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Abstract

In this letter we propose a novel method to unambiguously estimate the phase-difference

of a single-frequency signal measured between a pair of spatially separated sensors. First, we

mathematically prove that, in a noiseless system, the phase between a pair of spatially separated

sensors with inter-sensor spacing exceeding half wavelength (λ
2 ) of the signal of interest, can

unambiguously be estimated utilizing a third collinear sensor, provided that the difference of

the two smaller inter-sensor spacings does not exceed λ
2 . The performance of the method is

characterized by estimating the variance and the probability of failure in noisy cases.

1 Introduction

Time-Delay (TD) is an important signal parameter the accurate estimation of which represents an

important problem in different fields including radar, sonar and ultrasonic. The problem generally

consists of estimating the time-delay of a signal as observed by two spatially separated sensors.

Various methods exist for the purpose of Time-Delay Estimation (TDE). The most well known are
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those based on the Generalized Cross-Correlation (GCC) [1]. Generally, these methods provides for

accuracy in order of an integral sample. If better accuracy is required, computationally intensive

interpolation is needed [4]. Another group of TDE methods are DFT and cross-spectrum based

methods (e.g., [2,3,6,7]) that estimate the time-delay based on the phase-difference estimated di-

rectly in the frequency domain. These methods provides for sub-sample accuracy and additionally

require less computational power. However, a big limitation associated with the frequency domain

methods, is that they restrict the delay values that can unambiguously be estimated to a range

dictated by the permissible phase-difference range in the frequency domain. In other words, the

phase-difference is naturally restricted to the range {−π, π} and consequently, the delay should be

in the range {−1
2f , 1

2f }, where f is the signal frequency. This restriction is emphasized by forcing an

inter-sensor spacing that complies with the traditional λ
2 rule in far-field models. If the inter-sensor

spacing exceeds λ
2 , the well known phase-difference ambiguity will occur and the estimated delay

need to be disambiguated.

In many cases in practise, the satisfaction of the λ
2 is prohibitive. As an example, the wavelengths

of acoustic signals above the audible range in air, decreases to values that makes the placement

of the sensors physically unrealizable due to the smallness of the required separation compared

to the senors radii. Same phenomenon, occurs in ultra-wideband RF systems. In these systems,

phase-difference ambiguity is inherent and the use of frequency domain approaches is prohibitive

unless a method for disambiguation exists. Moreover, even if λ
2 is not too small, a widely separated

pair of receiver could be required to provide high Direction Of Arrival (DOA) resolution.

In [3], phase unwrapping was achieved exploiting frequency diversity of the received signal.

However, in many systems as in indoor ultrasonic location systems, single-frequency pulses are

used. in such cases, another diversity need to be exploited in order to disambiguate the measured

phase-differences. In [5], a method that utilizes a third (auxilliary) collinear senor to provide

such diversity has been used. However, the approach restricts the inter-sensor spacing, in such a

way that the triplet is well-suited only for a single predefined frequency. Due to this restriction,

the approach is susceptible to both Doppler frequency shifts as well frequency deviations at the
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transmitter. Additionally, the approach can not accommodate for multiple different frequencies in

case of a multi-channel impulsive systems.

In this letter, we propose a novel method to disambiguate the phase-difference of a single-

frequency signal received by two spatially separated sensors. The propped method is intended to

be more robust to frequency offsets. In addition, it can easily be generalized to frequency-diverse

signals by successively applying it to individual frequency bins. The method can also be considered

as a general theorem, to unambiguously estimate delays from a partial array of three sensors.

In this letter, we first explain the theoretical basis of the method with a noiseless assumption,

and following that we study the performance in presence of noise. Since the method is devised

to work with TDE methods that suffer from the phase wrapping problem, the effect of noise is

modeled as an error in the ambiguous delays estimated by the TDE method. The performance is

thus characterized by varying the parameters of an assumed probability distribution of the error

observed in the ambiguous estimates. we also emphasize that, the method is non-recursive and

very computationally simple.

The rest of this document is organized as flows. Section 2 gives a detailed description of the

proposed phase/delay disambiguation method. Section 3 presents an error analysis. In Section 4,

performance is evaluated using ultrasonic signals. Section 5 is the conclusion of this letter.

2 Delay Disambiguation

This section details the description and the mathematical proof of the proposed method. Since

the relation between time-delay and phase-difference is clearly known, we prefer for the sake of

simplicity to explain the proposed method in terms of delays rather then phase-differences.

Theorem: In a far-field model, a signal delay measured between a pair of sensors spaced at more

than λ
2 can almost surely be disambiguated utilizing a third (auxiliary) collinear sensor, provided

that the absolute difference of the two smaller inter-sensor spacings does not exceed λ
2 , where λ

2 is

the half-wavelength of the impinging sinusoid.

The theorem does not make any assumption about the inter-sensor spacing distances. A maxi-
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mum value could be any value that makes the far-filed condition valid.

Proof: Let [d12, d23] be the inter-sensor spacing vector of a three-elements sensor array expressed

in half-wavelength. Without loss of generality assume that sensor 3 is the auxiliary sensor and that

d23 > d12, and d12 > λ
2 The relation between the true delays and the ambiguous delays observed

by the array can be stated as:

δ12 = δa
12 +

n12

f
(1)

δ23 = δa
23 +

n23

f
(2)

where [δ12, δ23] are the true delays (δ12 ∈ {−d12
2f , d12

2f } and δ23 ∈ {−d23
2f , d23

2f }); [δa
12, δa

23] ∈ {−1
2f , 1

2f }
are the ambiguous delays that are measured between each pair of sensors; [n12, n23] ∈ Z represent

the phase wrapping process; f is the received signal frequency. From the far-field assumption, we

get:

δ23 =
d23

d12
δ12 (3)

Subtracting (2) from (1), and then substituting (3) yields:

δ12 = µ

(
δa
23 − δa

12 +
n23 − n12

f

)
(4)

where

µ =
(

d12

d23 − d12

)
(5)

Since the difference n23 − n12 is unknown, (4) can be rewritten as:

δ
(k)
12 = µ

(
δa
23 − δa

12 +
k

f

)
, k ∈ Z (6)

where:

k = n23 − n12 (7)
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Now, assume that the true delay estimate is δ
(i)
12 = µ

(
δa
23 − δa

12 + i
f

)
, i ∈ Z and it satisfies:

δ
(i)
12 ∈

{−d12

2f
,

d12

2f

}
(8)

Now, δ
(k)
12 can be written as:

δ
(k)
12 = δ

(i)
12 + µ

k − i

f
, [i, k] ∈ Z, k = i, i± 1, i± 2, ... (9)

In order to disambiguate the set in (9), δ
(i)
12 should be made distinct from all the other (theoretically

infinite) estimates in the set. Such distinction could be to make δ
(i)
12 the only estimate in the set

that satisfies (8). To achieve that, the following condition should be satisfied by all the other false

estimates:

| δ(k)
12 |> d12

2f
, [i, k] ∈ Z, k = i± 1, i± 2, ... (10)

where | . | denotes the unsigned value. Assuming a positive value for µ, the condition in (10) can

be written using (9) as:

µ
kp − i

f
>

d12

2f
− δ

(i)
12 , [i, kp] ∈ Z, kp = i + 1, i + 2, ... (11)

and

µ
km − i

f
< −d12

2f
− δ

(i)
12 , [i, km] ∈ Z, km = i− 1, i− 2, ... (12)

Now, considering only the minimum and maximum possible values of the LHS of each of (11)

and (12) respectively, the necessary condition for getting a unique value for δ
(i)
12 can be stated as

satisfying both:

µ >
d12

2
− fδ12 (13)

and

µ >
d12

2
+ fδ12 (14)
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where δ
(i)
12 has been replaced by the the true delay symbol δ12. Combining (13) and (14) yields:

µ > max
(

d12

2
− fδ12,

d12

2
+ fδ12

)
=

d12

2
+ | fδ12 | (15)

where max(., .) is the maximum value and | . | is unsigned value. Equation (15) represents the

necessary condition for δ
(i)
12 to be a distinct value. It is noticed that satisfying (15) depends on the

value | δ12 | and thus on the direction of arrival (DOA) of the signal. A sufficient condition can

straightforwardly be derived from (15) by setting | δ12 | and hence the RHS of (15) to the maximum

possible value. Then µ should satisfy:

µ > d12 (16)

Finally, substituting (5) in (16) and manipulating summarizes the condition as:

d23 − d12 < 1 (17)

Since both d12 and d23 are expressed in half-wavelength, the sufficient condition for the uniqueness

of δ
(i)
12 is that the absolute difference the smaller inter-sensor spacings should be less than one

half-wavelength.

Now, a sufficient condition to guarantee that a single value of the infinite set of candidate

estimates of the true delay is distinct. Following, we show that exploiting (17), the number of

search set is reduced to only 3 values. Getting back to (7), the equation can be rewritten as:

k = Ψ( fδ23 )−Ψ( fδ12 ) (18)

where Ψ(.) is a special rounding function that works exactly like a standard rounding function

except for that it rounds a real value x + 0.5 to x, where x ∈ Z. This for instance guarantees that

a delay value of 1
2f will not be ambiguated into a value of −1

2f . using (3), (18) can be expressed as:

k = Ψ
(

fδ12 +
fδ12

d12
(d23 − d12)

)
−Ψ( fδ12 )
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= Ψ
(

n12 + γ +
fδ12

d12
(d23 − d12)

)
− n12 (19)

where

−0.5 < γ = fδa
12 ≤ 0.5 (20)

Now, without loss of generality, assume both δ12 and n12 are positive. In such a case, the maximum

possible value for k is obtained by setting the δ12 and the difference d23 − d12 in (19) to their

maximum permissible values, nominally, d12
2f and 1. That yields:

kmax = Ψ (n12 + γ + 0.5)− n12 = 1 (21)

The result in (21) stems directly from (19). Similarly, for a negative delay case, we get:

kmin = −1 (22)

Now, the search is reduced to the subset:

K = {−1, 0, 1} (23)

Finally, we summarize the method for delay disambiguation for sensor configuration satisfying (17):

1. Calculate δ
(k)
12 for ∀k ∈ K = {−1, 0, 1−}.

2. Estimate δ12 as: δ̂12 = δ
(i)
12 , i ∈ K, where δ

(i)
12 ∈

{
−d12
2f , d12

2f

}
.

In the preceding discussion, a noiseless data model was assumed. However, in presence of noise

and estimation error in δa
12 and δa

23, performance of the proposed method is questionable. In the

following section, we show that the proposed method can achieve acceptable performance even in

noisy cases.
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3 Error Analysis

The aim of this section is to study the effect of error in δa
12 and δa

23 on the performance of the

proposed method. Denote the erroneous principal estimates by δ′12 and δ′23, then:

δ′12 = δa
12 + ea

12, ea
12 (24)

δ′23 = δa
23 + ea

23, ea
23 (25)

where ea
12 and ea

12 represent estimation errors that depends on the underlying method. Substituting

these erroneous estimates in (6) for k ∈ K yields:

δ′12
(k) = δ

(k)
12 + e12 = µ

(
δa
23 − δa

12 +
k

f

)
+ µ(ea

23 − ea
12), k ∈ K (26)

where δ′12
(k) are erroneous estimates for the candidate triplet estimates; e12 represents the error

in estimating each of the triplet. From (26) it is evident that the estimated unambiguous delay

will suffer error that is contribution from both ambiguous estimates. The error also depends on

the parameter µ. The mean and variance of this error and its relation to the SNR can be directly

identified from the characteristics of the underlying TDE method. The crucialness of this error

is that it affects the hard decision that is taken to select among the three candidate estimates.

Literally, the error gives rise to a probability of failure in the disambiguation process. Due to the

clearness of the relationship between the error and the errors in the principal estimates, in this

section, we focus of studying the probability of failure of the proposed method in noisy cases. The

probability od failure can be written in light of (9) as:

Pf = P

(−d12

2f
− δ

(i)
12 > e12 >

d12

2f
− δ

(i)
12

)

+P

(−d12

2f
− δ

(i)
12 − µ

l − i

f
≤ e12 ≤ d12

2f
− δ

(i)
12 − µ

l − i

f

)

+P

(−d12

2f
− δ

(i)
12 − µ

m− i

f
≤ e12 ≤ d12

2f
− δ

(i)
12 − µ

m− i

f

)
,

[i, l, m] ∈ K, i 6= l 6= m (27)
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Now for simplicity assume that ea
12, ea

23 are two i.i.d processes with normal distributions, zero

means, and variance σ2. From (26), e12 will also be a zero-mean process with variance:

σ2
12 = 2µ2σ2 (28)

and the cumulative distribution:

Φ(x) =
1
2

(
1 + erf

(
x

2µσ

))
, x ∈ R (29)

where erf(.) is the error function. Further, Since δ
(i)
12 is related to the DOA (θ) by

δ
(i)
12 =

d12

2f
sin(θ) (30)

Based on (29) and (30), (27) can be written as:

Pf = −Φ
(
ζ+)− Φ

(−ζ−
)
+ Φ

(
ζ+ − µ

l − i

f

)

+Φ
(
−ζ− + µ

l − i

f

)
+ Φ

(
ζ+ − µ

m− i

f

)

+Φ
(
−ζ− + µ

m− i

f

)
, [i, l,m] ∈ K, i 6= l 6= m (31)

where ζ+ = d12
2f (1− sin(θ)) and ζ− = −d12

2f (1 + sin(θ)).

4 Performance Tests

Different tests based on Eq. (31) have been conducted. The purpose was to understand the

relationship between the probability of failure of the proposed method one one side; and the error

in the principal estimates and different array parameter on the other side. ultrasonic signals were

assumed throughout the tests. In all tests the values of [i, l, m] were calculated based on an Assumed

DOA, and reasonable values of σ2 are assumed. First we evaluated Pf for all DOAs in the range
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{−90o, 90o}, and for different values of σ2 as in Fig. 1. Fig. 1 shows the dependence of pf on both

σ2 and the DOA. The performance degrades as σ2 increases, and for a fixed σ2, it is clear that as

we move towards the end-fire Pf increases.

In Fig. 2, d12 and σ2 are kept constant while µ is varied by varying the difference d23 − d12.

The figure emphasizes the fact that the proposed method exhibits worst performance near the

end-fire when d23 − d12 = 1, but still the variation of pf with the difference d23 − d12 need to be

clarified. This variation is studied in Fig 3, where Pf is plotted against the difference d23 − d12

for selected DOAs. From the figure, it is revealed that the difference d23 − d12 should be carefully

selected. Performance seems to peak in the range {0.4, 0.9}λ
2 . However, since λ

2 depends on the

frequency in use, a question concerning the usability of the same triplet for multiple frequencies

arises. The answer follows immediately from Fig. 4, where d23 − d12 is selected to be 0.9λ
2 at 160

KHz. Tests involving the frequency range {0, 160}KHz for different DOAs are summarized in the

figure. Note that, part of the test frequencies are satisfying the λ
2 condition, and they thus represent

ambiguity-free cases. The figure shows stable performance in the whole range except around the

higher frequencies, where performance degradation that varies with the DOA in the same perviously

noticed fashion is observable. Note that this figure is plotted for a relatively larger value of σ2, and

a difference d23 − d12 that is close to the critical upper value for the higher frequencies.

5 Conclusion

A method that disambiguates time-delays observed between two widely-spaced sensors utilizing an

auxiliary collinear sensor is presented. The performance of the method is studied and an expression

for the probability of failure is obtained. Finally, we emphasize that, we have used the proposed

method to extend one of the existing TDE methods. Results will appear in the literature soon.
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Figure 1: Probability of failure versus DOA for σ2 = -110, -120, -130 and -150 dB; f = 50 KHz;
d12= 11; µ = 11.
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Figure 2: Probability of failure versus DOA for selected values of µ obtained by varying d23 − d12

to take the values: 0.25, 0.50, 0.75 and 1; f = 50 KHz; d12= 11; σ2 = -130 dB
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Figure 3: Probability of failure versus the difference d23−d12 for selected DOA angles; f = 50 KHz;
d12= 11; σ2= -130 dB
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