Phase diagrams for sonoluminescing bubbles
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Sound driven gas bubbles in water can emit light pulses. This phenomenon is called
sonoluminescencésL). Two different phases of single bubble SL have been proposed: diffusively
stable and diffusively unstable SL. We present phase diagrams in the gas concentration versus
forcing pressure state space and also in the ambient radius versus gas concentration and versus
forcing pressure state spaces. These phase diagrams are based on the thresholds for energy focusing
in the bubble and two kinds of instabilities, namely shape instabilities andii) diffusive
instabilities. Stable SL only occurs in a tiny parameter window of large forcing pressure amplitude
P,~1.2-1.5 atm and low gas concentration of less than 0.4% of the saturation. The upper
concentration threshold becomes smaller with increased forcing. Our results quantitatively agree
with experimental results of Putterman’s UCLA group on argon, but not on air. However, air
bubbles and other gas mixtures can also successfully be treated in this approach if in diiidition
chemical instabilities are considered. All statements are based on the Rayleigh—Plesset ODE
approximation of the bubble dynamics, extended in an adiabatic approximation to include mass
diffusion effects. This approximation is the only way to explore considerable portions of parameter
space, as solving the full PDEs is numerically too expensive. Therefore, we checked the adiabatic
approximation by comparison with the full numerical solution of the advection diffusion PDE and
find good agreement. @996 American Institute of Physid$$1070-663(196)02011-9

I. INTRODUCTION C../cy~0.4%. The diffusively stable state is characterized
by the constancy of the relative phase of light emission over
billions of cycles. The same is true for the light intensity.
A gas bubble levitated in a strong acoustic field For air bubbles the same two phases exist, however,
_ for gas concentrations about two orders of magnitude
P(1)=Pacosut @ larger than for argon bubbles: Stable SL is observed for
can emit bursts of light so intense as to be observable by the."/co~ 10% —20%>, unstable SL for even higher concentra-
naked eyé®Here,P, is the forcing pressure amplitude and tions.
w/27 the frequency of the forcing field. This phenomenonis  Another controllable parameter is the temperature of the
called single bubble sonoluminesceri&). The light pulse liquid. Upon decreasing the temperature of the ambient water
is shorter than 50 p%°® Precise experiments by Putterman’s from room temperature to slightly above freezing, the light
group at UCLA~" have revealed many surprising and in- intensity may increase by two orders of magnitddebrupt
triguing properties of sonoluminescing bubbles. SL only oc-transitions in the light intensity with the liquid temperature
curs in a narrow parameter range. The adjustable experimease found for SL in nonaqueous fluifSUsing different flu-
tal parameters we focus on here are the forcing pressuids (but the same gas speciedso results in great differences
amplitude P, and the gas concentration, far from the in SL intensity***
bubble. Single bubble SL is found only for lar¢ggompared
to the ambient pressur@,) forcing pressureP,~1.2—1.5
atm and smallcompared to the saturatiary) gas concen-
trationc,, . The goal of this paper is to figure out which features of
We report the results on argon bubbles first. Two distinctSL can be accounted for in a purely hydrodynamic apprdach
phases of single bubble SL have been proposed on accouand to which extent they may reflect other, non-
of experimental observations(i) Unstable Sloccurs in the  hydrodynamic effects, e.g., chemistry.
concentration range,,/co~6%—26%. This phase is char- Our main result is the phase diagram Fig. 1 in the
acterized by an increase of the relative phase of light emisP,—c,, phase space. It is obtained from hydrodynamic cal-
sion with respect to the driving pressure on the slow diffu-culations of the bubble dynamics and the fluid dynamical and
sive time scale~1s, followed by a rapid breakdown and diffusive processes outside the bubble. For given forcing
another subsequent increase. The light intensity itself bepressure amplitud®, and gas concentration, we predict
haves in the same way and the bubble is reported to be danaith this diagram whether the bubble is in the diffusively
ing or jiggling® This state of SL is also unstable in the unstable SL state, the diffusively stable SL state, or in no SL
sense that often all of a sudden the bubble digsStable SL  state at all.
occurs in argon bubbles at very low gas concentrations Besides the forcing pressure amplitublg and the gas

A. The phenomenon

B. A hydrodynamic approach
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the collapse. The acoustic energy accumulates and finally
results in light pulses. This theory offers an explanation for
the possibility of the above mentioned abrupt transition in
the SL intensity with increasing temperatdfegs well as for

the dependence of the light intensity on different liquids and
gases. We refer to Ref. 23 for a detailed discussion.

In this paper we take as criterion for energy focusing and
the resulting light production that the Mach number of the
bubble wall(with respect to the speed of sound in the)gas
has to be larger than os&This criterion corresponds to the
onset of SL within conventional shock theofi®€? and
FIG. 1. Phase diagram in the, /¢, vs P, /Py parameter space. The three W!thm our alt.emate energy focusmg meqhaDMOQether
phases represent stable SL, unstable SL, and no SL. For lucidity we do néﬁ”th the requirement of bubble stability, it gives the bound-
draw the upper and the right borderline of the unstable SL regime toward &ry Of the stable SL regime of Fig. 1. For argon bubbles the
no SL regime as they are less precisely defined. narrow parameter range where stable SL exists is in agree-

ment with experiments of Barbet al® A qualitative argu-
ment for this agreement was previously given byfdtedt
g.etal’
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concentrationc,,, two further parameters have to be a
dressed here: The frequenay27 of the forcing field and o
the ambient radiuR, of the bubble, i.e., the bubble radius at C. Chemical instabilities

ambient normal conditions oP,=1atm and 293 K. The For air bubbles there are severe deviations between the
frequency is set to a fixed value so that the forcing aCOUSti%ydrodynamically calculated phase space diagram and the
field (1) corresponds to a resonance of the container, in Ordeéxperimental measuremeitghe parameter regime where
that the bubble remains trapped in a pressure antinode. All aftaple air bubbles should exist is close to that of argon; how-
the analysis corresponds =27 26.5 kHz as applied in  eyer, experimentally stable SL is found for gas concentra-
Barberet al’s experiment the period of the forcing field is tions as large asi"/co~20%.5 Because of this discrepancy,
th“STZZW/“f:38 MS. . . Lofstedtet al. hypothesizéa “yet unidentified mass ejection
The ambient radiui, of the bubble is not an adjustable mechanism.” In Ref. 25 we have suggested that this mecha-

parameter but the system choosgsdynamically. The ap-  pism is chemical. Indeed, when considering besideshape
proach followed here includes thigliffusive) dynamics, so  jngtapilities and(i) diffusive instabilities alsdiii) chemical
that we can predict the ultimate ambient radius. Our resultgstapilities, our results can be extended to gas mixtures and
are consistent with Mie scattering_radius measurentents. are then in quantitative agreement with the UCLA experi-

~ What are the necessary requirements for SL to occurgents, as shown in detail in Ref. 26. The idea is that because
First, the bubble has to be stable toward shapgf the high temperatures achieved in the bubble nitrogen
oscillations!*~*" We have identified three types of shape in- 3ng/or oxygen is destroyed and reacts to;NONO; , and/or
stability: Two instabilities of a parametric type acting on NH; and only pure argon remains in the bubble. Thus for air
relatively slow time scales of-1—100 us. As discussed \ynich contains about 1% argon the gas concentratdhi

below, these instabilities are quite gentle and the bubble ca,ier have to be about two orders of magnitude higher than
survive them by pinching off microbubbles. This pinch off 5, pure argon. The central parameter is thus the arfgon
causes the aforementioned break in the relative phase of ligk{a ga$ concentrationc®' miture iy the dissolved gas.

S . =qcC,
emission in the unstable SL staend the recoil of the re- pygre. q is the percentage of argon in the mixture; for air
maining bubble is the origin of the observed “jiggling” or

; ) J 7" q=0.01=1%. The nitrogen dissociation theory suggests that
“dancing” of the bubble. The third type of shape instability,

when adjustin roperly, no degasing is necessary an
however, acts on a very short time scad0 ° s. It is so 25,26J 99 properly g g y any
violent that it ejects the bubble from the trapping sound field

We call it the Rayleigh—Taylor instability as it occurs when

In this paper we work out the basics of our hydrody-
namic approach and restrict ourselves to pure argon bubbles

gas from inside the bubble is accelerated towards the fluid o \yhich no chemical instabilitie.e., reactionscan occur.

What is the energy focusing process in the bubbleq wever

Many speculations abound in literatdfet® Jarmar® (for
multi bubble SL) and later Greenspan and Nadinand Wu
and Robert€ suggest thashocksdetach during the compres-

by considering the chemical instabilities
properly our results here can directly be extended to any
gas mixture and are found to agree with the UCLA experi-
ments.

25,26

sion of the bubble and focus to the center of the bubble,

thereby compressing the gas so strongly that light can b
subsequent

emitted, either by ionization and
bremsstrahlurfd® or by blackbody radiatiof! In Ref. 23 we

B. Necessary approximations

How can we examine the huge multi—dimensional pa-

suggest an alternate energy focusing mechanism. The idearameter spaceR,, c.., andRy)? Given that the dynamics
that the bubble acts as a driven acoustic resonator whicimvolve time scales spanning eleven orders of magnitude
switches on when the damping losses through viscosity an@from the time scale of the light flagk<50 p9 to the diffu-
acoustic radiation are smaller than the energy input duringive time scald~1 9)), it is necessary to make approxima-
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tions in modeling the hydrodynamics of sonoluminescence. . )
The full hydrodynamic problem involves solving the three-  RR+ ERZZ
dimensional(3-D) Navier—Stokes equations both inside and
outside the bubble, coupled with equations of heat transfer d
and gas transfer, accompanied by the correct boundary con- XGi(P(RO—P()—dvo— R’ 3]
ditions at the interface and at infinity and the equations of v
state. Moreover, at least in principle the radiation fields need ypical parameters for an argon bubble in water at room
to be coupled to the fluid. This set of equations must bdemperature are the surface tensiorr 0.073 kg/$, the wa-
studied not only as a function of parameters but also oveter viscosity v=10"° m?/s, densityp,,=1000 kg/ni, and
millions of oscillation periods of the bubble; it should be speed of sound,,=1481 m/s. The driving frequency of the
emphasized that the relevant question for sonoluminescen@soustic field isw/27=26.5 kHz and the external pressure
experiments is not the transient that occurs for the first fewPo=1atm. These parameters show a weak dependence on
cycles but rather the nature of the long time limit. This com-the temperature of water which is assumed to be constant
plete formulation is both computationally and theoreticallythroughout. We assume that the pressure inside the bubble
intractable. In order to make progress, the problem must bgaries according to
simplified. To date, two different avenues have been pur- R3-h® \|?
sued. o D(R(t))zpo(m) , (©)

The first approximation was proposed long ago by Lord
Rayleigt’ and elaborated upon by Ples&&tTaylor?®  \whereh=R,/8.86 is the hard core van der Waals radius for
Lauterborm’ Prosperetfi*® and others? in the context of argon bubble§.The exponenty is the effective polytropic
studies of cavitation. The idea is to consider the bubble as axponent of the gas. Plesset and Prospétegiculated how
perfectly spherical cavity, with the pressure inside the bubblet depends on théherma) Peclet number Pe ng/K which
having no spatial variations. The temporal variation of thegives the ratio between the bubble length sé&jéwhich we
pressure follows from an equation of state. In this approachake as~5um for the estimates in this paragrapind the
the full dynamics is reduced to the Rayleigh—Ples&®)  thermal diffusion length/«/w. The thermal diffusivityx for
ODE 22 This formulation allows very long time calculations argon isk~2x10"° m%s, which yields Pe0.2 and ac-
of the bubble dynamics, but it completely ignores the dy-cording to Fig. 1 of Ref. 31, the effective polytropic expo-
namics inside the bubble producing the light. Later on,nent y=1. As discussed below, the RP equation contains
Plesset? Strube;> and Prosperetfi extended this type of much smaller time scales than 1. One could therefore ar-
approach to deal witishape oscillationsvhile Epstein and  gue that these smaller time scales may enter into the calcu-
Plessef Eller and Crun?>**Crum and Cordri and finally  |ation of Pe, so that the frequenay should be replaced by
Fyrillas and Szeff and Ldstedt et al.” included diffusive IRI/R. This estimate would lead to R3(as large as T0at
effects.We call this approach th&P-SL-bubble approach jnsiants of rapid bubble wall movement which implies
Clearly, shock formatiof??* or the building up of the acous- y~5/3 for argon. However, since R3&1 only holds in
tic waves® inside the bubble will modify the dynamics of very small time intervals-1 ns, the global dynamics are not

R(t), because strictly speaking, the RP equation only holdSiacteq by setting the effective polytropic exponent 1

for a Mach number smaller than one. But it is our belief thatuniformly in time. Note that withy=1 Eq.(3) should not be

the results of this paper are robust towards the resulting,,,ght of as an equation of state but rather as a process
changes and it is only within this RP-SL bubble approachyq, ation parametrizing the isothermal conditions at the
that the exploration of the full SL parameter space and th, e wall, induced by the large heat capacity of water. The
calculation of phase diagrams are currently manageable. Fyl, jice of y=1 is confirmed by the full numerical simula-
numerical simulations as in Refs. 38 and 39 are by far nuggq of Vuong and Szefl and by the approximation of Ka-

merically too expensive to do such an analysis. _math et al** Note that, as a consequence, there are heat
The second type of approximation traditionally made isg vas pack and forth across the bubble wall.

complementary to the first, and focuses on the interior of the 5 ther approximation iii2) and in the dynamical equa-

bubble %?92(.139 40above mentioned ~ shock  formationjon pelow for the nonspherical distortions is that transla-
processes. The spherically symmetric gas dynamics yjona| movements of the bubble are not taken into account. If

equations are solved inside the bubble and coupled 10 & esent they may cause further instability, but the experi-
Rayleigh—Plesset equation. Simplifications are typically eMynens in which the bubble is fixed in the center of the cell

ployed in modeling the gas dynamics, for example neglectsgem 1o justify that we neglect translational motion.

ing heat and viscous dissipation. These calculations can only 11 radiusR(t) corresponding to the forcing pressure
be carried out for a few oscillation periods, and thus are noEl) with P,=1.15atm is shown in Fig.(B). Four time scales
ablg tq resolve cumulative effects building up over many, e hidden in the(linearized RP equation: The period
oscillations. T=38 us of the external forcindP(t) (Fig. 2(a)), the in-
trinsic frequency\/SyPO/(pWROZ)/2w~(1.8 us)~ 1 of the
oscillating bubble which is the frequency of the after-
The Rayleigh—PlesséRP) equatiorf?”*°on which the  bounces, the time scale of viscous dampRfgv~25 us,
entire analysis of this paper is based, describes the dynamiesd the duration~0.1-1 ns of the bubble collapse, esti-
of the bubble radius, mated in Ref. 6. A fifth time scale, determined by the surface

1
(P(R,t) = P(t) —Po) +

Pw PwCw

E. The Rayleigh—Plesset equation
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main part of the paper. We calculate the diffusive instability

e 10| with Fyrillas and Szeri'¥ and Ldstedt et al’s’ adiabatic
w00 / approximation. The main results are phase diagrams in the
a \ / Cc.— P4, the Rp—P,, and theRy—c, parameter spaces.
1.0 |\ Only in a very small parameter domain does stable SL occur.
@ To analyze unstable SL we calculate growth rates and com-
} ‘ T pare them to Putterman’s measurements of diffusively un-
£ 200 ¢ ﬂ / ] stable SL argon bubblésConcentration profiles from a full
= ’ / numerical solution of the advection diffusion PDE are pre-
o MWWW sented in Section V, where we also check the validity of the
®) 0.0 ' adiabatic approximation by comparison with full numerical

solutions of diffusive dynamics. We find experimentally un-
detectable discrepancies which vanish in the Schmidt num-

S ber Se~« limit. Section VI presents conclusions.
3 6.04 | , ]
mo

6.03 0 1 > Il. SHAPE STABILITY

(©) time/T For sonoluminescence to occur and for the bubble to
remain oscillating for billions of cycles, the bubble must be
stable to shape oscillations. First, following the pioneering
work of Plesset? Strube!® and Prosperetfi® we derive
equations for the deviations of the bubble from a spherical
shape, and then proceed to analyze them.

tension\/Rong/aw 1.3 us is only important for larger or A, Dynamical equations
small R; for typical Ry, it only slightly changes the intrinsic
time scale which is of the same order of magnitude.

Also diffusive processesan be understood within the
RP approach to the SL bubbié’*? At first sight this is R(t)+an(t)Yn(6,9),
surprising because there is no diffusive time scale in the RP . . . .

) N : . whereY,, is a spherical harmonic of degree The goal is to
equation. For a qualitative understanding why this work

) : :
nevertheless, look at the bubble radk&) (Fig. 2(b)), re- detgrm'lne the dynamican(t) fo.r.each mode.. Pl_esse’t?s

. ¢ derivation follows the same spirit as the derivation of the
sulting from (2). For large R(t) the pressure inside the

pube il belowand gas ifuses o ne pubbecited  [YIS0Nesee o, e bt fow oude e
diffusion). For smallR(t), on the other hand, the bubble will y

shrink because of the enormous pressure irfSidéis con- the veIocity at the but_)ble wall B+ anY.n. This potential .is
cept was made quantitative by Fyrillas and SZeaind Ld- t.her_l used in Bernoulli's law to _determme the pressure in the
stedtet al” The main idea is a separation of the slow diffu- l1quid at the bubble wall. Applying the pressure jump condi-
sive time scale from all time scales (8). We therefore call tiOn across the interface yields the Rayleigh—Plesset equation
this approach thadiabatic approximation of diffusion. As for R.(t) as well as a dynamical equation for the distortion
we will see the balance between growth and shrinking i@mPplitudean(t),
very delicate. In Fig. &) we present the ambient radi(cal- 3R.
culated in Section Y Ry(t) which represents the mass a,+ R~
m=4wR8p0/3 of the bubble, with the ambient density

po~1.6 kg/n for argon. It corresponds to tH(t) curve in  where 8,=(n—1)(n+1)(n+2). However, viscous effects
Fig. 2b). The exchange processes between the bubble arftave been neglected in Plesset’s derivation.

the liquid can be very violent. In Fig.(@ the bubble’s mass Viscosity was later taken into account by Prospef&tti.
increases to 100.5% of its initial value and decreases tdhe intrinsic difficulty in its consideration is that viscous
99.8% thereof while after one full cycle it again takes itsstresses produce vorticity in the neighborhood of the bubble
initial value. These are representative values for argomwall.** In principle, vorticity spreads both by convective and
bubbles near the onset of the SL regime; for larger forcingby diffusive processes all over the fluid and the problem
the exchange processes become even more violent. becomes nonlocal. However, for small viscosity the gener-
ated vorticity will be more or less localized and we can in-
troduce a bubble boundary layer approximation of the non-
local equations which we do in the next subsection.

The paper is organized as follows. In Section Il we ana-  Here, we give the dynamics of the nonlocal problem,
lyze the bubble stability with respect to shape oscillationsclosely following Prosperettf It is advantageous to decom-
We then give as necessary criterion for light emission energpose the vorticity field in the fluid in a poloidal and a toroidal
focusing in the bubble, either through a shock or througtpart, which are conveniently represented by scalar fields
acoustic resonancéection Il). Section IV constitutes the S(r,t) andT(r,t), respectively,

FIG. 2. (a) Forcing pressur®(t) = P,coswt, P,=1.15 atm for two cycles
and the correspondin@) R(t) and(c) Ry(t). The bubble is near an equi-
librium state. The gas concentrationds/cy=0.035.

We focus on the stability of the radial solutidR(t).
Consider a small distortion of the spherical interf&{g),

Bno
DR ,R

w

a,=0, (4)

F. Organization of the paper

Phys. Fluids, Vol. 8, No. 11, November 1996 Hilgenfeldt, Lohse, and Brenner 2811

Downloaded-14-Apr-2005-t0-130.89.126.94.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://pof.aip.org/pof/copyright.jsp



0=VXVX[S(r,t)Y(6,¢)e&]
+VX[T(r,H)Yg(6, ¢)el. ©)

Only the latter,T(r,t), contributes to the long term dynamics

of the bubble. Its dynamics are given by the PDE

. 1 ) vn(n+1)
z9tT(r,t)+R Ré’r r—zT =V(9rT_ TT, (6)

by the nonlocal boundary condition B(t),

T(R,t)+2R“—1f s "T(s,t)ds
R

: ()

= +2): 1) 2R
=071 (n+2)a,—(n )E
and by the boundary condition at infinity,(e,t)=0. At

t=0 the fluid is assumed to be at rest. The collaRéd of
the bubble transports vorticitg into the fluid, see Eq(6).

The viscous contribution té,(t) is not important and only
causes a tiny shift, as the ratio between the third and the
second term of the rhs in(12 is typically
vpwRow/ o~ 10 2. However, in(13) it introduces a damping
rate

n(n+2)?

2
&(UZ%[‘B#m , (14

acting on the shape oscillations. That only the second term in
(13) contributes to the damping rate of the oscillator can
formally best be seen after the substitutfonb,(t)

= (R(t))%?a,(t). Physically this is not surprising, as the first
term is a mere consequence of spherical geometry. Two
physical effects contribute to the damping rag: Stabiliz-

ing, local damping by viscous dissipation. If this process is
dominant, the viscous boundary layer around the bubble van-
ishes ©=0) and the damping rate becomes

Once created, the vorticity acts back on the dynamics of, (t)=2v(n+2)(2n+1)/R?>0. (ii) The movement of ed-
an(t). These indirect viscous corrections together with thedies around the bubble, generated by the shape oscillations

direct ones modify Eq4) to yield

a,+ B (t)a,— A (Da,+n(n+ 1)(n+2)§V2T(R,t)

R (= R)\3
—n(n—i—l)@jR[l—(g)

R n
(5) T(s,t)ds=0 (8)

with
A = ||_1 —_ﬁn +2£ V33 9
n(t) ( )R WR n R ' ( )

3R
Bo(t)= = ~2Bnrz (10)

B. Boundary layer approximation

For an exact stability analysis the coupled E@—(8)

together with the RP Ed2) must be solved. However, con-
siderable vorticity is only to be expected in a small boundary

layer of thicknesss around the bubble.

Within this boundary layer approximation the space in-

tegrals in(7) and(8) can be approximated by thetegrand
atR) X 8. The integral in(7) thus is~R™"T(R,t) § while the
one in(8) vanishes. We obtain

a,+Bn(t)a,—Ay(ha,=0 (11)
with
A(t)= 1R Bno 2vR 1
a(H)=(n )ﬁ R R’ Bntn(n—1)
X(N+2) o). (12)
5 3R 2w n(n+2)? 13
V=R TR AT TR 3
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itself. With increasing boundary layer thickne8gi.e., with
increasing viscositythis destabilizing effect becomes stron-
ger.

How does one approximate the thicknéssf the bound-
ary layer when we have non-vanishing vorticity? For large
bubbles R>¢6 it is set by the diffusive length scale
Jrlo=25 umin Eq.(6).%° As a typical frequency scale we
choose the forcing frequenay. Higher frequencies are of
course also present in the RP dynamics, but a Fourier analy-
sis of theR(t) signal shows that the forcing frequency is
dominant. Because of the angular contribution to the dissi-
pation(the second term on the rhs of H)) we also expect
a slight dependence on the spherical modehich we ne-
glect here.

For small bubblefR< 6 we do not expect the boundary
layer around the bubble to be larger than the bubble itself.
We thus have to introduce a cutdffWe choose

The n-dependence of the cutoff can be understood from the
quasi-static limit which holds for small bubbles, as for small
bubbles the bubble dynamics is strongly damped by viscosity
andR(t) does not change much. In this quasi-static limit the
Ihs of (6) vanishes and (r)=T(R)(r/R) " is the static so-
lution. It decays to half its boundary valug&(R) at
r=2'R. Thus5=R(2"—1)~RIn2/n~R/(2n) as in(15).
More precisely, forT(r)=T(R)(r/R)"" we can calculate
T(R) from Eq. (7), and obtain essentially the sande The
exact values of our results depend on details of the cutoff
(15). However, the general features of the solution are invari-
ant.

With the approximatior{15) we can Taylor-expan¢l2)
and (13) and finally obtain as approximate dynamical equa-
tion for a,(t) Eq.(11) with’

(15
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- a,(t) (which is the most unstable spherical mode in the pa-

2 ¢ ] rameter range discussed in this paper, so we restrict our-
o 1 [ ’ selves to it for the three different regimes of instability. We
< 0} t f [L ] normalizea,(t) to the current bubble radiug(t) to get a

-1y { } measure of bubble distortion. The upper part displays the
(@) 1 3 6:0 6.2 dynamics of the distortion amplitude,(t), normalized to

R(t), in a Rayleigh—Taylor unstable, parametrically stable
’ case, obtained from a numerical solution of E, (11),
1 %\\ ] (16), and (17), with addition of small amplitude noise. We

|

chose Gaussian distributed microscopic fluctuations with a
typical size ofa,~1nm which is not visible on the scale

shown in Figure 3. The middle part shows the dynamics of
the distortion in the regime of the afterbounce instability, and

1t ‘ ' ] the lower part typifies the dynamics of a parametrically un-
g stable, Rayleigh—Taylor stable bubble. Clearly, very differ-
O b
< U

ent time scales are responsible for the distortion of the
‘ ‘ spherical shape of the bubble. Of course there are regimes in
1 3 5 7 the Ry— P, parameter space where the bubble is stébie
(c) time/T unstable towards two or even all three instabilities.
First we focus on the Rayleigh—Taylor instability, occur-
FIG. 3. Time development of the normalized distortion amplitude ring near the minimum bubble radius when the gas acceler-
a,(t)/R(t) for (a) a Rayleigh—Taylor unstable, parametrically stable bubble teg jnto the fluid. The strongest destabilization occurs just
(Rg=2.5 um, P,=1.5 atm, (b) an afterbounce unstable, parametrically . . .
stable bubble Ry=4.0 um. P,—1.3 atm and (c) a Rayleigh—Taylor vyhen the bubble radius regchesllts m|_n|rr?um..The accelera-
stable, parametrically unstable bubbRy&5.2 um, P,=1.0 atm. In (3  tion of gas towards the fluid during this time is enormous,
we also showa, /R in a blow up of the time scale to demonstrate that the motivating the name Rayleigh—Taylor instability. Closer
typ?cal t_ime scale of the Rayleigh—Taylor instat_)ili_ty is n_qnos_ec_onds. Theanalysis of this section of bubble movenf€nteveals that
esetanis o miesond e iapecty, M1 the time scale of the Rayleigh-Taylor nstabilty can be es-
timated by the expansion time scale Rft) just after the
collapse which istgr~h/c,, with the van der Waals hard
: core radiush=R,/8.86. Thustrr~10 °—1071° s, which is
R pBhno 2vR . . :
A(t)=(N—1)=— ——5— —=|(n=1)(n+2) confirmed by the numerical results. In order to take into ac-
R puR R count microscopic fluctuations we added a random displace-
S ment of size~0.1 nm to the distortiorm,(t) after each in-
+2n(n+2)(n—1) ﬁ}’ (16)  tegration time step.
For lower P, the destabilization during the violent
P bubble collapse may not be strong enough to immediately
(n+2)(2n+1)—2n(n+2)2§}. overwhelm the bubble. But as seen from Fig. 3 further peri-
(17) ods of destabilization occur during the afterbounces. As
pointed out above, in the afterbounce regiR{g) oscillates

3R 2v
Bi()=R1 * R2

Our results are based on these equations. on the bubble’s intrinsic time scalg~ \/p,R3/Po~1us.

This is too fast for viscous effects to smooth out the shape
C. Rayleigh—Taylor, afterbounce, and parametric distortions, so after a couple of afterbounces the bubble may
instabilities be overwhelmed. This type of instability shows features of

garametric instability, however, the afterbounces are not
strictly periodic. As an approximate criterion for tradter-
bounce instabilitywe give that microscopic fluctuations can

Three types of shape instabilities are hidden inside thes
equations. We call them the Rayleigh—Taylor instability, the
afterbounce instability, and parametric instability, for rea- o :
sons which will become clear later. They are distinguished®Verwhelm the bubble within one peridd
by the widely different time scales over which they act. The ,
transition between these instabilities is often gradual rather |a(t )l) =1
than abrupt. Nevertheless, we think that our classification is /.1 R(t')
physically important as the difference in their time scales
results in a difference of the typical velocities of the bubbleOur results only weakly depend on the exact strength of the
fragments after the shape instability has destroyed thenicroscopic fluctuations.
bubble. We estimate this velocity as typical length scale The transition between Rayleigh—Taylor and after-
~1um of a collapsed bubble divided by the typical time bounce instabilities is illustrated in Fig. 4. Tl /R time
scale of the pinch off. series shows violent behavior at the main bubble collapse

The goal of this subsection is to find criteria for the and the first afterbounces. Then, the behavioat)/R(t)
occurrence of the three shape instabilities. Their nature bebecomes oscillatory and locks into the periodicity of the
comes clear from Fig. 3, where we show the dynamics oR(t) afterbounces with twice their perioghe same is true

(18
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15.0 : : ‘ ity tp is thus many forcing period§=2=/w. However, as

/‘\ the finally resulting pinchoff occurs during afterbounces, its
g 100 VA time scale is the same as for the afterbounce instability, i.e.,
= ! / T A the intrinsic time scale of the bubble motibr-1us.
C 50 / \/ \ \/\\‘[\p\‘\‘,\,\ ] In the relevant parameter regime for the parametric in-
V SRR stability R(t) and thus alsd\,(t) andB,(t) are strictly pe-
‘ ‘ ‘ riodic in time with frequency 1. Thus Eq.(11) is an ODE
0.1 ¢ ] of Hill's type and the parametric instability can be rigorously
% 0.0 “‘ A/ﬂ\/ \WV\/\A~ analyzed. It occurs whenever the magnitude of the maximal
© \\(' ‘ / eigenvalue of the Floquet transition matkx(T) of Eq.(11)
0.1 | is larger than one. The Floquet transition matfix(T) is
‘ : : defined by
48 5.0 5.2 5.4
time/T
an(T) (an(O))
FIG. 4. Time development of the bubble radié&t) (upper pant and dis- . =F. (M| - . (19
tortion amplitudea,(t) (lower par} for a Ry=4.4 um bubble driven at an(T) an(o)

P,=1.1 atm. Note the transition from Rayleigh—Tayltime scale nsto

afterbounce perturbatiorfime scaleus) during the afterbounce part of the B icall fi th . | f the FI t
bubble dynamics. It is also seen that the dynamics of the distaatitth has y numerically compuling the eigenvalues o € Floque

half the frequency of its forcing bubble dynamiB¥t) as typical for an  transition matrix we mapped out the phase diagram of stabil-
instability of the Mathieu type. ity. Figure 5 shows the stable and unstable domains in the
Ro— P, parameter space.
. o . In the SL parameter range &f,~1.2 to 1.5 atm the
for a,(t) itself). This is to be expected from a Mathieu type j, \ppie  hecomes parametrically unstable at about
instability, which is most effective for a driving with twice R§'~4—5 wm. This number is not to be understood as a

the intrinsic frequency of the driven equation. . prediction of the exact value, as within our approximations
Figure 5 depicts a phase diagram of shape instabilities &3¢ ¢an only predict the order of magnitude and trends.
a function of the ambient bubble radi& and the forcing For smallerP, the threshold for instabilitR?' does de-

pressure ampli.tl_Jd@a for n=2. The dgshed line gives the pend on the forcing pressure. We discussed phase diagrams
combined stability threshold for Rayleigh—Taylor and after-in those regimes in Ref. 17 and also showed that in the small
bounce instabilitiegthe “fast” instabilities with time scales forcing limit Eq. (11) reduces to a Mathieu equation.
<T). The global features of the phase diagram are easily That Rgl does not significantly depend dy, for large
understood. Small bubbles are more stable than large ongs ., he understood from the dynamicsRitt) anda,(t)
. . » a n
thanks to viscosity, as the second term (it7) becomes and from Eq.(17). If R(t) is small, the second term i17)
dominant for small radiR. Evidently, weakly forced bubbles 1 inates and stabilizes, (t). For smallP, the minimal
. a

AlE More Stable than. strongly forced_gnes_ radius R,i,=min(R(t)) still decreases with increasing, .

A pure parametric shape instability acts on the mUChBut after the van der Waals hard core radissR,/8.86 has

longer time scale of the forc_:|n1j%38 ,us._lt corresponds tq once been reached for large enough, R, becomesP,
a net growth of a nonspherical perturbation over one Osc'llal'ndependen‘l7

tion period, so that after many periods perturbat!or_ls OVET All calculations have been performed for the viscosity of
whelm the bubble. The time scale of the parametric instabil;, i, — 106 m2/s. Of courseR?! and the other thresholds
strongly depend om, e.g., for a viscosity five times that of
water we haveRb'~10 um, but we won't discuss this de-
pendence here.

D. After the shape instabilities

All types of shape instabilities result in the pinching off

max(la,/c,)=1 of microbubbles. In other experimental configurations such
as the Faraday experimetparametric instability can satu-
07 09 11 13 15 rate at a finite amplitude. This is also possible for larger

P fatm bubbles which are driven with small forcing pressure
1,33 . . .

FIG. 5. Borderline of the parametric instabilifgolid), the afterbounce in- _Pa<]fatm'. However, we be“.eve the nonlinear saturatlop
stability according to criteriori18) (short dashed and theM =1 criterion IS un“kely in the present exDer'ment bece}use th? bubble .S'Ze
(22) for a supersonic bubble collapg$eng dashell The Re=10- criterion ~ changes by two orders of magnitude during a single oscilla-
(24) for the persi_stence of a sho()kot—fjashe)jis found.to be Iegs stringent  tjon period. Saturation would require that the amplitagés
than theM =1 criterion. Also shown is the p_erturbatlpn velocity thresholc_i much smaller than thminimumradiusRmm; however, since
(21) (dotted. In case of unstable SL, to the right of this curve the bubble is
thrown out of the trap as the pinch off of microbubbles is too violent. The the bubble spends most of the cycle wRE~ Ry, the non-

region where SL is possible is shaded. linearities mainly act at larger radii.
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The major question, therefore, is what happens after the
pinch off of a microbubble. Will the bubble remain trapped
at the antinode of the pressure field, or will it escape from the
system?

The force holding the bubble in the trap is the so-called
Bjerknes force given b8 maX e

F=— ;7R3VP. (20)

Both R(t) andVP(t) are oscillating with time. The combi-
nation of both will lead to an effective, period averaged force
(F) which pushes bubbles smaller than the resonance radius
(~100 wm hers to the pressure antinod@The bubbles are

FIG. 6. Maximum perturbation velocity according 1) as a function of

hus tr

thus t appedh I he f CE andR,. This calculation was done with a noise amplitude of 1 nm.
During the collapse the forcing pressure is positive antgie the two distinct regions of the parametric instabilift) with its rapid

the force(20) repulsive. If microbubbles pinch off at this onset and the Rayleigh—Taylor instabilisight, high pressures and small

instant, will they and the recoiled bubble be fast enough tdRo)- In the latter region the bubble is thrown out of the trap when the pinch
escape from the node before the force becomes attracti\R-f-f occurs. It corresponds to the region right of the dotted line in Fig. 5.
again? If so, they must travel a quarter of the acoustic wave-

lengthc,, T/4 in time T/2, thus their velocity must be of order
~c,~10° m/s. Assuming a typical length scale of
Ry~ 1um for the microbubble and the remainder, we obtain
as a critical time scale of the collapse f0s: If the collapse

is faster, the bubble cannot survive in the trap, if it is slower, _ . . ” .
ﬁerturbatmn velocity drops again. The exact position of this

In accord with the estimate fdgy in the preceding section,
bubbles with smalleR, have faster instability time scales
and thus higher values ¢512|. However, for very smalRy,

the bubble dynamics is stabilized by surface tension, and the

it is likely to survive as a smaller bubble. From the estimates.™ ™ N o
ne is not meant to be quantitative, because it is extracted

of the relevant collapse time scale in the last subsection w q ical d for bubbl locili h h
conclude that the bubble will survive the afterbounce and thd©™ dynamical data for bubble velocities where the RP

parametric instability where the pinch off occurs on the in-€duation is not a good approximation to bubble dynamics
trinsic time scale,~1us. We assume that the pinched off any more.
microbubble from those shape instabilities will dissolve by
diffusion (see below, but the remainder of the bubble may Iil. ENERGY FOCUSING MECHANISM
survive with some probabilityi.e., if it is large enoughand Although this paper is primarily concerned with stability
grow by rectified diffusion. Another possibility is that the constraints on a bubble obeying the Rayleigh—Plesset equa-
bubble fragments may remerge. Note that the recoil of theion, in order to relate the calculations to the sonolumines-
bubble on fragmentation is the origin of the jiggling or danc-cence experiments it is necessary to adopt an onset criterion
ing of the bubble as we will discuss later. for the light emission. The light production is triggered by a
The bubble fragments can, however, also be ejecteflydrodynamicenergy focusing mechanism, which concen-
from the trap after a RT instabilitytgr~10"° s). To geta trates the input energy enough so that light is produced. The
more stringent criterion for ejection, we computed the maxi-mechanism through which the focused energy produces light
mal velocity |R+a,|. For a bubble split apart by shape in- is outside the scope of this paper; many suggestions such as
stabilities, this will also give the typical fragment velocity. bremsstrahlung or blackbody radiation are present in

The outward velocity is dominated by th term: R does literature?*®

not exceed 04,,.*” Therefore, we assume that the fragments ~ Two theories of hydrodynamic energy focusing have
will escape if been proposed: The original theory was that during the col-

) lapse of the bubble shocks detach from the gas-water inter-
|a2(t)]) _ face and focus to the bubble’s cent&f? Strictly speaking

Cu =1. the shock does not “detach” from the wall but forms
slightly afterwards. The motion of a focusing shock is de-

Figure 6 depicts the Ihs of this inequality as a function ofscribed by Guderley’s similarity solution to the hydrody-

Pa andR,. The perturbation speed exceeds the sound spegthmic equationd’?* which dictates that the temperature at
in two clearly distinct regions of parameter space: at largehe shock diverges as RS P whereR; is the distance of the
radii, where the parametric instability leads to high velocity,shock from the origin angp~1 is an irrational scaling ex-
and at small radii and high pressures, whefgis reached ponent. The amount of energy focusing in this theory is de-
during Rayleigh—Taylor instability. Only the latter region termined by the minimum distané, ., to which the shock
will determine the escape of the bubble, because parametrqpproaches the origin.
cally unstable bubbles already shed microbubbles long be- The second theory of energy focustigosits that the
fore the high velocities associated with the RT instability pybble is an “acoustic resonator,” and that acoustic energy
discussed here are reachiéaese high velocities would only puilds up in the bubble over many oscillation periods. Within
occur for|a,|>R). We extract gda,|=c,, isoline from this  this picture the amount of energy focusing is set by the total
graph and add it to the phase diagram in Figdétted ling.  stored energy in the bubble.

(21)

{t't<t’ <t+T}
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The crucial issue for the present paper is the onset crite- ( R ) 3
=1, (25

rion for how strongly the bubble must be forced for signifi- R_o
cant energy focusing to occur. Energy can only be trans-

ferred from the liquid to the gas if the time scale of motion of wjth |,~10"7 m we obtainl ~10%° m during the stron-
the bubble wall is of the order of the time scale of acousticyest compression, i.e., a very sharply defined shock with a
modes in the gas. The forcing time scaleR§R| and the  width <R in spite of viscosity.

intrinsic acoustic resonator time scaleR&cy,s, Wherec,gis We now come back to Fig. 5. That plot summarizes the
the speed of sound in gas. Thus the inward bubble wall veeriteria we suggest to be necessary for SL to occir:
locity |R| must be(at leas} of order ofcg,s, or introducing  Bubble wall Mach numbeM >1 to ensure energy focusing

the Mach numbeM, to reach the high temperatures necessary for (8)..Short
time scale shape stabilitiRayleigh—Taylor and afterbounce

-R and (iii) parametric stability.(iv) Finally, the perturbation
M= Cgasz:ln (220 speed must not exceey,, in order to keep the bubble or its

fragments trapped in the sound field.

From the above discussion of the time scales in the RP equa- There is only a small domain in parameter space where
tion it follows that all time scales betwed®/|R| and T are the bubble fulfills all four criteria. This domain is shaded in
present in theR(t) dynamics; thug22) is the correct crite- F|g. 5 It is this domain where we expect SL to be possible
rion for energy focusing. The speed of sound near the bubbleVithin our RP-SL approaghHowever, up to now no state-

wall is ment on thediffusive stabilityhas been made. We will ad-
dress this subject in the next sections and find thatdar
5 p R3 enough gas concentratidghe bubble in the shaded domain is
Caas™ Y, RF_p3- (23)  also diffusively stable.

As in Eq.(3), we have assumed that the gas near the bubble

wall can be parametrized with an isothermal van der Waal$, peruSIVE STABILITY

equation; an approximation which clearly breaks down dur-

ing compression in the center of the bubble. Two types of SL in argon bubbles have been obsefved:
For large enough forcing the energy focusing criterionFor large argon concentrationsP,, =200 mmHg or

(22 is fulfilled once per cycle, namely shortly before the 50 mmHg the SL bubble is diffusively unstable whereas for

bubble achieves its minimum radius which in the relevaniow concentration®,,.=3 mmHg the bubble is diffusively

P, domain is very close to the hard core radlusThis is  stable and the relative phase of light emission stays constant

where the light pulse is emitté&3 which gives support to  for hours, see Fig. it) for the experimental result. With the

the criterion(22). In Fig. 5 we plotted the threshold for the ambient pressur®,=760 mmHg= 1 atm these three gas

M =1 criterion in theP,— R, parameter domain. concentrations translate into relative concentrations of
Let us check two further conditions which should bec,/c,=0.26, 0.06, and 0.004, respectively, where

fulfilled within the shock wave theory. First, another require-c,=0.061 kg/ni is the saturationmas$ concentration of

ment beside$22) is that the shock must persist. Dissipative argon in water for room temperature.

mechanisms inside the bubble must therefore be weak. A In this section we set out to quantitatively understand the

measure for the relative strength of inertial and dissipativalifference between the high and low concentration. Our goal

mechanisms is the Reynolds number Re. Viscous effectis to calculate gphase diagranin the parameter space of the

dominate for small Re. As crossover for nonlinear effectswo experimental control parameters concentratic,

such as shocks to take over we tZke and forcingP,/P,. For given concentration and given forc-
' ing we will thus be able to predict which of the three phases
RIR| “diffusively stable SL,” “diffusively unstable SL,” and
Re= =10. (24 “no SL” will be realized. The third parameter, the ambient

Vgas
’ bubble radiusz, is not at the experimenter’s disposal but the

The kinematic viscosity of argon ig;,s= 11 X 10°% m%s.  system will choos&, itself. The ambient radius will follow
We neglect its temperature dependence. In the center of tHeom our analysis. First, we will present phase diagrams in
bubble this is a poor approximation amg,swill be lower.  the ambient radius—concentration and ambient radius—
The Re>10 criterion will then be fulfilled earlier. However, forcing pressure phase space.
(22) is the more stringent criterion anyhow as seen from Fig.  We again stress that it is the application of dabatic
5. approximationof the diffusive probler*” which allows for
Second, we have to compare the thickness of a shocthe exploration of the whole 3-D phase sp&g-c.,—P,.
with the bubble’s size. The thickness of a shock is of theStrictly speaking, it only holds in the limit of zero diffusion
same order of magnitude as the mean free padh a gas constantD —0. However, in the next section we will show
molecule’® We havel~V/(No,) whereV is the bubble that for the physical diffusion constanD=D, =2
volume, N the number of particles in the bubble, and X 10 °m?/s the deviations between the exact solution and
go~10"1® m? the collision cross section of argon atoms. the adiabatic approximation are tiny, so that we can apply it
Thus here.

2816 Phys. Fluids, Vol. 8, No. 11, November 1996 Hilgenfeldt, Lohse, and Brenner

Downloaded-14-Apr-2005-t0-130.89.126.94.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://pof.aip.org/pof/copyright.jsp



A. Formulation of the diffusive problem - (p(t))14
. . ) Csmdh)=cC.+|Cq : —cw}
Assuming spherical symmetry, the mass concentration Po
of gasc(r,t) dissolved in the liquid at distanee>R(t) from N dh’
the center of the bubble obeys the advection diffusion equa- J ——
tion 0 ((Bh"+R3(1))") ¢
Xq 1-— T (34
r29,c+R%Rd,c=Dd,(r%4,c). 26 f
t r - r( r ) ( ) 0 <(3h,+R3(t))4/3>t’o
As a boundary condition at the bubble wall we assume Hen- ) )
ry's law From (34) the adiabatic growth of the bubble can be calcu-
RY RO @7 lated as
c(R,t)=cop(R,t)/Py. 2 _
. o Co  (P(1))ralt)
The concentration at— is given byc.., D o p.
ZR(= 2 (35)
c(0,t)=C. (28) dt © poR3(D) [~ dh’
The concentration gradient at the moving boundary gives the 0 (BN +R3(1))") ¢

mass loss/gain of the bubble The determination of the adiabatic growth rate has thus been

m=47R2Dd,C|r, - (29  reduced to solving the RP ODR) for R(t), calculating time
o ) averages - ); of functions ofR(t), and the solution of a
The bubble is driven by the RP E(). Together with the  gpace integral. We thus understand the adiabatic approxima-
initial conditions R(t=0)=R,, R(t=0)=0 andc(r,t=0) tion as being in the spirit of the RP approach.
= ¢, this set of equations completely defines the problem.

With the transformation to the Lagrangian coordifate
s o C. Equilibrium points
— 1(f3_
h(r,t)=5(r’=R°(t)) (30) We now apply Eq(35) to the acoustically driven argon
the advection diffusion PDE26) simplifies to the diffusive  bubble® Let us disregard the shape instabilities discussed in

equation Section Il for the time being.
ac(h,t) =Da[ (3h+ R3(1) %3, c(h.1)]. 31) The ambient bubble radius is in equilibriugwithin the

adiabatic approximationif
Equation(31) can still not be solved analytically. A numeri-

cal treatment of this equation is sketched in Appendix A. G _ (P14

Co Po

: (36)

Note that within the adiabatic approximation the condition
does not depend on the diffusion coefficiEntHowever, the

) smaller theD, the better the adiabatic approximation holds.
The main idea of Fyrillas and Sz&tand Ldstedtet al”  The equilibrium is stable, if

is to treat the diffusive PDE by the method of separation of

time scales® They split the concentration field in an oscil- _ d(p(t))14 37)
latory partc.{r,t) changing on théfast time scal€eT of the dRy

driving field and a smooth pact,{r,t) changing on a slow
diffusive time scalerp>T,

B. Adiabatic approximation

is positive. Scaling laws fofp); 4 andB are discussed in the
next subsection and in Ref. 47; here we concentrate on the
C(r,t) =Cosd I 1)+ Cmd T, 1). (32 physical consequences.

In Fig. 7 we plot(p(t)); 4 as a function oR, for various
ing pressure amplitudeB,. We first focus on small
P,~0.8atm and high gas concentrationcof/cy~0.7. There
exists anunstableequilibrium atR§~6.m. Smaller bubbles
shrink and finally dissolve, larger bubbles grow by rectified
diffusion. For largerP, the averaggp(t));4(R,) behaves
‘quite differently in the smalR, regime. It starts to show
characteristic wiggles, which can also be seeRjfn(Ry).
Here, Ry is the maximal radius over one period,

This approach can be thought of as having introduced afyrc
“adiabatic” or slow timet. The smooth profilecgy, only
depends on the adiabatic timesy{r,t). In the PDE for
Csmdr,t) the fast time scale-T is averaged out. We define
mp=RZ/D as diffusive time scale. Then the Schmidt number
Sc=2m71p /T is a measure of the quality of time scales sepa
ration. Se~o or D—0 means perfect separation.

It turns out to be useful to introducgeightedtime av-

erages, Rma{t)=maxR(t")|tst’<t+T}. The origin of the
fgf(t)Ri(t)dt wiggles is a kind of resonance phenomenon in the RP equa-
(f(D)r,i =T TRMdt (33 tion and can quantitatively be understood in detaiflere we
0

o only discuss their consequences for the oscillating bubble.
which may still depend on the adiabatic timeHere, one They mean that the bubble may stabilize through a tangent
only needg - ) pand( - ), 4.’ bifurcation: Imagine a fixed forcing®, and then decrease
___ The main result of Ref. 37 is that in the asymptotic limit c../c,. Thec../cq line will finally touch (p), 4/ P, at a local
t—oo the smooth profileg,dh,t) converges to maximum and create a pair of stable and unstable fixed
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FIG. 9. Bifurcation diagrams in thR,— P, parameter space. Tangent bi-
furcations are seen. The regimes with positive slope are stable. Gas concen-
trations arec,, /cy=0.002 (right), c.,/c,=0.02 (middle), andc.,/c,=0.5

(left). To the left of the curves the bubbles shrink and finally dissolve, to the
right of them they grow by rectified diffusion.

FIG. 7. (p)14/Po as a function of the ambient radit for small forcing
pressure amplitudeB,=0.8 atm toP,=1.15 atm(left, top to bottom, in
steps of 0.05 atiand for largeP,=1.2, 1.25, 1.3, 1.4, 1.5 atfnight, top to
bottom). Note the different ordinate scales.

points which will separate for decreasing/co. This pro-  series of tangent bifurcations and later on destabilization by
cess can repeat many times. The fixed points vanish throughverse tangent bifurcations.

inverse tangent bifurcations, i.e., stable and unstable fixed From Figs. 8 and 9 we immediately understand why
points merge. The full bifurcation diagram is shown in Fig. 8there isno diffusively stable SL folarge Ar concentratior{?

for P,=1.1 atm and folP,=1.3 atm. No diffusively stable bubble radii exist in the large

The interpretation of th&®,—c.. phase diagram is as fol- P,—small R, parameter regime where the energy focusing
lows. The line signals equilibrium for the given driving pres- condition for SL(22) is fulfilled. Note that there are stable
sureP, . Again, we denote the equilibrium radiusR§. Itis  equilibria, but for smalleP, and largeR,. Note also that the
stable if the slopeisiRS/acona is positive, and unstable if itis basin of attraction of these stable equilibria is tiny.
negative. To the left of the line the bubbles shrink, to the ~ For small concentration../c, the situation is quite dif-
right of it they grow by rectified diffusion. The shrinking or ferent. As seen from Figs. 8 and 9 now there are stable equi-
growing bubbles can hit a stable fixed point and thus stabilibria in the highP,—low R, regime where the bubble is both
lize. The basin of attraction of the stable fixed points is con-Stable towards shape oscillations and fulfills the energy fo-
siderably larger for larger forcing,, see Fig. 8. cusing criterion.

A similar looking phase diagram results when fixing In order to predict which SL regime is realized for given
c../co and varyingP, . In Fig. 9 we show such a bifurcation C.. andP,, we also have to take the above shape instabilities
diagram in theR,— P, parameter space for large concentra-into consideration. Therefore, in Fig. 10 we plot an enlarge-
tion c../cy=0.5, for lower concentratios../c,=0.02, and ment of Fig. 9 together with the thresholds for the shape
for very low concentratiorc., /c,=0.002. Again, the lines instabilities and the energy focusing condition, taken from
signal equilibrium; stable equilibrium for positive slope
dRG/9P,|_, unstable equilibrium for negative slope. To the
right of the line we have growth, left of it shrinking. Increas- i
ing P, at fixed c,, again leads to stabilization through a 7 shape’

instaf.

g5 I
=
=&
15 3
1
g 10 1.0 1.2 14
5; P /atm
5
pa/p0=1_? FIG. 10. The figure shows the discussed effects for argon all together:
Beyond theM =1 curve (long dashefl SL is possible. The bubble grows
0 B thanks to rectified diffusion right of the diffusive stability curya®iown for

0.00 0.05 0.10 C../€u=0.5, 0.02, and 0.002, left to rightAt the parametric shape instabil-

ity (solid) and the shape instability according to criteri@tB) (dashed
microbubbles pinch off, but the bubble can survive in the trapFipe 1.4

atm. SL is possible in the shaded region, stable SL, if in addition the slope
FIG. 8. Bifurcation diagrams in thB,—c.. parameter plane for a forcing of the diffusive equilibrium curve is positive. Here, this occurs for
pressure ofP,=1.3 atm(left) and P,=1.1 atm(right). Tangent bifurca-  c../cy=0.002 for P,~1.33 atm andR,~3um. Right of the dotted line
tions are seen. The regimes with positive slope are stable. To the left of théeriterion (21)) the bubble is thrown out of the trap in case of a pinchoff.
curves the bubbles shrink, to the right of them they grow. Consequently, if at all, onlgtableSL is possible in this highP, regime.

c./c,
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Fig. 5. In the relevant parameter reginfg>1.0 atm the because of the violent short time scale Rayleigh—Taylor in-
critical RS' is about 4-5um. Only for largeP,=1.4 atm  stability. Consequently, in this higR, regime onlystable
does the Rayleigh—Taylor instability becomes relevant, se&L should be possible, a prediction which is worthwhile be-
below for the consequences. As worked out in Sects. Il anihg tested experimentally. Extremely low argon concentra-
[, SL can only occur in the shaded region in Fig. 10. In thistions c../c,=<0.0006 are necessary to guarantee diffusively
region only for very low concentration .c/c,~0.002 the stable equilibria in this regime. According to the approxi-
bubble is diffusively stabland only then can we have diffu- mate curvg21) of the onset of the RT instability in Fig. 10,
sively stable SL. For larger concentration we have diffu-this regime starts at abo#,~ 1.4 atm, but as pointed out in
sively unstable SL. Section Il D, this number should not be taken too strictly.
The different regimes of diffusively stable and unstableFor lucidity we did not put in the right borderline of the
SL and no SL can easily be read off from Fig. 8. Take fixedunstable SL regime in the phase diagram Fig. 1. The upper
P,=1.1: growing bubbles are possible fox/c,>0.07, if  borderline of the unstable SL regime is discussed in Section
they are large enough. They finally run into the parametridV E.
shape instability at-5m and a microbubble will pinch off. In our former publicatioff we have stressed the impor-
If the remaining bubble is still large enough, i.e., above thetance of wiggles such as those in the graphs in Figs. 5-10.
stability line in Fig. 8, the process will repeat. The allowedAs a consequence, for large enouBh and small enough
size of the bubble after the pinch off is very much restricted;Ro 0ne may have stable SL with different, discrétg i.e.,
for c../co=0.1 it is only in theR, range between 46m and  multiple stable equilibria. We will present some results of
5um. If the pinched off microbubble is larger, the remaining full numerical simulations on this issue in Section V.
bubble will dissolve. No diffusively stable regime exists. Possibly an experimental hint to multiple stable equilib-
For P,=1.3 the situation is quite different. For concen- fia has been found by Crum and CordtyAfter registering
trations in a window 0.003c../c,<0.005 bubbles in the SL light from a bubble for a few seconds, they distorted the
R, regime~2um up to 5um will grow andstabilize As in bubble and observed the SL intensity to jump from one con-
this P, regime the energy focusing criterion is fulfilled, we Stant value to anothésmallej one. They suggested that the
have stable SL. Here we are at the very core of Barber §liscrete light intensities corresponded to discrete diffusively
finding® that stable SL is only possible for low, and high  Stable radii.
P,. If the relative concentration is even smaller than  For the dynamics chosen here the multiple stable equi-
0.003, bubbles will dissolve and no SL is possible. For large#Pria are just parametrically unstable as they lie beyond
concentration large enough bubbfed.8 um (almost inde- Ro~5um. This should not be taken too strictly, as a slight
pendent ofc..) will grow up to ~5xm where microbubbles change of. .thg model may allow for observgble multiple
pinch off. In contrast to smalléP,~1.1 atm, the remaining Stable equilibria. However, we see that the wiggles are not
bubble is very likely to end up in thénow much larger ~ Necessary for stabilization. An increase (@) 4(Ro) with
growing R, regime. Pinched off microbubbles with RoiS suff|C|_ent, |..e.,,8_>0. If there are wlggles, we in addi-
Ro<1.8um will dissolve. tion have discretization of the equilibria.
The same domains no SL, unstable SL, and stable SL
can be identified from Fig. 9 or Fig. 10; also these plots
make it very evident that higl®,/P, and lowc../cy are  D. Scaling laws

necessary to obtain stable SL. Th | d the wigales in Fig. 7 b
The total phase diagram in tleg — P, phase space, our € average siope an t_ € wiggles in Fig. 7 can be un-
; -rqerstood in detail as shown in Ref. 47. Here we only quote

that diagram is as follows: If we denote a regime with stablesCallng laws for the running average o). (Ro) which

SL or unstable SL we mean that there are bubbles of certai?]mOOthS out any wiggles,

radius which are diffusively stable or growing, respectively; 1 Ro+AR

other, smaller bubbles dissolve. F®y=<1.17 thec../cq win- p>t*4:TRof

dow of stable SL shrinks to zero. For very lay the no SL

regime(i.e., no bubble regimeis very extended. If one now Wwith AR;=0.5um. For very smallR, the surface tension

slightly increasesc.., one immediately enters a regime term dominates in the RP E@2) and (p).4 = Ry*. For

where the energy focusing condition is fulfilled. This may beslightly largerRy<RS™ we have(p), 4 = R, ¥?. For large

the prime reason why it is so much easier to find SL, diffu-Ro>R§" (where wiggles occur and the running average be-

sively stable or not, for low concentration. comes necessaryhe first and the second term on the rhs of
The experimental observations of Fig. 4 in Ref. 5 are in(2) balance and

agreement with our analysis. For that figupg is in the — 6/5

range of 1.3 atm. Then we have unstable SL for large con- (P)ra=Rg™, (39

centrationsc../co=26% and 6.6% and stable SL for low i.e., the average slopg is positive and equilibria are stable.

concentratiorc,, /co=0.4%. The critical ambient radiuRS™ beyond which wiggles occur
What happens for very large forcing amplitudPg?  and stability is achieved scales Ife

From Fig. 10 we see that the SL regirtg@haded intersects

0<|0>t,4( Ro+x)dx (39)

Ro—ARy

with the regime where bubbles cannot survive the mi- Rgritoc (40)
crobubble pinchoffright of the dotted ling21) in Fig. 10 Pa—Po
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the corresponding average pressure like -

e o1 A A
(P, ) (41) g2/
" \Pa=Po 4 |

The scaling law(39) directly reflects the average slojy L e
« ¢¥%in Fig. 8. Thus for large enougR, there is always 5.0 LA AT 5},74,,/4:3:
diffusive stabilization, but only for love., and highP, this ] / j/ }/ / w e /
will be in a parametrically stable domain where the energy > 3.0 fo
focusing condition is fulfilled. ol

A detailed discussion of these types of scaling laws will 0.0 0.2 0.4 0.6 0.8
be presented elsewhéfe. @) t/s

E. Diffusively unstable SL bubbles

In the previous subsections we saw that our theoretical
stability diagram is in agreement with experiment. What
about the growth rates in the unstable SL regime where the
bubble grows by rectified diffusion and finally hits the para-
metric instability line at abouR,=5um? Because of the
growth (i) the relative phaseof light emission¢(Ry) will
slightly change(ii) the light intensity will increase as more
and more gas is in the bubble, afiil) the maximal radius
will increase. When the shape instability line is hit, a mi-
crobubble pinches off, giving the bubble a recoil. As this

repeats again and again on the diffusive time scale d§, *
the bubble seems to “dance.” PR

Within the adiabatic approximation we now calculate 1 /"" 7t e 1"’ et ‘,ﬁ
#(Ro(1)) = p(t). According to the energy focusing mecha- 2 | ¥ PUBTA% b wﬁ,-«"’ P |
nisms discussed in Section il light can be emitted if the 2 Mw&zf’mmr. s »o-ﬁ—wd‘y‘loovjﬁﬂ—
(inward bubble wall velocity becomes supersonic, z ] } ‘_4“'/ /“-J" i [
M= —R/Cge=1. We define the time wheM =1 holds as ¢ i~ i i ‘;*
ts. The relative shift of this time to the forcing phase defines < :i' r ' f
¢s. As the waves and shock waves in the bubble are very & .45
fast, we take the timeg of the detachment of théshock g 1 - 53::; :;
wave as the time of the light pulse. The error we make by ] wxee 200mm Ar
this approximation is of the order dft~R;/cg,s~1 ns, as ] o 150mm Av
follows from a simple estimate. 1

Next we calculateRy(t) from Eq.(35) for discrete adia- B
batic timest=nT. Take fixedR, and calculate the time av- () Time (s)

erageg - );; from the RP equation. The integral
- dh’ FIG._ll. Thg phase of the light pulgg(t) (uppe) and the corresponding
| = f (42) ambient ra_dluRo(t) (lowern) for (a)_ P,=1.3 atm and forb) P,=1.2 atm,
0 ((3h’ + R3(t))4/3>t,0 for three different gas concentrations/c,=0.00395,c.. /c,=0.0658, and
¢.. /c,=0.26, corresponding to a gas pressure of 3 mmHg, 50 mmHg, and
can be calculated numerically. Its convergence, however, 20 mmHg, respectively. These values are chosen as in experiment to which

slow. In order to speed up the numerical calculation, forthese figures compare very well. FB,=1.2 atm we had to choose 12
mmHg as smallest concentration, as for 3 mmHg the bubble would still

,(:alcu'atlons over a Iong perlod of time we aEJl%oxmate thedissolve. Diffusively stable SL is only seen for the lowest concentration.
integral | by I=a/Rpaut(1-a)/Ry+(3hmad 7", Here,  The strength of the microbubble pinch-offR§=5xm, i.e., the decrease of
a~0.9 is an adjustable parameter, which slightly depends othe ambient radius, is chosen randomiy) Experimental result for the

Ro andP.. andh )2>R§1 must be sufficiently |arge. The phases of light emission for the same three gas concentrationgasTinis
a: ma ax figure is reproduced from Fig. 4 of Barbet al. (Ref. 5 with kind permis-

app_roxw_natlon IS very well controlled and the results ?‘re In'sion by the authors. It also shows the relative phase of light emission for air

distinguishable from the exact result. The growth during theyybples: Stable SL is achieved for much higher concentrafiit,=0.2,

time intervalT finally reads corresponding to 150 mmHg. The discrepancy between air and argon can be
_ resolved by also considering chemical instabilitiBefs. 25 and 26

Cx (P(D)ea(t)

Co Po

TDcy

—
poRo( 1) ambient radiuko(t) and the relative phase of the light pulse
ARy is added toR, and the procedure is repeated until ¢4(t) for three different relative gas concentratians/c,.

Ro(t) hits the parametric instability curve. Here from Fig. 5 Figure 11 should be compared to the corresponding ex-
we tookRg'ZS,um as a very good approximation. A random perimental Fig. 4 of Ref. 5. Unfortunately, for that figure the
fraction of the bubble will pinch off. In Fig. 11 we show the precise forcing pressure amplitud®, and the ambient

ARy(t)= : (43)
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TABLE I. Growth rates for the phase of light emissign for two forcing This hypothesis also explains why the water in the SL
pressure amplitudeB, and two concentrations, near the pinch off of the container “ages,52 in case the container is not gas tight. By
microbubble in comparison with the experimental déaf. 5 for which ey e s .

the forcing is not exactly known. Stronger forcing and larger argon concen- aging” itis meam that St,able SL and finally also un;table
tration enhance the growth. We find order of magnitude agreement. We alseL b€comes impossible with “old” water. The reason is that
give the growth rates for the radii which are not experimentally available. external air diffuses into the water, dissolves, andc, in-

creases. Consequently, the originally stable bubble is pushed

Co Po=l2atm P,=13atm  Experimefit  jniq the ynstable regime and starts to “dance,” shedding off
o 50 mmHg 1.7usls 2. Jusls 0.5us/s microbubbles. The dancing frequency becomes higher and
200 mmHg Qusls 1lusls Susls higher and finally the bubble dissolves after a too large pinch
Ro 50 mmHg 2.qum/s 4-fum/s off. Bubbles may be reseeded, but will also die very soon.
200 mmHg 1pm/s 18&mls

What we do not understand in the unstable regime is the
dependence of the light intensity on the gas concentration as
e.g., measured in Fig. 2 of Ref. 10. We speculate that it

- _ ; depends on the ambient size of the bubble which is sup-
bubble size are not known. So we try bdth= 1.3 atm(Fig. . ) .
11(a) and P,=1.2 atm (Fig. 11(b)). )I/:or §a= 1.3 atm vg\]/e ported by Fig. 6 of Ref. 7. In that figure Esiedtet al. show

have very good agreement with experiment: stable SL for éhatFthe lrInaX|maId£jad|us ﬁnd the S.L mtt:]nsgy arrt]-:‘ correla;ed];
mmHg, growth for 50 mmHg and for 200 mmHg. For inally we address the question whether the growth o

P,=1.2 atm a bubble in a fluid with 3 mmHg argon concen-d’s has to be monotonous. In fact, it does not. For larger

tration would dissolve according to our approximation, seeRO (~6um, where the bubb_le IS alread_y paramefmcglly un-
rﬁ{]able) the growth rate ofp, is wiggly. Similar oscillations

Fig. 1, so we choose 12 mmHg as smallest concentration a : . )
find stable SL. show up in the maximal . .rad|us
Let us compare thgrowth rateswith the experimental Rma)((t)=m%>e{R§t )|.t$t <t+T}, as eq., seen in F|g_. 4 of
éSarberet al” This wiggly structure as a function ¢ifmeis a

values. As in experiment, for larger gas concentration th lirect f the wiaaly struct fandR
growth rates ofRy and ¢4 strongly increase. Quantitative Irect consequence ot tne Wiggly struc uredRfandRimay as
2 function ofambient radius R which is due to a resonance

estimates from Fig. 11 for the growth rates of the phases fo i the RP STh inaR b
both forcing pressures and both concentrations are compar@@enomenon in the equationThe growingR, probes

to the experimental ones in Table I. They are slightly IargelIhe wiggles '_nd’S(RO) andRa(Ry). . .
from what is found in experiment, but agree in order of mag- _In exﬁg”mem no or hardly any. oscnlatpry structure in
nitude. Rather than focusing on an exact quantitative agreeg-ﬁ‘S IS ?eeb ' _Cot?]squer;tly, the an%t;]lent rag.'EF’ d;)ebsl ng_tﬁ
ment here, the important point is that for lower concentratio eem 1o be in the wiggly regime. Thus multiple stable dittu-

¢.. /co=0.0165(corresponding to 3mmHghe phase of light sivg eqL_JiIibria may only be important in the shape un;table
emission isstabledue to the diffusively stable ambient ra- regime in theR,— P, parameter space. Indeed, the wiggly

dius (for P,—1.3 atm. In this example, the bubble is locked SIUCtUre iNRma(Ro(t))” is only revealed when boosting the
at Ry=4 SaJMm and, theoretically tr;e phase of the light bubble in the unstable SL regime where it becomes shape

pulse is stable for ever. A practical restriction to this stabilityuns'[alble after a few ms and bursts. Fig. 4 of Ref. 3.
is that the cell is not gas tight and additional gas will dis-
solve, leading to an increase of. which finally leads t0 \, cOMPARISON OF THE ADIABATIC

bubble destabilization. APPROXIMATION TO THE FULL NUMERICAL
What is the physical consequence of the large bubbl&oLUTION
growth rates obtained for large argon concentratigric,
(Table )? The shape instability line will be hit more fre-
qguently per unit time and the bubble’s dancing frequency  To compare our results within the adiabatic approxima-
will thus become larger, as more microbubble pinch-offs andion with the exact solution, we must numerically solve the
resulting bubble recoils will take place per unit time. As PDE (26) with the boundary conditions given above. We
noted above, with a certain probabiliyer pinch-offthe  sketch our numerical method in Appendix A. Here we report
pinched off microbubblg) are too large so that the remain- on results. We do not consider shape instabilities in this sec-
ing bubble dissolves. Thus with increased pinch off fre-tion.
guency this probabilitper timeincreases. We speculate that In Fig. 12 we show concentration profiles of the gas
this mechanism sets the upper threshold of the unstable Shutside the bubble during expansion and collapse. We take
regime (towards a no SL regimen the phase diagram Fig. an argon bubble driven at 1.15 atm close to diffusive equi-
1. Table | teaches us that the growth rates increase drasticallprium. The corresponding dynamics of the bubble radius
with ¢, /¢, so the probability of having a long living bubble R(t) and the ambient radiugy(t) have already been shown
for high gas concentration becomes very low. Indeedijn Figs. Zb) and Zc), respectively. Near the bubble radius
Gompf? reported that the larger the concentration is forminimum the concentration gradient at the bubble wall is
fixed P,, the faster the unstable SL bubble diescifis big  negative and the bubble ejects gas which accumulates near
enough, it will thus be very unlikely for the bubble to survive the bubble wall as the diffusive time scale is slow compared
an appreciable time. From experimente know that the to the bubble motion. When the bubble is reexpanding, it
upper concentration threshold of unstable SL is beyongushes away the accumulated gas together with the fluid.
C../Cp=0.26. During the expansion phase the concentrat¢R(t),t) at

A. Concentration profiles
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FIG. 12. Gas concentration profiles outside the bubble for expartdiragnd
collapsing(b) bubble radius, respectively. The bubble is near diffusive equi-
librium, driving pressure i$,=1.15 atm. Profiles are shown at intervals of
0.75us (a) and 10 ngb). 6.03
0 500
the bubble wall decreases due to Henry’s k&W). At some time/T

point the gradient becomes positive and the mass content of

. . IG. 13. Three different stable equilibria are approached both from above
the bubble grows. The wall of gas outside the bubble is thu nd from below. Shrinking or growth are hardly noticable. The six initial

(i) pushed away from the bubbleii) deaccumulates ragii are 6.035m, 6.05m: 6.32um, 6.34«m; 6.65:m and 6.66%m, re-
(towards smallerr) because of bubble growth, an(i) spectively. Otherwise, all conditions are the same. Again, we choose
shrinks because of diffusiofiowards larger). P,=1.15 atm. In Fig. &) the sameR,(t) dynamics has already been shown

: : : : _for the much shorter time® The detailed growth and shrinking processes
Apart from the diffusive processes in the fluid these pro resolved in that figure cannot be seen here any more as the time scale of

files only mirr_or the time and space dep_ende_nce 0boar chosen here focuses on long time behavior. Therefore, the curves
Cosd I ,t). The width of the boundary layer in whiatys.iS @  Ry(t) seem to “shade” theR, regime between their minimal and their
dominant feature of the concentration profile can be readilynaximal values.

estimated as

D
%= \ﬁ “4 (PM)a_Co 1 41 (=
t4  Co ~ =
w p—:c__@c_<$f cgs({h,t)dh> ., (45
which is the characteristic length for diffusive processes on a 0 0 0 0 t4

time scale~T.

B. Comparison on diffusive equilibria

First, let us focus on the equilibrium radii for diffusively 6.09 |
stable bubbles. Can we find the multiple equilibria predicted
in Section IV in the full numerical simulation, i.e., different
stable situations for the same physical parameters? Figure 13 6.07

adiab. approx.

showsR(t) for several different initial ambient radii. The £
diffusion constant has the physical valDe=2x 10" °m?/s, = 6.05 /
- 6.

corresponding to a Schmidt number of=<S8000 in the re- o
gime of interes{w~27 26.5 kHz,Ry,~6 um). We indeed
observe several stable and unstable equilibria. However, they 6.03 |
deviate slightly from those calculated in the adiabatic ap-
proximation.

The deviation, however, is tiny, less than Q6 as 6'0110-14 10312 10310
seen from Fig. 14 and clearly not detectable with today’s D/m%s”
experimental possibilities. Thus for all practical reasons we

can__con5|der the adiabatic approximation of the equnlbrlunWZIG. 14. Location of an equilibrium radius for variobs(solid line). At the

radii as exact. upper end of the error bar the bubble is shrinking, at the lower end it is
Nevertheless, let us wonder what the origin of the deviagrowing. The theoretical value from adiabatic approximation is indicated by

tion is. It can be explained by considering higher order corthe dashed line. Note that the tiny difference~060 nm (for the physical

. . . S L diffusion coefficientD=2x 10"°m?/s) is not experimentally detectable at
rections to the adiabatic theoﬁlihe equlllb”um condition the moment. The bubble is driven at 1.15atm with a gas saturation in water

(36) is modified, lowering the required mean pressure at thes ¢ jc,=0.035. The inset shows the deviatiBg®®~ RS drawn in a log-
bubble surface for stability to log diagram, together with our estimai®1) (solid line).

full PDE
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FIG. 15. Comparison ofc(r,t)),4 (solid line) and the smooth profile FIG. 16. Ry(t) for c../c,=0.001 and .forcx /cy=0.3 resulting in shrinking
Cond(T 1) from the adiabatic approximatiofdashedl The bubble ambient ~and growth of the bubble, respectively. We chddg=1.15 atm and a

radius shows pronounced growth in this case. The inset shows an enlargbtbble with Ry(t=0)=5.5um. The adiabatic approximations are also
ment of the small regime. shown as straight lines. By definition they do not follow the violent mass

exchange processes during one cycle of time

2. being the zeroth ordeiin Sc */?) solution of the oscil- VI CONCLUSIONS

latory part of the profile, depending 57550152)-53 'I;h_e shift This paper works out a hydrodynamic approach towards
in (p(t)),4 causes 2 corresponding shRg™—RG in the 5| pased on the Rayleigh—Plesset equation. This allows us
equilibrium radiusRy; . to explore a considerable part of the phase space and to study

To analyze the deviations from the equilibrium position |ong term dynamics. As necessary conditions for SL we de-
(36) further, we redid the numerical PDE calculation for manded shape stability and energy focusing. The adiabatic

smaller(unphysical D. As expected, in th®—0 limit the  gpproximatiod”” allows us to study also diffusive stability
(D independentadiabatic fixed point is approached as canyjithin the RP approach.

be seen from Fig. 14. For that figure the numerical equilib-  phase diagrams in the.—P,, Ry—P,, and Ry—cC.,

rium radii are “measured” by detecting either “shrinking” parameter spaces have been presented. Three phases can be
or “growth” for slightly different radii. The stable equilib- jgentified: stable SL, unstable SL and no SL. Stable SL only
rium is determined by linear interpolation between thegccurs in a tiny domain of the parameter space which is in
growth rates of a growing and a shrinking bubble. In prin-go0d quantitative agreement with the UCLA SL experiments
ciple, we can achieve arbitrarily small error bars in our nu-gp argon bubbles.
merical results. This is confirmed by the excellent agreement  Eor molecular gases besidé3 shape instabilities and
of the D—0 limit with the adiabatic approximation. (ii) diffusive instability also(iii) chemical instabilities have
There iS a theoretical pOSSIbIlIty that the deViation Of theto be Considered_ Then the present hydrodynamic approach
full PDE dynamics from the adiabatic approximation mat-can pe extended to gas mixtures such as air as demonstrated
ters, namely when multiple stable equilibria are to be rein Refs. 25, 26. Again, good agreement with the UCLA
solved. For completeness we discuss this point in Appendi¥xperiment$®®7is achieved. Our theoretical thresholds of
B. stability may slightly shift if the gas dynamics inside the
bubble are more rigorously taken into consideration, e.g.,
within the acoustic resonator thedhthere is an additional
C. Comparison on growth rates and profiles pressure caused by the acoustic waves inside the bethble.
) o ) We suggest to experimentally map out phase diagrams in
To detect the location of an equilibrium point along the ¢ c../c, versusP,/P, parameter space for various gas
Ry axis, starting with a constant gas concentration profilenixtres. More experimental data on the borderlines be-
c(h)=c.. is obviously a good choice, becausg, will ap-  yyeen the stable, unstable, and no SL regimes will lead to
proach that value for alh in equilibrium (apart from higher ¢, her refinements and improvements in our understanding
order corrections The sign ofRy(t) will be correct after a  of the dynamics of a sonoluminescing bubble. We believe
small number of oscillation cycles. If one is, however, inter-that it is crucial to start a detailed search for discrepancies to
ested in the actual value of the bubble growth rate, i.e.the present hydrodynamicénd chemical theory to judge
bubble dynamics far from equilibrium points, choosingwhether further physical effects which are not considered
Csmdh) as initial concentration profile will avoid transients here play a major role in single bubble sonoluminescence.
on diffusive time scales. Indeed, The central question which cannot be answered within
<C(h,t)>t,4—>0_smc(h) (46) the present approach is h_dw;tt_he gas insidg the bubble can
become. Progress on this point will require more sophisti-
holds to very good accuracy for such a calculatisee Fig.  cated understanding of the gas dynaniitside the bubble.
15). Moreover, the observed growth rai(t) is in very  Understanding how the gas temperature depends on experi-
good agreement with the value calculated fr(88), as indi- mental parameters such as forcing pressure, gas concentra-
cated in Fig. 16. tion, or liquid temperature will allow for the creation of tem-
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perature controlled environments for chemical reactiondubble oscillation. This ensures(x— 1)>R® even for rela-

within the bubbile. tively low resolution neaxx=1 (cf. Eqg. (Al)). From this
choice, we deduce a criterion for the grid resolutiixg near
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APPENDIX A: NUMERICAL SCHEME FOR THE Typical bubble dynamics data lead fixr=5>10"°.

ADVECTION DIFFUSION EQUATION Excellent resolu'tlon at the bubble rad.lus is ne;eded fo'r a cor-
rect representation of gas concentration gradients. It is, how-

A. Transformation ever, unnecessary at greater distance from the bubble sur-

To numerically solve Eq(26) with the boundary condi- face. Thereforg, the grid d(_ansity is varied according to a
tions (27) and (28) we first transform the independent spacePOWer law to yield a fine grid near=0 and a coarse grid

variabler. Following Ref. 38, we choose nearx=1. _ .
s o3 s Overall, we haveN grid pointsx;=0, X5, ..., XN—1,
r=F(xt)=((R(t))*-RiIn(1—x))™", (A1) x\,=1. The fieldc(x,t) is defined on the grict;=c(x;), and
whereR, is an adjustable length parameter. All lengths areS0 are the fieldsf,g,h. We define dxj=xj1—x;,
measured as multiples of gdm, all times in units of 1=12,...N — landdx,;=(dx;+dx)/2,i=2,...N =2,
T=2mlw, and all pressures in atm. After the transformationdXa,1=0dX1/2, dXg n=dxy_1/2,
r=F(x,t) the advection diffusion equatiof26) reads, if The discretization of Eq(A2) has to guarantee mass
written as a local conservation law, conservation,
9(f0)+ 3,(gc) — a(hac) =0, (A2)  0=c{—p(Rt))co/Py,
where 0:f.%_i(l(h_ﬁ+hf) 1 Ci
f(x,t)=F24,F, bdt dxg 20 T dx
x,1)=RR?—F24,F, A3 1 cl—cf_
gx.t) ‘ (A3) = S(h )R i—2, N2 (A6)
h(x,t)=DF2/4,F. Xi-1
The transformatioriAl) is chosen to makg(x,t) identically _f dei 1 [ E(h" +h0)0i0_ ¢4
vanish and thus to obtain a pure diffusion equation. We havd =i dt  dxg;\ 2 71 T dxog )
f(x,t)=R¥(1-x), i=N-—1,
g(x,t)= 0, Ad)  o=cl—c,.

h(x,t) =D (1=x)(F(x,t)/R}. Here, ¢/ are the concentrations;+ #dc, at time

The time dependent range € [R(t),»] has been t+ odt and hie= hi(R%) where R’ is the radius at time
mapped to the constant range= [0,1]. The boundary con- t+ 6dt. Correspondingly,Rg is the ambient radius at that
ditions are Henry’'s law (27) which now reads time.We choos#=1, i.e., afully implicit method. Equation
c(x=0t)=cop(R,t)/Py andc(x=1t)=c... The mass loss (A6) has to be assisted by the Rayleigh—Plesset(Bcand
of the bubble, expressed in the new independent variable the proper discretization ofA5) guaranteeing total mass

is conservation,
m=47DR; *R*,cly—o. (A5) pae, hithici—cf
0=po(RO)°RI~ —5— 4 (A7)
1
B. Discretization We solve theN+2 equations(A6), (A7), and (2) for the
The interval x e [0,1] is discretized using a non- unknownsdc;, i=1,2,...N, dR,, anddR with Newton’s

equidistant grid. The grid must) provide sufficient volume method. The Jacobian is calculated analytically. A time step
for diffusion of gas outside the bubble ariil) sufficient control and adjustment is provided by redoing every time
resolution near the bubble radius for a correct representatiostepdt in two steps of widthdt/2 each and then comparing

of gas concentration gradients. We satisfy by choosing the result. For large forcing we need a very low tolerance of
Ru~Rmax,» WhereR . is the maximum radius of a typical 10~ ° per cent to achieve sufficient numerical quality of mass

2824 Phys. Fluids, Vol. 8, No. 11, November 1996 Hilgenfeldt, Lohse, and Brenner

Downloaded-14-Apr-2005-t0-130.89.126.94.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://pof.aip.org/pof/copyright.jsp



conservation. Note that this simulation covers time scales'D. F. Gaitan, “An experimental investigation of acoustic cavitation in
from picosecondsfor good resolution of the bubble dynam_ gaseous liquids,” Ph.D. thesis, The University of Mississippi, 1990; D. F.

; qp ; Gaitan, L. A. Crum, R. A. Roy, and C. C. Church, “Sonoluminescence
ICS r)ear.the CollapSQO ten.s O.f millisecondsfor observation and bubble dynamics for a single, stable, cavitation bubble,” J. Acoust.
of diffusive growth or shrinking of the bubble Soc. Am.91, 3166(1992.
2B. P. Barber and S. J. Putterman, “Observation of synchronous picosec-
ond sonoluminescence,” Natufeondon 352, 318(1991); “Light scat-
tering measurements of the repetitive supersonic implosion of a sonolumi-
APPENDIX B: ADIABATIC APPROXIMATION AND nescing bubble,” Phys. Rev. Le®9, 3839(1992.
MULTIPLE EQUILIBRIA 3B. P. Barber, C. C. Wu, R. lfetedt, P. H. Roberts, and S. J. Putterman,
“Sensitivity of sonoluminescence to experimental parameters,” Phys.
In Section V we showed that the adiabatic approxima- Rev. Lett.72, 1380(1994).
tion well describes the full dynamics. However, ftneoreti- 4R. Hiller, K. Weninger, S. J. Putterman, and B. P. Barber, “Effect of noble
cal) completeness we would like to caution in this Appendix: gas doping in single-bubble sonoluminescence,” Sci@@g 248(1994.

5 ; B “ ;
. . . .. _ B. P. Barber, K. Weninger, R. lfstedt, and S. J. Putterman, “Observation
_ 9 2 ) , ) ,
For the phyS|Ca| diffusion coefficier? =2x 10 m*/s the of a new phase of sonoluminescence at low partial pressures,” Phys. Rev.

simple adiabatic approximation may lead to ewmlita- Lett. 74, 5276(1995.
tively wrong results, e.g., take a bubble wiiy=6.06um. °R. Lofstedt, B. P. Barber, and S. J. Putterman, “Toward a hydrodynamic

A rdin h i i roximation one would ex theO.ij of sonoluminescence,” Phys. Fluids5A2911(1993.
ceord g to the adiabatic appro ation one would e peCt7R. Lofstedt, K. Weninger, S. J. Putterman, and B. P. Barber, “Sonolumi-

; Y
th_at it grows toward; the_ equilibriuRy™"= 6-097Mm (se?. nescing bubbles and mass diffusion,” Phys. Re\61IE4400(1995.
Fig. 14). However, it shrinks towards the physical equilib- 8Rr. G. Holt, D. F. Gaitan, A. A. Atchley, and J. Holzfuss, “Chaotic sonolu-

rium R§=6.041um. At the moment the experimental accu- minescence,” Phys. Rev. Le@f2, 1376(1994.

9 o~ . . .
ot ; M. J. Moran et al, “Direct observations of single sonoluminescence
racy does not allow us to distinguish between these two pulses,” Nucl. Instrum. Methods in Phys. Res 9B, 651 (1995.

5'ezes1a(?i£ it may improve one day. We can underStanﬁbK. Weninger, R. Hiller, B. P. Barber, D. Lacoste, and S. J. Putterman,
R;<Rg"*"because the gas layer around the bulfblg. 12 “Sonoluminescence from single bubbles in non-aqueous liquids: new pa-

diffusively shrinks too strongly for finiteD, leading to a  rameter space for sonochemistry,” J. Phys. ChBey.14195(1995.

larger overall mass loss and thus smaller bubbles. The ordelR'_ Hiller and”S. J. Putterman, “Observation of isotope effects in sonolu
. e shift b timated th idth of minescence,” Phys. Rev. Leff5, 3549(1995.
of magnitude of theR; shift can be estimated as the width of 12 5. plesset, “On the stability of fluid flows with spherical symmetry,”

the boundary layer: J. Appl. Phys25, 96 (1954).
13G. Birkhoff, “Note on Taylor instability,” Q. Appl. Math.12, 306(1954).
; D 1A, Eller and L. A. Crum, “Instability of the motion of a pulsating bubble
adiab e _ 1/2 . o !
Ro —Rp~ép= \ﬁ“ D™ (B1) in a sound field,” J. Acoust. Soc. And.7, 762 (1970.

15H. W. Strube, “Numerische Untersuchungen zur Staliliiahtsphaisch

For the physical D=2x10"° m¥s we have lﬁzchgvingender Bl\elyseny” Ac#stifﬁﬁ, 289(19;J>C.I N o Ao
i ; ; . tti, “Viscous effects on perturbed spherical flows,” Q. Appl.
R3%P_Re~0.11um reproducing the numerical result rospere
. . . Math. 34, 339(1977.
“0-0%T quite accurately. m the 'ns_et of Fig. 14 we plot 17y p. Brenner, D. Lohse, and T. F. Dupont, “Bubble shape oscillations
log(R“*~Rg) vs logd and indeed find good agreement and the onset of sonoluminescence,” Phys. Rev. &t954 (1995.
with the scaling law(B1). 18). Schwinger, “Casimir energy for dielectrics spherical geometry,” Proc.

ot : - Natl. Acad. Sci. U.S.A89, 11118(1992.
Whether the deviations are considered to be serious QEE. B. Flint and K. S. Suslick, “Sonoluminescence from nonaqueous fluids:

not depends on what is supposed to be analyzed. If the focusmission from small molecules,” J. Am. Chem. Sad., 6987 (1989.
lies on identifying equilibrium points, the consequences car®P. Jarman, “Sonoluminescence: A discussion,” J. Acoust. Soc. 2@n.
be quite drastic. Note that for large enouh the value of  1459(1960.

. . 214, P. Greenspan and A. Nadim, “On sonoluminescence of an oscillating
(45) falls below the minimum values @p(t)), 4/ Py (cf. Fig. gas bubble,” Phys. Fluids /&, 1065(1993.

7), thUS.making an equilibrium solution impossible and lead-2c_ c. wu and P. H. Roberts, “Shock-wave propagation in a sonolumi-
ing to dissolution of the bubble. nescing gas bubble,” Phys. Rev. Left0, 3424 (1993; “A model of
If the distance between subsequent equilibrium radiizsiﬂong'ug'”escenéeg P“JIC- R-Ssg?l- LO?C:SP' Ssz”fis (199A4)- .
adiabj __ padiabj _ padiabj—1 . . P. brenner, R. Rosales, S. Hilgenteldt, an . Lohse, “Acoustic en-
ARO i RQ . RO . (where the index numbers label ergy storage in single bubble sonoluminescence,” to appear in Phys. Rev.
the equilibria in ascendin&, ordep is supposed to be re- | gt
solved, i.e., if one wants to find a one to one correspondenc®L. D. Landau and E. M. LifshitzFluid Mechanics(Pergamon Press, Ox-
between the adiabatic equilibria and the real ones, one has g&rd. 1987.

. . " . . D. Lohse, M. P. Brenner, T. F. Dupont, S. Hilgenfeldt, and B. Johnston,
to impose the foIIowmg condition on the approximation: “Sonoluminescing air bubbles rectify argon,” preprint, September 1996.

1 o 5 26\M. P. Brenner, S. Hilgenfeldt, and D. Lohse, “Why air bubbles in water
ARgdlabl> _(Rgdlabl —R%)~ D (B2) glow so easily,” inNonlinear Physics of Complex Systems—Current Sta-
2 2 tus and Future Trendsedited by J. Parisi, S. C. Mer, and W. Zimmer-
mann(Springer, Berlin, 1996

Expressed in the Schmidt number Sc it reads 27| ord Rayleigh, “On the pressure developed in a liquid on the collapse of
2R 2 a spherical bubble,” Philos. Ma@4, 94 (1917).
0 M. S. Plesset, “The dynamics of cavitation bubbles,” J. Appl. Meb8,.
S ARSa'a5'> B3 277(1949.

] ) ) 29G. 1. Taylor, “The instability of liquid surfaces when accelerated in a
rather than simply Sel as one may naively expect. With direction perpendicular to their planes I,” Proc. R. Soc. London, Ser. A
the correct values in the relevant parameter regime 201 192(1950.

~ adiabj _ s SO0W. Lauterborn, “Numerical investigation of nonlinear oscillations of gas
Ro~6um, ARy 0.3um we have Se-1600, which is /L1l "ok i 3 Acoust. Soc. AnB9, 283 (1976,

only marginally fulfilled by the physicaD corresponding to  s1y s plesset and A. Prosperetti, “Bubble dynamics and cavitation”
Sc=3000. Annu. Rev. Fluid Mech9, 145 (1977).

Phys. Fluids, Vol. 8, No. 11, November 1996 Hilgenfeldt, Lohse, and Brenner 2825

Downloaded-14-Apr-2005-t0-130.89.126.94.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://pof.aip.org/pof/copyright.jsp



323, B. Keller and M. J. Miksis, “Bubble oscillations of large amplitude,” J. **G. K. Batchelor,An Introduction to Fluid Dynamic¢Cambridge Univer-
Acoust. Soc. Am.68, 628 (1980; B. E. Noltingk and E. A. Neppiras, sity Press, Cambridge, 1970
“Cavitation produced by ultrasonics,” Proc. Phys. Soc. Londoé3674  “For a passive scalar as e.g., the gas concentration the analogous length
(1950; E. A. Neppiras and B. E. Noltingk, “Cavitation produced by ul-  scale is\yD/w, whereD is the diffusion constant. In Section V we perform
trasonics: theoretical conditions for the onset of cavitatioijt. B 64, a full numerical simulation for the diffusive problem and indeed see that

1032(195)). Further references can be found in Brennen'’s biéad. 33. ~ ;
33C. E. Brennen,Cavitation and Bubble DynamicéOxford University D/w is the thickness of the boundary layer around the bubble.

Press, Oxford, 1995 46A very similar reasoning .Was applied to tmmgrma) boundary. layer
¥p. s, Epstein and M. S. Plesset, “On the stability of gas bubbles in liquid- around the probe measuring the temperature in turbulent helium, see S.

gas solutions,” J. Chem. Phy$8, 1505(1950. Grossmann and D. Lohse, “Characteristic scales in Rayleigh—Benard tur-
34, Eller and L. A. Crum, “Instability of the motion of a pulsating bubble ~_bulence,” Phys. Lett. AL73 58 (1993.

in a sound field,” J. Acoust. Soc. And7, 762 (1970. 4TS, Grossmann, S. Hilgenfeldt, D. Lohse, and M. P. Brenner, “Analysis of
36|, A. Crum, “Sonoluminescence,” Phys. Today, 22 (1994. the Rayleigh—Plesset bubble dynamics for large forcing pressure,” in
7M. M. Fyrillas and A. J. Szeri, “Dissolution or growth of soluble spherical ~ preparation, September 1996.

oscillating bubbles,” J. Fluid Mech277, 381(1994). “8F. G. Blake, J. Acoust. Soc. An21, 551(1949; V. Bjerknes,Die Kraft-
%y. Q. Vuong and A. J. Szeri, “Sonoluminescence and diffusive trans- felder (Friedrich Vieweg, Braunschweig, 1909

port,” Phys. Fluids8, 2354(1996. 49G. Guderley, “Starke kugelige und zylindrische Verdichtungsseoin der

*W. C. Moss, D. B. Clarke, J. W. White, and D. A. Young, “Hydrody-  Nzhe des Kugelmittelpunktes bzw. der Zylinderachse,” Luftfahrtforsch.
namic simulations of bubble collapse and picosecond sonoluminescence,” 19 302 (1942,

Phys. FIgidsG, 2979 (1999; L. _Kondic, J. I. Gersten, 'an'd C. Yuan, sog 3 Hinch, Perturbation MethodgCambridge University Press, Cam-
“Theoretical studies of sonoluminescence radiation: radiative transfer and bridge, 1991

parametric dependence,” Phys. Rev5g 4976(1995. 51 . . .
20 - . . . L. A. Crum and S. Cordry, “Single bubble sonoluminescence, Birbble
The recent calculations of Vuong and Sz@ef. 38 incorporate dissipa: Dynamics and Interface Phenomeredited by J. Blakeet al. (Kluwer

tion mechanisms and do not find shocks. demi drecht. 19 o8
4y, Kamath, A. Prosperetti, and F. N. Egolfopoulos, “A theoretical study 52Aca emic, Dordrecht, 1994p. 287.

of sonoluminescence,” J. Acoust. Soc. A8, 248 (1993. B. Gompf (private communication, 1996 _

“2\1. p. Brenner, D. Lohse, D. Oxtoby, and T. F. Dupont, “Mechanisms for °-M- M. Fyrillas and A. J. Szeri,* Dissolution or growth of soluble spherical
stable single bubble sonoluminescence,” Phys. Rev. Le. 1158 oscillating bubbles: The effect of surfactants,” J. Fluid Me2B9, 295
(1996. (1995.

43A. Eller and H. G. Flynn, “Rectified diffusion during nonlinear pulsations %M. P. Brenner, S. Hilgenfeldt, and D. Lohse, “Phase locking in single
of cavitation bubbles,” J. Acoust. Soc. Ar37, 493 (1964). bubble sonoluminescence,” preprint, September 1996.

2826 Phys. Fluids, Vol. 8, No. 11, November 1996 Hilgenfeldt, Lohse, and Brenner

Downloaded-14-Apr-2005-t0-130.89.126.94.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://pof.aip.org/pof/copyright.jsp



