux50 . ~A5!

B. Discretization

The interval x P @0,1# is discretized using a non-
equidistant grid. The grid must~i! provide sufficient volume
for diffusion of gas outside the bubble and~ii ! sufficient
resolution near the bubble radius for a correct representation
of gas concentration gradients. We satisfy~i! by choosing
Ru'Rmax, whereRmax is the maximum radius of a typical

bubble oscillation. This ensuresr 3(x→1)@R3 even for rela-
tively low resolution nearx51 ~cf. Eq. ~A1!!. From this
choice, we deduce a criterion for the grid resolutiondxR near
the bubble surface for a given resolutiondr R in physical
coordinates ~e.g., dr R50.01 mm). Expanding ~A1! in
x!1, we get

dxR5dr R
Rmin
2

Rmax
3 .

This is a conservative estimate, requiringdr R to be resolved
even for the minimum bubble radiusRmin . At times when the
bubble radius is larger, the resolution inr will be even better
with this dxR .

Typical bubble dynamics data lead todxR'531026.
Excellent resolution at the bubble radius is needed for a cor-
rect representation of gas concentration gradients. It is, how-
ever, unnecessary at greater distance from the bubble sur-
face. Therefore, the grid density is varied according to a
power law to yield a fine grid nearx50 and a coarse grid
nearx51.

Overall, we haveN grid points x150, x2 , . . . , xN21,
xN51. The fieldc(x,t) is defined on the grid,ci5c(xi), and
so are the fields f ,g,h. We define dxi5xi112xi ,
i51,2,...,N 2 1 anddxa,i5(dxi211dxi)/2, i52,...,N 2 2,
dxa,15dx1/2, dxa,N5dxN21/2.

The discretization of Eq.~A2! has to guarantee mass
conservation,

05c1
u2p~Ru~ t !!c0 /P0 ,

05 f i
dci
dt

2
1

dxa,i
S 12 ~hi

u1hi11
u !

ci11
u 2ci

u

dxi

2
1

2
~hi21

u 1hi
u!
ci

u2ci21
u

dxi21
D , i52,...,N22 ~A6!

05 f i
dci
dt

2
1

dxa,i
S 2

1

2
~hi21

u 1hi
u!
ci

u2ci21
u

dxi21
D ,

i5N21,

05cN
u 2c` .

Here, ci
u are the concentrationsci1udci at time

t1udt and hi
u5hi(R

u) where Ru is the radius at time
t1udt. Correspondingly,R0

u is the ambient radius at that
time. We chooseu51, i.e., a fully implicit method. Equation
~A6! has to be assisted by the Rayleigh–Plesset Eq.~2! and
the proper discretization of~A5! guaranteeing total mass
conservation,

05r0~R0
u!2Ṙ0

u2
h1

u1h2
u

2

c2
u2c1

u

dx1
. ~A7!

We solve theN12 equations~A6!, ~A7!, and ~2! for the
unknownsdci , i51,2,...,N, dR0, and dR with Newton’s
method. The Jacobian is calculated analytically. A time step
control and adjustment is provided by redoing every time
stepdt in two steps of widthdt/2 each and then comparing
the result. For large forcing we need a very low tolerance of
1025 per cent to achieve sufficient numerical quality of mass
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conservation. Note that this simulation covers time scales
from picoseconds~for good resolution of the bubble dynam-
ics near the collapse! to tens of milliseconds~for observation
of diffusive growth or shrinking of the bubble!.

APPENDIX B: ADIABATIC APPROXIMATION AND
MULTIPLE EQUILIBRIA

In Section V we showed that the adiabatic approxima-
tion well describes the full dynamics. However, for~theoreti-
cal! completeness we would like to caution in this Appendix:
For the physical diffusion coefficientD5231029 m2/s the
simple adiabatic approximation may lead to evenqualita-
tively wrong results, e.g., take a bubble withR056.06mm.
According to the adiabatic approximation one would expect
that it grows towards the equilibriumR0

adiab56.097mm ~see
Fig. 14!. However, it shrinks towards the physical equilib-
rium R0

e56.041mm. At the moment the experimental accu-
racy does not allow us to distinguish between these two
sizes, but it may improve one day. We can understand
R0
e,R0

adiabbecause the gas layer around the bubble~Fig. 12!
diffusively shrinks too strongly for finiteD, leading to a
larger overall mass loss and thus smaller bubbles. The order
of magnitude of theR0

e shift can be estimated as the width of
the boundary layer:

R0
adiab2R0

e;dD5AD

v
}D1/2. ~B1!

For the physical D5231029 m2/s we have
R0
adiab2R0

e'0.11mm reproducing the numerical result
'0.06mm quite accurately. In the inset of Fig. 14 we plot
log(R0

adiab2R0
e) vs logD and indeed find good agreement

with the scaling law~B1!.
Whether the deviations are considered to be serious or

not depends on what is supposed to be analyzed. If the focus
lies on identifying equilibrium points, the consequences can
be quite drastic. Note that for large enoughD, the value of
~45! falls below the minimum values of^p(t)& t,4 /P0 ~cf. Fig.
7!, thus making an equilibrium solution impossible and lead-
ing to dissolution of the bubble.

If the distance between subsequent equilibrium radii
DR0

adiab,i[R0
adiab,i2R0

adiab,i21 ~where the index numbers label
the equilibria in ascendingR0 order! is supposed to be re-
solved, i.e., if one wants to find a one to one correspondence
between the adiabatic equilibria and the real ones, one has as
to impose the following condition on the approximation:

DR0
adiab,i@

1

2
~R0

adiab,i2R0
e!;

dD
2
. ~B2!

Expressed in the Schmidt number Sc it reads

Sc@S 2R0

DR0
adiab,i D 2 ~B3!

rather than simply Sc@1 as one may naively expect. With
the correct values in the relevant parameter regime
R0'6mm, DR0

adiab,i'0.3mm we have Sc@1600, which is
only marginally fulfilled by the physicalD corresponding to
Sc'3000.
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