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Nonlinear phase dynamics of weakly unstable two·dimensional periodic patterns is studied. Four 
distinct physical situations are specifically considered. They correspond to the Eckhaus instability and 

zig· zag instability occurring in each of propagating and non-propagating patterns. Consequently, four 

prototype partial differential equation~ for phase function are obtained. Their derivation is totally based 

on symmetry- and scaling arguments. A simple interpretation of the origin of nonlinearity is given. 

Although the main part of the present theory is phenomenological, a more rigorous asymptotic theory is 
also developed for reaction-diffusion equations. . 

§ 1. Introduction 

Recent theories on chaos and turbulence in dissipative systems usually take it for 

granted, explicitly or implicitly, that transitions to chaos are adequately modelled by 

simple dynamical systems with only a few degrees of freedom. Although this idea proved 

to be valid in many important applications, there exist equally important realistic cases 

where the inclusion of infinitely many degrees of freedom is vital even in the immediate 

vicinity of the onset of weak turbulence. This is peculiar to systems of sufficient spatial 

extension especially when regular patterns become slowly modulated in space and time as 

a result of the unstable growth of long-scale phase modes. The resulting turbulence can 

be very weak in the sense that the maximum Lyapunov number of the corresponding 

chaotic orbit can be very close to zero, whereas the attractor dimension may possibly be 

infinitely high. Because of the latter property, one must prepare from the outset an 

infinitely high dimensional phase space to accommodate the chaotic attractor, hence the 

breakdown of the usual dynamidtl-system description. More precisely, the range of its 

applicability, if expressed in terms of some bifurcation parameter included; would be 

narrowed down to zero as the system size goes to infinity. This particular type of weak 

turbulence was previously called phase turbulence.!) 

If the basic pattern which is going to be turbulized is space-periodic, phase turbulence 

may be visualized as contours varying slowly and irregularly in space and time, whereas 

the overall topological nature of the pattern is perfectly preserved. Although the exper

imental situation is not clear, something like this seems to happen in fluid layers heated 

from below with sufficient horizontal extension and relatively low PrandtI number. 2
),3) 

The convective rolls may then become weakly deformed through various kinds of in

stabilities such as the Eckhaus instability,4) zig-zag instability and scewed varicose in~ 

stability,5) all these being caused by the unstable growth of long wavelength phase modes. 

Actually, the resulting dynamical behavior mayor may not be chaotic. Still the descrip

tion in terms of suitably defined phase function if; ( r, t) seems appropriate: For doing this, 

one has first to contract the original dynamics to the dynamics for if; , and this is in fact 

possible if one exploits the smallness of the bifurcation parameter c. The equation for if; 
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Phase Dynamics of Weakly Unstable Periodic Structures 1183 

would take the form of a nonlinear partial differential equation. A number of studies in 

this direction have been done for diffusion-coupled chemical oscillators,I),6),7) chemical 

wavefronts8
) and combustion fronts. 9

) Though restricted to the linear regime, the phase 

dynamics idea was proposed also in the Rayleigh-Benard convection by Pomeau and 

Manneville10) who derived a phase diffusion equation from the Newell-Whitehead amp

litude equation. l1
). A severe limitation inherent in the Newell-Whitehead equation was 

noticed later by Siggia and Zippelius/2
) which called for much more elaborate treatment 

of phase dynamics. This was attempted by Cross1 3
) especially in relation to the origin of 

the scewed varicose instability. As another extension of the Pomeau-Manneville idea, 

one may mention the multi-phase theory proposed by Brand and Cross1 4
) appropriate for 

describing a slowly modulated wavy vortex state in the Couette-Taylor system. It may 

be 'said, however, that any nonlinear phase dynamics theory of phase-unstable fluid 

patterns seems left undeveloped as yet. 

Consider a two-dimensional dissipative system extending infinitely in both x and y 

directions. In order to derive generally the phase dynamics, the first to do is to classify 

various basic states which are going to be phase-destabilized. The basic states must have 

at least one phase mode of neutral stability, which implies that the following three cases 

will be the most important. 

1. Uniform states which are oscillating autonomously, 

2. Single straight wavefronts or interfaces which may be propagating or non-propagat

ing, 

3. Space-periodic patterns which may be propagating or non-propagating. 

As noted above, cases 1 and 2 were studied previously at least for some reaction-diffusion

and combustion problems. Thus studying the third case would be of interest, and this in 

fact constitutes the subject of the present paper. It would, however, be difficult to treat 

periodic patterns in general. Accordingly, the present paper will be restricted to such 

simple cases that the basic patterns depend only on one space coordinate. In contrast, 

truly two-dimensional periodic patterns would require multiple phase variables as discus

sed in Ref. 14). 

Consider the dissipative dynamics described by 

(1.1) 

where X represents a real state vector and F some nonlinear function of X possibly 

including some spatial derivatives of X. The above equation is assumed invariant under 

coordinate translations, reflections and rotations. Many physical systems share this 

property, and one obvious example is reaction-diffusion equations 

(1·2) 

The present paper will mostly be concerned with the general system (1'1), although 

certain properties assumed later for system (1'1) will explicitly be demonstrated for a 

more specific class (1· 2). Unfortunately; the present theory does not seem to apply 

directly to convection problems. This is because of our assumption of smooth expansion 

of some relevant quantities invarious spatial derivatives of phase; in fact, Cross l1
) argued 

that this assumption is invalid for the Rayleigh-Benard -convection on account of some 
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1184 Y. Kuramoto 

long-wave singularities originating from the incompressibility condition. Despite this 

fact, our simple interpretation of the origin of the dominant nonlinear effects in the phase 

dynamics, which forms one of our main conclusions in the present paper, might enjoy 

much wider applicability including the Rayleigh-Benard convection. 

Section 2 outlines how to obtain nonlinear evolution equations for phase in various 

situations. Symmetry- and scaling arguments are .all needed for this purpose. Symmetry 

considerations were also made in the Couette-Taylor system/ 4
) while scaling idea was 

used in oscillatory systems l
) and front dynamics.9

) The combination of these. two ideas 

will turn out extremely fruitful. The present paper does not attempt the detailed analysis 

of the nolinear phase equations obtained, although a brief remark on each equation will 

be given in §3. The validity of one of our basic assumptions will be checked for reaction

diffusion equations in the Appendix. A rigorous asymptotic theory of phase dynamics 

based on a precise definition of phase will also be developed there for the same class of 

systems. 

§ 2. Derivation of four prototype equations 

2a. Functional ansatz 

Let Eq. (1·1) admit a continuous family of periodic solutions Xo( cjJ), where 

Xo(cjJ+l)=Xo(cjJ), 

cjJ=x-ct+r/J , 1= 27f/k . (2·1) 

r/J is an arbitrary constant, and I (or k) is a continuous parameter specifying wavelength 

(or wavenumber). The functional form of Xo depends generally on k. The propagation 

velocity c may identically vanish in some finite range of k, which in fact is the case for 

convective rolls. Such static solutions will be called type B, while propagating solutions 

type A. The velocity (; may depend on k for propagating solutions. Vanishing velocity 

of type B solutions implies that they preserve the original reflection symmetry of the 

system. Thus one may require Xo( cjJ ) to be a symmetric function, or that there exist some 

cjJo such that 

Xo(-cjJ+cjJo)=Xo(cjJ). (for type B only) (2·2) 

In contrast, the directions of increasing and decreasing x arenot equivalent for type A 

solutions, and hence the corresponding Xo( cjJ ) must be asymmetric. A well-known exam

ple of type A solutions would be the periodic chemical waves in oscillatory and excitable 

reaction-diffusion systems,15) whereas the Turing type solutions l6
) belong to type B. 

The basic id~a of the phase dynamics is now described. Let us deform slightly the 

periodic pattern Xo( cjJ) in such a way that its phase r/J may be allowed a long-scale 

dependence on x and y. Such Xo(cjJ) would no longer satisfy (1·1) exactly, still it could 

be "optimized" by allowing r/J to evolve in time in an appropriate manner. The resulting 

time-evolution of r/J is expected slow because r/J is a long-wave extension of the uniform 

translational disturbance whose stability is neutral. In general, one may call some field 

quantity a slow field if its time-dependence vanishes in the long-wave limit. In the present 

theory r/J is assumed to be the only slow field involved.*) This leads to the picture that all 

*) This is not the case for the Rayleigh·Benard convection with free top and bottom boundary conditions and 

infinite horizontal extension;s)'12) in that case the vertical vorticity forms the second slow field. For rigid bound· 

aries, however, t/> represents the only slow field. 
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Phase Dynamics of Weakly Unstable Periodic Structures 1185 

the other degrees of freedom which relax much faster than ifJ follow adiabatically the 

motion of ifJ (or cp), and consequently the instantaneous spatial distribution of ifJ (or cp) 
practically specifies the complete state of the system. Because the starting equation of 

motion (1-1) is first order in time, the above implies that the instantaneous rate of change 

of ifJ (or cp) would also be determined by the distribution of ifJ (or cp) itself, which we 

express as 

OtifJ =Q [ifJ], 

OtCP= I[cp]. 

(2-3a) 

(2-3b) 

It is now assumed that the right-hand sides can be represented in terms of local ifJ (or cp) 
and its various spatial derivatives, i.e., 

Q[ifJ]=Q(ifJ, oxifJ, OyifJ, ox2 ifJ, OxOyifJ, Oy2 ifJ, ._.), (2-4a) 

I[cp] = I(cp, oxCP, Oycp, ox2 cp, oxOycp, o/cp, ... ), (2-4b) 

and further that they can be expanded into multiple Taylor series. Although these 

assumptions would be difficult to justify rigorously, one may obtain explicitly such Taylor 

expansions to any desired order at least for reaction-diffusion dynamics as will be shown 

in the Appendix. Note that the derivative expansion of Q represents itself the phase 

dynamics in the form of a partial differential equation. Thus the remaining problem is 

how to reduce such an infinite series to a finite one. As is seen below, symmetry- and 

scaling considerations are all we need· for this purpose. 

2b. Symmetry considerations 

The spatial invariance properties of the original dynamics assumed in. §1 are expected 

to be carried over to the equation for cp (but not to the equation for ifJ because ifJ represents 

a deviation from a symmetry-breaking pattern). First, the translation x -> x + xo must 

leave I invariant. Since this transformation has no effect on the space derivatives of cp, 
only replacing cp by cp+ Xo, the above condition requires that I be independent of cp-value 

itself. Equivalently, 

[I] Q is independent of ifJ. 

Note that the translation y -> y + Yo automatically leaves land Q invariant. Secondly, the 

reflection symmetry requires the invariance of I under y -> - y, or 

[II] y -> - y leaves Q invariant. 

The invariance of I under the reflection x -> - x or under rotations cannot lead to any 

simple properties of Q, although they may lead to some relations to be satisfied by some 

coefficients in the expansion of Q. Finally, the symmetry property in (2 -2) is still to be 

used. For type B solutions (possibly with space-time dependent ifJ) the change of the sign 

of cp has no physical effects within a spatial translation. This requires that I be invariant 

under cp-> - cp or, equivalently, 

[III] Simultaneous transformations ifJ -> - ifJ and x -> - x leave Q invariant (for type B 

only). 

Various terms in the Taylor expansion of Q [ifJ] vanish because of their violation of [I] 

~ [III]. For instance, terms like OyifJo/ifJ and o/ifJ cannot appear on account of [II]. 

The assumption that ifJ depends slowly on x andy is yet to be used. Slow variation 
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1186 Y. Kuramoto 

of ¢ in fact occurs when the basic periodic pattern Xo becomes weakly unstable with 

respect to long-scale phase disturbances. Our system is now supposed to be in such a 

weakly unstable state, which enables us to single out most important terms from the 

expansion of Q. Before going into term-by-term estimation, however, it is necessary to 

make clear what specific types of phase instabilities are to be considered. 

2c. Instability types and the corresponding linear dispersions 

There exist at least two types of phase instabilities, namely, 

(E) Eckhaus instability 

and 

(Z) Zig-zag instability. 

The above names have been borrowed from fluid systems. They may occur either for 

type A solutions or for type B solutions. Therefore, four distinct physical situations are 

possible. They will be abbreviated as A-E, A-Z, B-E and B-Z, the meaning of which 

should naturally be understood. 

Each type of instability is now briefly described. Let the periodic solution Xo(x - ct ), 

which may be A type or B type, be slightly perturbed. Equation (1-1) is then linearized 

with respect to the deviation p defined by 

X(x, y, t)=Xo(x-ct)+p(x-ct, y, t). (2-5) 

The solution of the linearized equation may be sought iIi theform 

p(x-ct, y, t)=u(x-ct)exp{i(qxx+qyy)+At}, 

where u is some I-periodic function of x-ct possibly depending on q=(qx, qy). The 

eigenvalue A as a function of q is now considered. For vanishing q, one of the 

eigenvalues must identically vanish. This is the eigenvalue of the phase mode or 

translational mode. Its extension to finite q forms a phase branch. Since instabilities 

different from phase instabilities are not considered here, the real part of A for the other 

branches is assumed to be finite negative. In accordance with the Taylor expansion of .Q, 

let the eigenvalues of long-scale phase modes be expanded in powers of qx and qy. This 

expansion must coincide with the linearlized.Q via transformations A~ at, iqx~ ax andiqy 

~ ay. Then, from property [II], odd powers of iqy must not appear in /\. Further, 

property [III] implies that odd powers of iqx must not appear for type B, but may appear 

for type A. Thus the general form of A becomes 

(2-6) 

where ai, bi and Cij are real constants depending generally on the basic wavenumber k, 

and Ai is vanishing for type B solutions. By the Eckhaus instability we mean that a2 

changes sign from positive to negative, whereas the zig-zag instability means that the 

same occurs for b2 • They may also be called longitudinal and transversal instabilities, 

respectively. .In the present paper a4 and b4 are always assumed positive so that they 

may contribute to stabilization. 
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Phase Dynamics of Weakly Unstable Periodic Structures 1187 

2d. Scaling idea and final equation forms 

The derivative expansion of Q[¢] can further be simplified by scaling considerations. 

Let a2 or b2 be a small parameter depending on the type of instability of concern, and put 

a2 = - C or b2 = - c. It is reasonable to assume that the solutions of the partial differential 

equation for¢have a scaling form for sufficiently small c, or 

(2·7) 

where (3, v, v' and 0 are non-negative constants yet to be determined. The above scaling 

form enables us to express the order of magnitude of various terms in the expansion of Q. 

For instance, OX¢~CIl+P and (Oy¢)2~c2(1I'+P). How to find the exponent values goes as 

follows. Note first that the determination of 0 is automatic if the other three exponents 

are known. Further, the destabilizing term -cox2¢in the case of the Eckhaus instability 

is expected to be balanced with the dissipation term ox4¢ and also with the lateral 

diffusion Oy2¢. Similarly,one may expect the balancing -COy2¢ ~ Oy4¢ ~ ox2¢ to hold for 

zig-zag instability. It is easy to check that, even if /3( 20) is unknown, knowing the values 

of v and v' in this way determines uniquely which nonlinear terms are most dominant. 

The balance condition between the dominant nonlinear terms and the above linear terms 

finally determines (3. The values of the exponents in each case are listed in Table I. 

Note that Oy¢ is small in all cases, which means that the contours of constant ¢ remains 

almost parallel to the y-direction even if the pattern is destabilized. The final equation 

forms are the following. 

(A-E) Ot¢=L¢+g(ox¢)2, 

(2·8) 

(A-Z) 

(2·9) 

(B-E) 

(2·10) 

(B-Z) 

L=b20y2-b40/+a20X2, b2=-c. (2·11) 

The above results must be consistent with the linear dispersion (2·6), which requires that 

ai, bi and Cij above be identical with the respective quantities under the same notations 

in Eq. (2·6). For simplicity,a common notation 9 has been used for the nonlinearity 

parameters. It should be noted that our scaling arguments break down if the above 

equations turned out to give solutions escaping to infinity. 

Table I. 

(3 1/ 1/ 
, 

0 

A-E 1/2 1/2 1 3/2 

A-Z 1 1 1/2 2 

B-E 1/2 1/2 1 2 

B-Z 0 1 1/2 2 
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1188 Y. Kuramoto 

A few more remarks should be given regarding Eq. (2·8). Let the term aloXrjJ be 

eliminated through the coordinate transformation x~ x - al t. The scaling exponents in 

Table I actually refer to this new representation. Note also that the terms a2oX2rjJ, ox4rjJ 

and o/rjJ, all being 0(c5/2 ), are smaller than the terms ox3 rjJ and (oxrjJ)2 which are 0(c2
). 

The former should still be retained because they represent the first nonvanishing dissipa

tion effects and hence are the very cause of the spontaneous occurrence of the scaling 

behavior of rjJ. For the other quantities, in consrast, all terms in each case are of the same 

order in c. 

2e. Determination of 9 

The parameter 9 can be related to a certain derivative of a2 or b2 or velocity c, and 

this fact leads to a simple physical interpretation of the nonlinearity. Let us begin with 

the determination of 9 is each case. 

(A-E) As a particular solution of Eq. (2'8),consider 

(2'12) 

where xmust be small by assumption. The corresponding phase-perturbed solution of 

Eq. (1'1) becomes 

which still represents a perfectly periodic pattern though with a modified wavenumber Ii 
and modified velocity c given respectively by 

Ii =k(l +x) 

and 

c=c(k)-alX-gx2. 

Since c must coincide with c( Ii), the Taylor expansion of c( Ii) about c(k) gives 

_ -k2 d
2
c(k) 

g- dk2 

(A-Z) Analogously to the above, consider 

rjJ=xy+gx2t 

as a particular solution of Eq. (2'9). This leads to 

(2'13) 

(2'14) 

which represents again a periodic pattern though it is slightly non-parallel to the y

direction. The wavenumber has now been changed to x, where' 

and we must require 
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Phase Dynamics of Weakly Unstable Periodic Structures 1189 

which gives 

(2·15) 

(B-E) The appropriate form of cP in this case is 

cP = xx + cpoexp( iqxr + At), (2·16) 

where CPo is supposed to be small. Equation (2 ·10) is now linearized with respect to CPo. 

Then 

where 

a2=a2(k)+gx2 . 

The approximate solution (2·16) of Eq. (2·10) describes a small wavy phase perturbation 

upon a periodic pattern with wavenumber Ii, where 

Ii =k(l +x). 

The equality a2 = a2( Ii) must be satisfied, which leads to 

(B-Z) Let us consider the form 

cp = XlX + X2Y + cpoexp( iqyY + At ), 

and linearize Eq. (2·11) with respect to CPo. Then 

where 

b2=b2(k)+glxl+g2X2
2

. 

The basic wavenumber has now been changed to 

Requiring b2 = b2( Ii), one obtains 

(2·17) 

(2·18) 

(2·19) 

From the above arguments it is now understood where the nonlinearity of our phase 

dynamics comes from. We see that the dominant nonlinearity is caused by the local 

velocity change in the case of propagating patterns, and the local change in the phase 

diffusion constant in the case of static patterns, both due to the local periodicity change. 

The same mechanism is expected to underlie wider classes of systems to which the present 

theory may not strictly apply. 
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1190 Y. Kuramoto 

§ 3. Remarks on the four prototype equations 

Detailed analysis of our four prototype equations is not the purpose of the present 

paper. Instead, a brief remark will be given on each of them. 

(A-E) Let us work with the aforementioned moving coordinate to eliminate the a~ox¢ 

term in Eq. (2·8). If the basic periodic pattern is stable, or if a2>0, no higher order 

derivatives than the second will be important. If one neglects the y-dependence, too, one 

obtains 

(3·1) 

This is transformed to the Burgers equation through ox¢ = v. The original pattern may 

be a periodic pulse train such as shown by the Hodgkin-Huxley nerve conduction equation. 

In that case Eq. (3·1). tells us that long wave fluctuations v in the pulse number density 

obeys the Burgers equation. This fact was used l7
) for explaining observed spectral 

anomaly of v(x, t) in nerve axons. IS
) 

For weakly unstable case, which is of our main concern here, the terms ox3¢ and 

(ox¢)2 are the dominant as noted in §2-2d. If the other terms are ignored, the Korteweg

de Vries equation 

(3·2) 

is obtained. Because the next order terms, which are dissipation terms cOx2¢ and ox4 ¢, 

represent "energy" source and sink, they seem to be crucial in driving the system to some 

attractor which may be a chaotic attractor of infinite dimension. The present type of 

dissipative KdV equation is met in some different physical contexts such as viscous fluids 

flowing on an inclined plane l9
) and dissipative trapped-ion mode in plasmas.20

) 

(A-Z) In this case the instability is strongest in the y-direction, and the x-dependence of 

¢ may be neglected in the first approximation. Then 

(3·3) 

The same equation was also met in reaction-diffusion turbulence l
),7),9) and frame-front 

turbulence.S
) By inclUding y-dependence, a continuously coupled chaotic system is 

obtained, where each subsystem is described by Eq. (3·3). 

(B-E) In contrast to the above case, the y-dependence seems less important. Let us drop 

it and normalize some coefficients by a suitable rescaling. Then 

(3·4a) 

where a is supposed to be positive or the periodic pattern is supposed to be unstable. For 

infinite system size the above has a potential, or 

Ot¢=-oU/O¢ , 

U = ~ fdX{ - a(ox¢ )2+ ~ (Ox¢ )3+(ox2¢)2}. (3·4b) 
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Phase Dynamics of Weakly Unstable Periodic Structures 1191 

Thus the system is expected to approach a local minimum of U. In order to get some 

insight into this final state, Eq. (3·4a) is expressed as 

(3·5) 

wherev=ax<p. Constant v, or V=Vo, is always a solution. This is stable if vo>a and 

unstable otherwise. Note that nonvanishing spatial average of v, denoted as if, means a 

nonvanishing change in the average periodicity of the pattern. In general, this may cause 

a change in stability, too. Note, however, that if is a conserved quantity, which means that 

a phase-destabilized periodic pattern cannot spontaneously develop into a stable periodic 

pattern by changing its periodicity. Thus the phase instability of a periodic pattern will 

inevitably produce some nonuniform distribution of v corresponding to a local minimum 

of U. Among such nonuniform states the most interesting would be the ones satisfying 

(3·6) 

Its solutions are nothing but the equilibrium solutions of the KdV equation supplemented 

with a propagation term axv. The unstable case where if < a is of the present interest. It 

is clear that one-soliton solutions of Eq. (3·6), Le., 

v(x)= vo+3a sech2( ~ j - a x ), 

a=a-vo<O (3·7) 

cannot satisfy if < a because Vo must be identical to if for infinite system size which one 

is presently working with. Possible realistic states may then be periodic equilibrium 

solutions or 

(3·8) 

for which the above inequality could be satisfied. 

(B-Z) It seems difficult to see, at least by inspection, any simple properties of the 

solutions of Eq. (2·10). The associated dynamics may be essentially two-dimensional, 

and detailed numerical analysis is desired. 

§4. Summary 

The dynamics of some simple two-dimensional periodic patterns has been studied in 

particular when they become weakly deformed through some phase instabilities such as 

the Eckhaus and zig-zag instabilities. It has been found that the dynamics is best 

described in terms of suitably defined phase function <p. Depending on the type of 

instability and also on whether the basic periodic structure is propagating or non

propagating, four distinct physical situations are possible. Four corresponding partial 

differential equations for <p have been obtained by means of symmetry- and scaling 

arguments. All parameters included have then been related to some coefficients appear

ing in the linear dispersion of the phase branch, the unperturbed propagation velocity and 

some suitable derivatives of these quantities with respect to the basic periodicity of the 

pattern. This finding has enabled us a simple physical interpretation of the nonlinear 
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1192 Y. Kuramoto 

terms involved. Some of these partial differential equations are expected to show tur

bulent behavior, although no detailed analysis of them has been attempted in the present 

paper. The crucial assumption of the present theory is the possibility of smooth expan

sion of relevant quantities in powers of various spatial derivatives of ¢>. Although this 

property has been demonstrated for reaction-diffusion systems, some important fluid

dynamical problems such as the Rayleigh- Benard convection seem to lack in this property, 

and hence may remain beyond direct applicability of the present theory. In this connec

tion, the present theory would have to be generalized to introduce some auxiliary vari

ables (which are not necessarily slow fields) so that the possibility of smooth expansion 

may be recovered. 
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Appendix 

Reaction-diffusion systems (1· 2) are considered here in order to demonstrate how 

Q[¢>] is obtained explicitly in the form of derivative expansion. To begin with, we 

introduce some notions associated with the linear system about the I-periodic solution 

Xo(z) of Eq. (1'2), where z=x-ct and Xo(z) satisfies 

F(Xo)+cazxo+ Daz
2Xo=0. 

The linearized equation of Eq. (1' 2) about Xo( z) is expressed as 

atP=Lp, 

where p is the deviation of X from Xo(z), and 

L=L(z )+caz+ D(az 2 +ay
2

), 

Lij(z)= aFi(XO)/aXOj . 

(A'l) 

(A·2) 

(A '3a) 

(A'3b) 

Let p be restricted to such perturbations that are I-periodic and independent of y. By 

putting p= u(z )eAt, where u(z)= u(z+ l), Eq. (A ·2) becomes 

Au=Lou, (A·4a) 

where 

(A'4b) 

The eigenfunctions and eigenvalues associated with Lo are denoted as Un and An (n=O, 1, 

2, ... ), respectively. Let Uo denote the eigenfunction of the translational mode. One may 

take 

( )_ dXo(z) 
Uo z - dz (A'5) 

and Ao=O. Note that the linear dispersion (2'6) is a long-wave extension of this zero-
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Phase Dynamics of Weakly Unstable Periodic Structures 1193 

eigenvalue. It is assumed that all eigenvalues are algebraically simple, that ReAn < 0 for 

all n-::f::O, and that the eigenfunctions are orthonormalized as 

(A·6) 

where Um * denotes an eigenfunction of the adjoint operator of Lo belonging to the 

eigenvalue Am. 

Our systematic method of derivative expansion is now described. Let the periodic 

pattern Xo(z ) be given a long·scale phase perturbation. In order to indicate this slowness 

explicitly, it is appropriate to introduce scaled coordinates X and Y by 

(A·7) 

As in usual multi-scale asymptotic theories, x, X and Yare treated as independent 

variables. Note that there is no reason for the unstretched coordinate y to enter the 

theory. In the above, 101 and 102 are used as tracers of smallness and will finally be equated 

to 1. Still expressions like "terms of order 101
2
" will be used to indiCate quantities such as 

Qx2 e/> and (oxe/> )2. With these new coordinates the phase-perturbed state may approxi

mately be expressed as 

(A ·Sa) 

r/J=x-ct+e/>(X, Y, t). (A·Sb) 

How e/> evolves in time is now considered. Since phase perturbatlons would inevitably 

induce deviations in wave profile (seen on the sections locally normal to the contours of 

constant r/J), one should rClther work with a form more general than (A· Sa), and put 

X=Xo(r/J)+p(r/J, X, Y, t). (A·9) 

Note that the X-and Y-dependence of p refers to its long-scale variation, while its short

scale variation has separately been taken into account by its I-periodic dependence on r/J 

or 

p(r/J+l, X, Y, t)=p(r/J, X, Y, t). (A ·10) 

The definition of p in Eq. (A·9) is not unique because the reference state Xo( r/J) itself 

depends on yet unspecified e/>. The separation of the disturbances into p and e/> may be 

made unique by requiring 

(A·11) 

where the integral is taken under fixed X, Y and t. Condition (A ·11) simply means that 

p includes no phase disturbances. 

Rather than trying to find directly the expressions for the set of the unknowns (e/>, p), 

it is more appropriate to do the same for (Q, p), where Q=Ote/>. This is simply because 

the phase disturbance need not remain small, while its time derivative is expected to be 

small. The same spirit commonly underlies all asymptotic theories of nonlinear oscilla

tions including secularity. The unknowns (Q, p) are now sought in the form 

p(r/J, X, Y, t)=p(r/J, [e/>]), (A·12a) 
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1194 Y. Kuramoto 

Q(X, Y, t)=Q[¢]. (A -12b) 

Here [¢] denotes dependence on all possible derivatives of ;p with respect to the scaled 

coordinates X ,and Y or, symbolically, 

(A -13) 

In accordance with the introduction of multiple spatial scales, it is appropriate to convert 

Eq. (1-2) to 

(A-14) 

Let (A -12a) and (A -12b) be substituted into (A -14). The left-hand side of (A -14) is then 

expressed as 

adXo(cf;)+p(cf;, [¢])} 

=Q[¢]uo(cf;)- ca¢xo+ a¢p- Q[¢]- ca¢p+ a[{!lP- at[¢], 

where the following abbreviation has been used: 

a[(>lP- at[¢]= '2]'2]cl iC/aiaIQ [¢]- ap/a(c/c/axial¢). 
i+j2:1 

Let F(X) be expanded as 

F(X)=F(Xo(cf; ))+ L(cf; )p+ M(cf; )pp+ .... 

Then the right-hand side of Eq. (A -14) becomes 

(A-15) 

(A-16) 

(A -17) 

F(Xo(cf; ))+ L(cf; )p+ M(cf; )pp+ D{(aX+ClaX)2+ C22ay2}(Xo(cf;)+ p)+ O(p3). (A -18) 

Equating (A -15) and (A -18), and using Eq. (A·1) with z replaced by cf;, one obtains 

where 

with 

B(cf;, [¢])= -a¢p-Q[¢]-a[(>lP- at[¢]+ Mpp 

+ D{(aX+ClaX)2+ C22ay2- al}(Xo(cf;)+ p)+ O(p3) 

= - a¢p- Q [¢]- a[(>lP" at[¢]+ Mpp 

+ D[a¢2 X o- {2ClaX¢ +c/(ax¢ )2+C22{ay;p )2} 

+a¢xo- (c/ax2¢+clay2¢ )]+ B 1 [¢]+ O(p3) 

= D[2cl {a¢2p" ax¢ + a[(>l(a¢p)- ax[¢]} 

+c/{alp· (ax¢ )2+ a¢p- ax2¢+2a[(>1(a¢p)- ax[¢]- ax¢ 

+ a[2(>1p" (ax[¢] )2+ a[(>lP- ax2[¢]} 

(A -19a) 

(A -19b) 
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Phase Dynamics of Weakly Unstable Periodic Structures 

+ C22{a/p· (ay<fJ Y+ a",p· ay2¢ +2a[{>1(a",p)· ay[¢]· ay<fJ 

+ a[2{>lP· (ay[¢] )2+ a[1>lP. ay2[¢])]. 

Here again some abbreviations have been used, i.e., 

2a a 2["-]- ~~ i+2 ia i+2a i"- a la( i ia ia i"-) CI [{>lP· X 'P -£...£...CI C2 X Y'P· P CI C2 X Y'P, 
i+j:::l 

1195 

(A·19c) 

(A·20a) 

(A ·20b) 

. (A·20c) 

and similar definitions apply to C2a[1>1(a",p)·ay[¢], c/a[2{>lP·(ay[¢])2 and C22a[1>lP·ay2[¢]. 

Note that B contains all perturbation effects and is of the order of CI or C2 or higher. 

Let perf;, [¢]) be expanded as 

(A·21) 

A scalar product (ui",· ) with each side of Eq. (A ·19a) is now taken. Then we get 

Q[¢]=(Uo*, B) (A·22a) 

for m=O, and 

(A·22b) 

for m::f=O. The solutions Q[¢] and Cm[¢] of the above set of equations j:an be obtained 

perturbatively. Let some relevant quantities be cast into power series expansions 

(A ·23) 

For given J1. and v, each [¢J-dependent quantity on the right-hand side of (A·23) may 

further be decomposed into all possible types of derivatives. For example, Qzz[¢] is 

decomposed as 

(A ·24) 

Different types of derivative terms will be indicated by a superscript (6). Then Eqs. 

(A· 22a) and (A· 22b) may be decomposed into a set of finer balance equations 

(A·25a) 

and 

(0") - II -I( * B(O") C m,p.lI - - m Um, I'll. (A ·25b) 

It is easy to see that the right-hand sides of Eqs. (A·25a) and (A·25b) contain only 

the lower order unknowns Q1<f], and C<;{~~'lI' where J1.' + v' <J1.+ v. This means that the 

equations can be solved iteratively for every Q1V and. C~~lI. By substituting Q1V thus 
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1196 Y. Kuramoto 

obtained into the equation 

and equating 101 and 102 to 1, a nonlinear partial differential equation for if> is obtained. 

How to simplify such an equation follows the theory developed in the text. 
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