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Abstract: The transition from the isotropic (I) liquid to the nematic-type (N) uniaxial phase appearing
as the consequence of the elongated geometry of elements seems to be a universal phenomenon for
many types of suspensions, from solid nano-rods to biological particles based colloids. Rod-like
thermotropic nematogenic liquid crystalline (LC) compounds and their mixtures with a molecular
solvent (Sol) can be a significant reference for this category, enabling insights into universal features.
The report presents studies in 4′-methoxybenzylidene-4-n-butylaniline (MBBA) and isooctane (Sol)
mixtures, for which the monotectic-type phase diagram was found. There are two biphasic regions
(i) for the low (TP1, isotropic liquid-nematic coexistence), and (ii) high (TP2, liquid-liquid coexistence)
concentrations of isooctane. For both domains, biphasic coexistence curves’ have been discussed
and parameterized. For TP2 it is related to the order parameter and diameter tests. Notable is the
anomalous mean-field type behavior near the critical consolute temperature. Regarding the isotropic
liquid phase, critical opalescence has been detected above both biphasic regions. For TP2 it starts
ca. 20 K above the critical consolute temperature. The nature of pretransitional fluctuations in the
isotropic liquid phase was tested via nonlinear dielectric effect (NDE) measurements. It is classic
(mean-field) above TP1 and non-classic above the TP2 domain. The long-standing problem regarding
the non-critical background effect was solved to reach this result.

Keywords: liquid crystals; critical mixtures; critical opalescence; nonlinear dielectric effect; monotectic
phase diagram

1. Introduction

Lars Onsager was the first who note and explain the appearance of the transition from
the isotropic liquid to the predominantly uniaxial nematic (N) liquid crystalline mesophase
as the consequence of the molecular alignment associated with the elongated geometry
of elements, only weakly influenced by interactions [1,2]. The spontaneous appearance
of the nematic mesophase, with the symmetry-related origin, occurs when the crossover
concentration of rod-like elements crossovers a length-to-diameter (L/D) ratio above some
model value. Flory reached a similar conclusion for a lattice model approach, paying more
attention to specific attractive interactions [3]. Such general models expectations have
been confirmed in numerous experimental systems, from colloids based on suspensions
of solid nano and micro rods [4], to solutions of amphiphilic molecules [5], dispersions
of high molecular weight molecules [6], mineral colloids [7] or colloidal suspensions of
biological particles, for instance, cellulose [8], DNA [9], viruses [10], and further in cellular
biomembranes [11].

In this diverse collection of qualitatively different systems, there is one common feature:
rod-like uniaxial symmetry of building elements and a universal mechanism of transition
from a homogeneous phase, or its analog, to an orientationally ordered nematic-type phase.

Such universality indicates the possibility of studying significant properties in se-
lected experimentally convenient systems and considering the extension of conclusions
to the entire category. The ‘natural’ candidate for such a model system with the inherent
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isotropic-nematic (I-N) transition is rod-like thermotropic nematogenic liquid crystalline
compounds (NLC), where fundamental model features are combined with experimental
convenience [12,13]. As for beneficial features, one can indicate the link between experi-
mental and theoretical systems, unique phase transitions related to well-defined individual
symmetry elements freezing or releasing, or the enormous sensitivity to exogenic and endo-
genic impacts [12–19]. For exogenic impacts, the most important is the enormous sensitivity
to the electric field, which is the driving force for omnipresent innovative applications of
thermotropic NLC in displays and photonic devices [20,21].

Notable that some small amount of molecular admixtures/contaminations is the inher-
ent feature of any thermotropic liquid crystalline compound, which can be limited only by
deep cleansing [12,13]. The risk of a ‘hidden’ influence of such a factor affecting the proper-
ties of the base NLC material is a significant motivation for studies on NLC + molecular
solvent (sol) mixtures [12,22–44].

A question arises for its significance in NLC + nanoparticles (NPs) nanocolloids and
nanocomposites, where a significant shift of I-N clearing temperature (TC) is often re-
ported [45]. It is reported mainly for higher concentrations of NPs, where the additional
molecular component serves as a surface agent for nanoparticles, to avoid their sedimenta-
tion and aggregation [45–53]. Negligible TC shift is observed for small concentrations of
NPs, where the additional molecular component is not required [54–60]. One can expect
that for NLC + NPs systems containing the molecular surface agent, some molecules remain
‘free’, and can act as a solvent. It can yield the biphasic domain between the isotropic liquid
and nematic phases, finally creating the ‘stretched’ transition between the isotropic liquid
and LC mesophases [45,61]. Worth stressing is the importance of LC-based composite
systems for new generations of innovative devices [53,62–68].

This report focuses on the quantitative analysis of relevant features of thermotropic
NLC with the addition of a low molecular weight solvent (Sol). First, it is important to
recall the fundamental characterizations of the I-N transition in rod-like thermotropic NLC.

Five decades ago, Pierre Gilles de Gennes attempted to describe strong ‘anomalous’
changes of the Cotton-Mouton effect (CME, ∆n/λH2), and Rayleigh’s light scattering
(IL), on cooling in the isotropic liquid phase of NLC [69,70]. De Gennes formulated the
model [69–72], later referred to as the Landau-de Gennes (LdG) model, combining Lan-
dau’s theory showing the dominant role of symmetry changes for continuous phase transi-
tions [73] and the uniaxial’ order parameter appropriate for the I-N transition [72]. LdG
model turned out to be extremely important in the Physics of Liquid Crystals [12,13,72], Poly-
mer Physics [74], and Soft Matter Physics [75,76] in subsequent decades. The grand success of
LdG model was also associated with its generic universality. All these were important for
honoring Pierre Gilles de Gennes with the Nobel Prize in 1991 [75]. In the meantime, it was
shown that parallel temperature changes are observed for CME, IL [12,13,77,78] and also the
electrooptic Kerr effect (EKE), Optical Kerr effect (OKE) (∆n/λE2) [12,78], compressibility
(χT) [79], nonlinear dielectric effect (NDE, ∆ε/E2) [80–82]:

∆n
λH2 ,

∆n
λE2 ,

∆ε

E2 , IL, χT =
A

T − T∗
(1)

where T > TI−N = T∗ + ∆T∗, T∗ is the extrapolated temperature of a hypothetical con-
tinuous phase transition, ∆T∗ is the I-N transition discontinuity metric; ∆n denotes the
birefringence induced by the strong electric field E, or magnetic field H, for KE and CME
respectively; ∆ε = ε− ε(E) is the difference of dielectric constants under the weak (mea-
surement) and the additional strong E electric fields; λ is the light wavelength and A is the
constant amplitude related to the tested magnitude.

By tradition, the phase transition temperature from the isotropic liquid to LC mesophases
is also called the clearing temperature (TC), to indicate the loss of optical transparency on
cooling [12,13]. Following Equation (1), the analysis of reciprocals of listed magnitudes
enables simple and reliable estimations of (T∗, ∆T∗, A) values via the linear regression fit.
For other continuous or semi-continuous phase transitions in liquids, such as the gas-liquid
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critical point, or the critical consolute point in binary mixtures, the above properties show
different patterns of pretransitional changes [12,81–84].

So far, no studies on pretransitional effects for physical magnitudes recalled in Equa-
tion (1) have been reported for NLC-Sol mixtures. Studies of such systems are focused
mainly on determining phase diagrams (temperature vs. concentration) and their dis-
cussion in frames of classic mixtures/solutions models, thermal properties, microscopic
insight, and spectroscopic (mainly NMR or IR) studies [37–44]. Pretransitional effects
in the isotropic phase were studied only for small solvent concentrations: for the heat
capacity (CP, [36]) and dielectric constant (ε, [35]). These tests enabled estimations of the
heat capacity critical exponent describing pretransitional effects of mentioned properties:
α = 0.3− 0.5, depending on solvent concentration. The impact of solute on ∆T∗ was not
tested, which can be associated with the relatively large number of fitted (five!) parameters
in relations describing CP(T) and ε(T) pretransitional changes.

So far, studies in NLC + Sol mixtures [12,22–44] have shown the decrease of clearing
temperature for small solvent concentrations and the emergence of two coexisting phases
between the isotropic liquid and the nematic phases. For some NLC + Sol mixtures, a second
biphasic domain for high solute concentrations was noted [12,30,34,40–44]. It is bounded
by the coexistence curve resembling the binodal observed for binary, non-mesogenic liquid
mixtures of limited miscibility. To the best of the authors’ knowledge, there are no attempts
for the functional analysis of limited miscibility domains in NLC + Sol mixtures. Notable
that following the Physics of Critical Phenomena applied for low molecular weight liquids
binary mixtures of limited miscibility, the binodal is described by the ‘width’ (∆x(T)),
related to the order parameter, and the diameter d(T) [12,85,86]:

M = ∆x(T) = |xU(T)− xL(T)| = B|TC − T|β ×
(

1 + |TC − T|∆1 + . . .
)

(2)

d(T) =
xU(T) + xL(T)

2
= dC + b|TC − T|2β + a|TC − T|1−α + c|TC − T| (3)

where T < TC, TC is the critical consolute temperature located at the top of the binodal,
M denotes the order parameter, β is the order parameter-related critical exponent, and α
denotes the heat capacity-related critical exponent; ∆1 = 0.5 is the first correction-to-scaling
critical exponent necessary away from TC.

Values of critical exponents depend only on the space (D), and the order parameter
(N) related dimensionalities. Consequently, pretransitional (pre-critical) effects in micro-
scopically different systems’ are described by isomorphic pretransitional effects as far
as they belong to the same universality class (D, N). For instance, the same values of
critical exponents characterize the surroundings of the gas-liquid critical point in a one-
component fluid, the critical consolute point in binary mixtures of limited miscibility, the
simple magnetic system with the paramagnetic–Ferromagnetic transition when passing
Curie temperatures or their Ising-model parallels [12]. For mentioned system α ≈ 0.11,
β ≈ 0.326, and γ ≈ 1.237 for the compressibility (order parameter-related susceptibility)
changes. These values recall the basic type of criticality associated with (D = 3, N = 1),
also called the ‘non-classic’ case. When increasing the range of relevant interaction or the
dimensionality, one obtains a so-called ‘classic’ description. One can distinguish two classic
patterns. For systems with a single critical point and the dimensionality D ≥ 4: β = 1/2
and γ = 1, and α = 0 for T > TC, α = 1/2 for T < TC: it is also recalled the ‘mean-field’
(MF) behavior. In the case of the tricritical point (TCP) the border dimensionality decreases
to D = 3, which is associated with the following exponents: β = 1/4, γ = 1, and α = 1/2
both for T < TC and T > TC [12]. For I-N transition in thermotropic NLC there is ex-
tensive evidence for α = 1/2 in the isotropic liquid phase (T > TC = T∗). For the order
parameter exponent, numerous experimental results in NLC indicate β = 1/2, including
the nematogenic MBBA compound, tested in this report [12,87–89]. On the other hand, in
octyloxycyanobiphenyl (8OCB) and pentylcyanobiphenyl (5CB) the distortions-sensitive
analysis yielded β = 1/4 [90,91]. Concluding, the experimental evidence indicates the
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exponent α > 0 in the isotropic phase, but for the exponent β in the nematic phase, both
MF and TCP values are reported for different NLC compounds. It may suggest some
system-dependent interplay between MF and TCP classic descriptions.

When discussing NLC + Sol phase diagrams, notable is their similarity to the general
pattern of monotectic mixtures [92]. Such systems have remained a significant area of
significant interest in metallurgy for decades [93,94]. Recently, it has increased thanks to the
possibility of obtaining high-entropy alloys (HEAs) with unconventional physicochemical
properties [94]. A similar phase diagram was also found in several (non-mesogenic) molec-
ular liquids mixtures. In these studies, the importance of investigating monotectic-type
systems for experimentally in a more convenient temperature range than used in metallurgy
was the first motivation [95–99]. One can recall succinitrille-pyrene mixtures, for which
the characteristic monotectic phase diagram appears in the range of 100–200 ◦C [97,98].
Monotectic-type mixtures have also been noticed in polymeric mixtures of pharmaceu-
tical importance [100–104]. They were indicated as the base for innovative liquid-liquid
extraction technology, tuned by temperature and concentration changes [104].

It may be surprising that the functional/quantitative characterization of two-phase
regions, being the hallmark of monotectic systems, is still lacking. Such results could
constitute the essential checkpoint for theoretical models and an important prognostic tool
in material engineering. As the universal patterns reference, it indicates the significance
of limited miscibility studies in monotectic-type mixtures, especially in experimentally
convenient systems.

This paper presents the results of studies in an NLC + Sol monotectic type model
system: 4′-methoxybenzylidene-4-n-butylaniline (MBBA, rod-like NLC) and isooctane
(Sol: the molecular solvent) mixtures, where the limited miscibility occurs in near-room
temperatures. The phase diagram and the functional analysis of two-coexisting phase do-
mains for the low- and high- concentrations of isooctane are presented. The latter includes
analysis recalling Equations (2) and (3), revealing some unique features. Supplementary
nonlinear dielectric effect (NDE) studies in the isotropic liquid phase enabled insights into
the criticality nature of the above-mentioned biphasic domains. NDE refers to changes in
dielectric constant (ε) by the strong electric field, ∆ε/E2 = (ε(E)− ε)/E2, and it is directly
coupled to multimolecular fluctuations [82,84,105,106]. The long-standing problem of the
non-critical background NDE effect necessary for estimating the critical contribution has
been solved. Finally, different types of ‘critical’ opalescence [107–109] for low- and high-
concentrations of isooctane domains have been detected.

2. Results
2.1. Phase Diagram

The phase diagram for MBBA—Isooctane mixtures is presented in Figure 1. It reveals
two different biphasic domains: TP1 is related to the coexistence of the nematic and isotropic
liquid phases for low concentrations of isooctane, and TP2 is for high concentrations of
isooctane and two isotropic liquid phases coexistence. The inset in Figure 1 focuses on TP1
domain insight.

Figure 2 shows changes in the temperature width of TP1 biphasic domain isooctane
concentration, also revealing their simple parameterization emerging in the semi-log scale:

ln(∆T) = T I
TP1 − TTP1

N = a + b× lnx (4)

with a = 0.2, b = 1.0 for x < 0.02, and a = 1.55, b = 6.2 for 0.03 < x < 0.22; concentrations
are given in mole fraction of isooctane.
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Notable, that for very small concentration the width of the biphasic domain is very
small. It explains the lack of biphasic domain registration in pure materials studies, despite
the fact that the presence of residual impurities is a generic feature of LC compounds.

For the TP2 domain, the temperature quenches from the isotropic liquid phase to the
biphasic domain leads to the rapid formation of two coexisting isotropic liquids, resembling
the pattern observed for low molecular weight mixtures of limited miscibility [86]. For
TP1 biphasic domain, the process of coexisting phase formation is essentially different. For
TP1 the biphasic domain is associated with the coexistence of LC nematic and isotropic
liquid phases. In the given case the formation process requires tens of minutes, enabling the
visual registration. Photos showing this process are presented in Figure 3. The numerical
filtering enabled insight into the sample’s interior by removing the ‘cloudy/milky’ masking
(see Section 4). Such processing reveals the formation of spherical nematic nuclei, whose
sedimentation finally leads to the formation of the nematic phase in the lower part of the
ampoule. The process of forming coexisting phases is exceptionally long compared to
the process of coexistence in low-molecular-weight liquids. Yellow coloring recalls the
native MBBA color. The emerging blue color of the upper isotropic phase can be linked to
multimolecular heterogeneities/fluctuations of ~400 nm, corresponding to the deep blue
wavelength. It is worth recalling that MBBA is 1.6 nm long and isooctane molecule ca.
0.6 nm.
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Figure 3. The time-dependent creation of coexisting phases in MBBA—Isooctane mixture two-phase
(2P) domain: x = 0.1 mol f . isooctane, for the temperature T I

2Ph − 1 K. The photo is after numerical
filtering to reach insight into the sample’s interior (see Section 4).

Figure 4 shows the same process of two-coexisting phases formation after the temper-
ature quenches for NLC + Sol samples placed between two parallel glass plates, enabling
the polarization-related insight. In this case, there is no gravitational separation of the
coexisting phases, as in Figure 3. Note the emergence of nematic ‘seeds/nuclei’, with a
visible texture, which number and size increase with the observation time. For such an
experimental configuration the assisted opalescence is not detected.
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To the best of the authors’ knowledge, there is no discussion regarding the shape of
biphasic domains in LC + Sol systems or other monotectic-type mixtures. Such analysis for
the MBBA-issooctane system is the key topic of the given report. For the TP2 domain, it
recalls reasoning developed within the Physics of Critical Phenomena [12,108,109]. There is
no such reference for TP1 biphasic domain. However, a simple portrayal emerging from the
logarithmic plot shown in Figure 2, can indicate that a model description is also possible
for TP1 coexisting phases and such a proposal is also presented.
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2.2. Liquid-Liquid Binodal

Figures 5 and 6 focus on the binodal coexistence curve for high concentrations of the
isooctane domain. They are focused on testing temperature changes of the binodal width re-
lated to the order parameter and the binodal diameter—as defined by Equations (2) and (3).
These dependencies have been derived within the Physics of Critical Phenomena [12,108,109],
where universal critical exponents govern the power-type precritical behavior. Their val-
ues depend only on space (D) and order parameter (N) dimensionalities [12]. It allows
assembling various systems in their near-critical states into universality classes described
solely by (D, N). For instance, binary mixtures of limited miscibility for low molecular
weight liquids belong to (D = 3, N = 1) universality class, together with the gas-liquid
critical point, D = 3 Ising model or simple magnetic systems with para⇔ ferro transition.
For this universality class is associated with the following values of critical exponents:
α ≈ 0.110, β ≈ 0.326, the susceptibility (compressibility) related exponent γ ≈ 1.237,
and the correlation length exponent ν ≈ 0.625. The same values are expected below and
above the critical temperature. For systems with extremely long-range of interaction or
dimensionality D > 4, obeys the mean-field (MF) approximation for which β = 1/2, and
γ = 1, ν = 1/2, and α = 0 for T > TC, α = 1/2 for T < TC [12]. The MF crossover is
expected far from the critical point [12,109]. One can also consider the simplified ‘effective’
form of Equation (2), enabling the simple log-log scale analysis [86,110,111]:

∆x(T) = |xU(T)− xL(T)| ≈ Be f f |TC − T|βe f f ⇒

⇒ log10∆x(T) = log10Be f f + βe f f log10|TC − T| (5)

where βe f f > β, and βe f f is the ‘weighted summa’ of β and ∆1 exponents, depending on
the tested temperature range; βe f f → β for T → TC .
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Figure 5. Order parameter related width of the Liquid-Liquid coexistence curve (TP2 domain) analysis,
based on data shown in Figure 1. The applied log-log scale facilitates the analysis via the ‘effective
critical’ Equation (5). The inset is for the results of the derivative analysis based on Equation (6). Values
of obtained order parameter exponent in subsequent temperature domains are given.

Figure 5 presents the log-log plot of the order parameter related ∆x(T) changes for
MBBA-isooctane binodal vs. the distance from the critical temperature. Such a plot directly
recalls the ‘effective’ portrayal via Equation (5).
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Figure 6. The diameter of the Liquid-Liquid coexistence curve (binodal, TP2 domain), based on
data from Figure 1. The inset focuses on the immediate vicinity of the critical consolute temperature
(TC = 276.12 K). The solid curve (in red) is related to the portrayal via ‘the critical’ Equation (3).
The dashed (blue) line is for extrapolated linear changes, which can portray the behavior for
|TC − T| > 0.6 K.

The results presented reveal the following sequence: βe f f (close) > βe f f (remote).
The typical sequence occurring in low molecular weight liquids is different, namely:
βe f f → β ≈ 0.325 for T → TC , and on moving away from TC the value of βe f f increases,
typically to βe f f ∼ 0.36 due to the impact of the correction-to-scaling terms [12,86]. Well
remote from TC the exponent can further increase βe f f → 1/2 , due to the crossover to the
mean-field behavior when passing the Ginzburg criterion comparing ranges of key inter-
molecular interactions and the correlation length [12]. The reversed sequence occurring
for MBBA-isooctane binodal is visible in the inset in Figure 5, where the derivative of data
from the central part of Figure 5 is tested:

βe f f =
dlog10∆x(T)
dlog10∆TC

(6)

For discussing the anomalous sequence of βe f f changes on cooling towards TC in
MBBA—Isooctane critical mixture worth recalling is the explanation of the electrooptic
Kerr effect (EKE) and the nonlinear dielectric effect (NDE) behavior on approaching the
critical consolute temperature [82–84,112], which is based on the emergence of mean-
field features near TC due to the uniaxial anisotropy created by the strong electric field.
Later, this approach included the I-N transition-related anomaly and, very recently, the
strong electric field-induced anomaly on approaching the melting discontinuous phase
transition for menthol [113] and thymol [114]. Four decades ago, Beysens et al. [115] tested
the shape of nitrobenzene-hexane under shear flow, which also creates the elongation of
precritical fluctuations, and observed the ‘anomalous crossover from βe f f . ≈ 0.36 remote
TC to βe f f . → 1/2 close to TC. Such behavior resembles the pattern presented in Figure 6.
The concept of mean-field type behavior associated with the elongation of precritical
fluctuations also led to a new model approach for the shear viscosity pretransitional
anomaly explanation, on both sides of the critical consolute temperature [116].

Hence, the question arises if the uniaxial anisotropy of MBBA molecules, which can sup-
port the similar uniaxial symmetry of pretransitional fluctuations, can lead to the emergence
of mean-field behavior hallmarks near TC in the tested MBBA + isooctane mixture?

Figure 6 shows the evolution of the diameter of the MBBA-isooctane binodal coexis-
tence curve. Obtaining unequivocal evidence for the precritical anomaly of the diameter,
finally related to Equation (3), constituted the long-standing challenge terminated only in
the mid-eighties [12,117–120]. It can be associated with the relative weakness of the anomaly
and the necessity of reliable multi-parameter fitting when using Equation (3) [12,85,86,109].
Earlier, the binodal diameter was considered in the frame of the classical empirical Cailletet–
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Mather (CM) ‘law’ of rectilinear diameter [12,117,119,121], which can also be derived with
mean-field related models:

dCM = a + b× T (7)

For almost a century, the ‘law’ of rectilinear diameter has been an essential tool for
determining the critical concentration in binary mixtures of limited miscibility or critical
density for the gas-liquid critical point [99–101]. Its meaning comes from the flatness of
the upper part of the binodal coexistence curve, i.e., in a relatively broad surrounding of
xC or C the phase transition temperature can change by no more than 0.01 K. Hence the
cancellation of the law of rectilinear diameter yielded a substantial practical problem. The
challenge has been solved only recently thanks to a new method based on analyzing the
volume of coexisting phases or the fractional meniscus position analysis [86].

Figure 6 explicitly shows the existence of the precritical/pretransitional anomaly
of the diameter for the MBBA-isooctane coexistence curve. However, it is so weak and
temperature-limited that it could be overlooked without the focused insight in the inset
in Figure 7. The solid red curve in Figure 6 is related to Equation (3) with the following
parameters: TC = 275.76 K, dC = xC/2 = 0.335 m.f., a = −0.21, b = 0.16, c = 0.60. Due to
the weakness of the anomaly, values of critical exponent have to be assumed constant, as
for (D = 3, N = 1) universality class mentioned above.
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2.3. Critical Opalescence

Critical (pretransitional) opalescence is a famous hallmark of continuous (critical)
phase transitions in liquids [12,107–111]. The first observations of this phenomenon were
reported by Cagniard de La Tour [107,108] yet in 1822, which is indicated as the onset
of Critical Phenomena Physics [12,108]. The explanation of this phenomenon by Marian
Smoluchowski [122] and Albert Einstein [123] in the early 20th century is recalled amongst
the last century’s physics discoveries canon [12,107,108]. The classic evidence for the critical
opalescence is for the supercritical region above the liquid-gas phase transition (1) [12,108],
but it also appears for the critical consolute temperature in binary liquid mixtures of
limited miscibility (2) [86,110,111]. Critical points are located at the top of the binodal
coexistence curve in both cases: gas-liquid (1) or liquid-liquid (2) [109]. As the critical point
approaches, the size (correlation length) and the lifetime of multimolecular fluctuations
diverge [12,108,109]. When their size becomes comparable to the light wavelength, the
light is scattered. The transparent liquid becomes turbid, often referred to as ‘milky’ or
‘cloudy’ as the critical opalescence hallmark [12,107–109].

Photos presented in Figure 7 shows that the ‘milky’ turbidity also appears in the
isotropic phase of MBBA-isooctane mixture in the low-concentrations TP1 domain for
x = 0.1 mol f ., not expected or evidenced in this domain so far [12]. Notable that for pure
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MBBA (x = 0) such behavior is absent in the isotropic liquid phase. The last ampoule in
Figure 7 is for the finally reached biphasic domain.

The second type of phase equilibria appears for high concentrations of the low molec-
ular weight solvent (TP2). The biphasic region is bounded by the binodal curve, whose
peak can be associated with the critical consolute temperature (TC). On cooling along the
critical isopleth in the isotropic liquid phase, one can finally observe the classic pattern of
the critical opalescence [12,107–111] shown in the photos presented in Figure 8. Notable
that before becoming ‘milky’, as usually the critical opalescence is indicated [99–101], there
is a wide temperature range where the color of scattered light changes from deep blue
to bluish and milky. Such a pattern was discussed in detail for the nitrobenzene-decane
critical mixture in ref. [86]. The unique feature of the results in Figure 8 is the critical onset
of the phenomenon, already at ∼ TC + 20 K.
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2.4. NDE Insight into Pretransitional Properties in the Isotropic Liquid Phase

In the isotropic liquid phase, the nonlinear dielectric effect (NDE) [105,106] tests have
been carried for obtaining insight into the character of pretransitional effects, directly
coupled to pretransitional fluctuations. Following the model introduced in ref. [82] the
fluctuations-related ‘critical’ contribution to NDE and EKE is described by the following
relation [82,106]:

∆ε

E2 ,
∆n
λE2 ∝ ∆M2

VχT ∝ (T − TC)
2β(T − TC)

−γ = (T − TC)
−ψ (8)

In binary critical mixtures of limited miscibility, a strong electric field induces the
uniaxial anisotropy of fluctuations, leading to the mixed-criticality, namely: the order
parameter exponent remains non-classic (non-mean-field) and related to (3, 1) universality
class, i.e., β = 0.325, but for the order parameter related susceptibility (compressibility):
γ = 1.02. The latter value reflects the classic (mean-field) behavior related to γ = 1 with
the correction (0.02) appearing near the nonclassic–classic crossover. For NDE in critical
binary mixtures of limited miscibility, it yields ψ ≈ 0.370. For the isotropic liquid phase
of rod-like LC the mean-field type behavior leads to

〈
∆M2〉

V = const and the exponent
ψ = γ = 1, in fair agreement with Equation (1) [82,106,112].

Figure 9 presents temperature changes of NDE on approaching the I-N phase transition
in the isotropic phase of MBBA. The obtained behavior agrees with the first NDE test in
MBBA, carried out in 1978 [124], but using different measurement concepts and frequencies.
The result presented in Figure 9 is related to the LdG model mean-field type behavior
described by Equation (1) or Equation (8) within the mean-field approximation. For such
behavior, associated with the exponent γ = 1, the simple plot of NDE reciprocal enables
the reliable estimation of the I-N transition discontinuity ∆T∗ = 0.8 K.
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Figure 9. Pretransitional behavior of nonlinear dielectric effect (NDE) in the isotropic phase of
nematogenic MBBA. The applied scale is related to reciprocals of Equation (1) or Equation (8) with
the exponent ψ = 1, showing the mean-field type behavior of the pretransitional effect. TI−N and
the dashed arrow are for the Isotropic—Nematic weakly discontinuous phase transition (’clearing’
temperature’). The arrow also indicates the value of the discontinuity metric T∗ = TI−N − T∗ = 0.8 K.
The inset shows NDE pretransitional effect as detected in the experiment.

Figure 10 shows that mean-field type NDE changes also occur for MBBA-isooctane
mixture with x = 0.1 m.f. isooctane, i.e., in the mid of low-concentrations (TP1) of the
isooctane region, where the isotropic liquid and nematic phase are separated by two
coexisting phases domain. For this path, the NDE pretransitional effect is also related to
γ = 1, but with the larger value of discontinuity ∆T∗ = 3.7 K than in pure MBBA. It can be
influenced by the biphasic domain separating the isotropic liquid and nematic phases.
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Figure 10. Linear changes of the reciprocal of NDE pretransitional effect in MBBA + isooctane mixture
(x = 0.1 mole fraction), validating the description via Equation (1) or Equation (8) with the exponent
ψ = 1 (mean field approximation). Arrows indicate subsequent phase transitions and the phase
transition discontinuity metric: ∆T∗ = TI−(I+N) − T∗.

Figure 11 presents the NDE increase on cooling towards the critical consolute tempera-
ture (TC = 275.76 K) along the critical isopleth (xC = 0.67 m.f.) associated with the binodal
curve for high concentrations of isooctane domain (TP2). The pretransitional effect is of
the order ∼ 10−19 m2V−2, i.e., close to the smallest registered NDE values, for statistical
fluctuations of the mean-square of the polarization and density [105,125].
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Figure 11. NDE pretransitional changes on approaching the critical consolute point in MBBA—
Isooctane mixture for the concentration related to the top of the L-L coexistence curve shown in
Figure 1. The inset validates the portrayal via the ‘critical’ Equation (8), with the exponent ψ = 0.380.
It is related to the transformation of data based on Equation (9), which allows the determination of
the critical contribution without a biasing impact of the non-critical background effect.

In binary mixtures of limited miscibility, the total registered NDE is composed of the
critical effect and the non-critical, background ‘molecular’ contribution, namely [126,127]:

∆ε
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(
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)
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+
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=
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(T − TC)
ψ +
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)
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(
∆ε

E2

)
crit.

+ ab + bbT (9)

where ‘crit.’ is for the critical contribution and ‘bckg’ is for the molecular background effect.
Generally, the background effect is related to various complex molecular mecha-

nisms [110,126,127]. However, in any case, a linear approximation in a limited range of
temperatures is possible, as indicated in Equation (9).

In fact, the experimental determination of the universal NDE critical exponent con-
stituted a long-term challenge because of problems in the reliable determination of the
background term [82,105,106]. The problem was solved for critical mixtures composed of
a dipolar component and a non-dipolar solvent [82,106,125–127]. Only the dipolar com-
ponent introduces a meaningful contribution to the background effect for such mixtures.
Hence, NDE measurement in a reference mixture of unlimited miscibility (where the critical
effect is absent) containing the dipolar component enables the reliable estimation of the
noncritical background effect and finally the critical contribution and the exponent ψ. The
experimental value obtained in this way ψ ≈ 0.39 [82,126,127] and fairly well agrees with
the model predictions mentioned above [82,106]. However, the reference mixture method
cannot be applied to critical mixtures where both components significantly contribute to
the non-critical background contribution. Unfortunately, it is the case of MBBA-isooctane
for the critical isopleth in the TP2 domain. To solve this grand challenge for NDE and
also EKE studies, one can develop the protocol proposed in ref. [128], and consider the
following transformation of experimental data:

d
(
∆ε/E2)

dT
= Aψ(T − TC)

ψ−1 + bb ≈ Aψ(T − TC)
ψ−1 (10)

ln

[
d
(
∆ε/E2)

dT

]
= ln(Aψ) + (ψ− 1)ln(T − TC) (11)

The approximation applied in Equations (10) and (11) is related to the fact that the
temperature dependence of the non-critical background term in Equation (9) is very ‘weak’,
i.e., the following relation between related coefficients takes place bb � aP, and conse-
quently the impact of in bP in Equation (10) can be neglected. Consequently, the plot
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ln
[
d∆ε/E2] vs. ln(T − TC) should yield linear dependence. Such behavior appears for

NDE pretransitional effect in MBBA-isooctane critical effect, in the insert in Figure 11. The
obtained value of the exponent ψ = 0.38± 0.01, is in superior agreement with the model
expectation mentioned above [82,84,106,127]. Notable that in the given case, related to
high concentrations of isooctane, the binodal-related phase transition is associated with
the isotropic liquid (1)—Isotropic liquid (2) phase equilibria, as for low molecular weight
liquids-based mixtures of limited miscibility.

3. Discussion

The report presents the results of miscibility studies in nematogenic compound
(MBBA) and low molecular weight solvent (isooctane) mixtures. Tests revealed two bipha-
sic domains associated with the isotropic-nematic (I-N) and isotropic liquid–isotropic liquid
(I1–I2) phase equilibria. For the latter, the limited miscibility is associated with the bin-
odal coexistence curve. The analysis of its shape confirmed the behavior resulting from
the Physics of Critical Phenomena [12], indicated by Equations (2) and (3). However, some
specific features have also been noted. First, it is the anomalous increase of the order
parameter exponent in the immediate vicinity of the critical consolute temperature. Second,
the diameter of the binodal is relatively close to the Cailletet-Mathias ‘law’ of rectilinear
diameter [117–121], showing a very weak precritical anomaly. Both phenomena can be
explained as the consequence of the mean-field type behavior emerging close to TC, which
can be associated with the rod-like structure of MBBA molecules.

As for the biphasic (I+N) domain in low concentrations of the isooctane domain, its
width can be effectively portrayed by logarithmic Equation (4), as shown by the inset in
Figure 2. However, the question of a possible fundamental reference remains. One can note
here that in Equation (4) ∆T = TI−(L,N) − T(L,N)−N plays the role of the ‘coexistence’ width
and it gradually decreases ( ∆T → 0) for x → 0 which can be consider as the distance
from singularity metric. Hence, ∆T behaves in a way typical for the order parameter [72],
and the concentration of isooctane x can describe the distance from ‘pure’ MBBA, i.e., the
terminal of the TP1-type coexistence. The following parallel of the general order parameter
dependence, given by Equation (2), can be considered.

M(x) = ∆T = TI−(L,N) − T(L,N)−N = Axβ (12)

where A is the constant amplitude.
The experimental evidence indicates the mean-field type behavior related to the expo-

nent β = 1/2 is associated with the I-N transition in MBBA. Consequently, Equation (12)
transforms to:

∆T = Ax1/2 ⇒ ∆T2 = A2x (13)

The analysis of experimental data based on Equation (13) shown in Figure 12 agrees with
the above reasoning. Discrepancy from the linear behavior for x > 0.16 can result from the
experimental error, but the influence of inherent limitation of concentration ‘x’ as the distance
metric is also possible. Distortions very close to ‘pure’ MBBA, for x < 0.02 can be associated
with a different mechanism for such a small amount of the solute. Notable that I-N transition
is a weakly discontinuous transition small value of ∆T∗ ≈ 0.8 K, as shown from NDE studies
above. One can state that the ‘critical’ point may be hidden in the experimentally inaccessible
space, and in studies pseudospinodal [129] projection is only available.

Photographic observation of the solutions showed the occurrence of critical (transient)
opalescence for both discussed biphasic domains. Its existence just above TP1 domain can
support considerations indicating a specific critical-type origin of TP1 domain.
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Figure 12. Results of the analysis of TP1 isotropic-nematic coexistence domain for low concentrations
of isooctane (TP1 domain) validating the portrayal via Equation (10).

4. Materials and Methods

Studies were carried out using high purity 4′-methoxybenzylidene-4-n-
butylaniline (MBBA) with Solid ⇔ 295 K ⇔ Nematic ⇔ 316.2 K ⇔ Isotropic liquid
mesomorphism [12,13,87], one of the most ‘classic’ NLC thermotropic compounds, and
isooctane as the molecular solvent. Based on structural data from (https://pubchem.
ncbi.nlm.nih.gov/, accessed on 12 December 2022), and PyMOL software (https://pymol.
org/2/, accessed on 12 December 2022) one can estimate the length of MBBA molecule
l = 1.75 nm and for isooctane l = 0.69 nm. The latter is the non-polar solvent and MBBA is
associated with the weak permanent dipole moment approximately perpendicular to the
long molecular axis µ = 2.6 D [13,130]. Compounds were purchased from Aldrich, with the
highest possible purity. MBBA was deeply degassed before sample preparations, reducing
eventual parasitic contaminations. The tested mixtures were prepared in a dry box to limit
the undesired atmospheric impacts. MBBA—Isooctane mixtures were prepared using the
weight and placed in glass ampoules composed of 0.5 ccm spheres, terminated by a tube
with 2r = 2 mm internal diameter, length 10 cm. The placement of samples into the ampoule
was carried out in the isotropic phase using an all-glass syringe with an appropriately
long needle. The tops of the tubes were capped using a torch flame. It protected tested
samples from external impacts during experiments. Ampoules with samples were placed
in V~20 L glass vessels with double glass walls. The vessel was connected to a large-
volume Julabo thermostat with external circulation. Observations of subsequent phase
transitions were made on cooling from the isotropic phase. Observations were repeated
a few times to reduce the effect of supercooling, possible for samples with non-critical
concentrations related to discontinuous phase transitions. In the homogeneous phase,
nonlinear dielectric effect (NDE) was carried out [105,106,131]: ∆ε/E2 = (ε(E)− ε)/E2,
where ε(E), and ε are for dielectric constants in the presence of the strong electric field E
and its absence, respectively. NDE measurements were carried out using the dual-field
method [106,131], in which a capacitor with the tested sample is placed in a resonant circuit
associated with the weak measurement electric field, with frequency f ≈ 10 MHz and
intensity Em = 10 Vcm−1. The strong electric field was applied in as DC pulses lasting
∆t = 1 ms, and intensities 6 kVcm−1 < E < 40 kVcm−1. The condition ∆ε ∝ E2 required
for NDE studies in isotropic liquids was carefully tested. The scheme of the experimental
device is given in refs. [106,131]. Studies were associated with NDE measurements as
small as 10−19m2V−2, matched of 2–3 digits resolution, which is related to the challenging
detection of relative changes of electric capacitance lesser than ∆C(E)/C ∼ 10−8. The NDE
responses from subsequent strong electric field pulses were cumulated and observed online.
It is the order of the lowest value NDE ever detected for pretransitional effects [105,106,131].
NDE and coexistence curves were analyzed using the ORIGIN software.

Studies were supplemented by photos showing the opalescence emerging on ap-
proaching two-phase regions for the tested NLC + Sol system. For these observations,
samples were placed in cylindrical glass tubes, as shown in Figure 13. They were also

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://pymol.org/2/
https://pymol.org/2/
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sealed with a torch flame and put in the mentioned high-volume thermostat- vessel (see
refs. [86,111]) to reach the required long-time temperature stability. The thermostatic system
is shown in ref. [111].
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Figure 13. Photos showing two coexisting phases (isotropic liquid and nematic phase) in
MBBA + isooctane mixture for TP1 domain related to low concentrations of isooctane. The photo is
for x = 0.1 m.f. and the quench temperature T = T I

2P − 1 K. The left part is for the ‘native’ photo, and
the right part is after the numerical filtering, reducing the impact of the opalescence and allowing
insight into the sample interior.

For the two-phase region associated with low concentrations of isooctane, it was possible
to remove the masking impact of turbidity numerically and look “inside” the process, revealing
its beautiful and long timescale of formation. The photographs were processed using the
GNU Image Manipulation Program (GIMP), an open-source, cross-platform image editing
software (https://www.gimp.org/, accessed on 12 December 2022). Processing consisted of
rotating and cropping the image and a levels manipulation tool. This tool allows changing
the image’s tones through brightness, contrast, and gamma correction. The sole purpose
of the operations mentioned above was to highlight the visibility of effects masked by the
opalescence. Figure 12 presents the results of such analysis, enabling explicit insight into the
formation of the two-phase isotropic-nematic domain.

5. Conclusions

The report focuses on the phase diagrams and phase transitions related properties
in NLC + Sol, namely for rod-like nematogenic MBBA and low molecular weight solvent
isooctane. The monotectic type diagram occurring for near-room temperatures was found.
It indicates studies that studies in NLC + Sol system can be a particularly convenient
model system for testing universalistic features of monotectic mixtures whose significance
extends from metallurgy to polymeric, pharmacy to biotechnology. Notably, it also opens
the possibility of high-pressure studies, lacking for monotectic-type systems so far.

Regarding future studies in NLC + Sol mixtures, first one can consider other molecular
solvents. The author selected isooctane because existing evidence seems to indicate that for
mixtures of LC compounds similar to MBBA and alkanes the domain TP2 is absent [12], or
hidden below the crystallization border. However, it was noted for alkanes isomers [12].
It may indicate the significance of the steric hindrances introduced by the solvent on
the discussed phenomenon. On the other hand, available results for rod-like nemato-
genic pentylcyanobiphenyl (5CB) and water mixtures show the binodal curve appearing
with the critical consolute temperature higher than the clearing (I-N) temperature in pure

https://www.gimp.org/
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5CB [40–42], indicating the other category of solvents. Regarding LC compounds, promis-
ing can be nematogenic and smectogenic n-alkylcyanobiphenyls. Unique phenomena,
which can yield features significant for innovative applications, can appear for LC com-
pounds with ‘advanced’ nematic phases, such as the twist-bend nematic phase [132–136]
or the ferroelectric nematic phase [137–140], recently discovered. However, the problem
with such tests can be the high costs of novel LC components: such studies as described in
the given report, require a few tens ccm of LC compounds:

The report shows that detected TP1 and TP2 can be well portrayed within patterns
developed by the Physics of Critical Phenomena, which have not been reported for any
monotectic-type mixture so far. Particularly notable is the link of the TP1 biphasic domain
to critical phenomena, supported by the evidence of critical opalescence in the isotropic
liquid phase. The critical opalescence also appears above TP2 biphasic domain. It is
associated with the binodal curve and the critical consolute point, and resembles the
pattern observed in low-molecular-weight liquids binary mixtures of limited miscibility.
However, it also shows a unique feature: the first hallmark of the opalescence appears even
20 K above the critical consolute temperature.

Associated NDE studies have shown the classic (mean-field or TCP) character of
pretransitional fluctuations in the isotropic liquid above TP1 and non-classic above TP2
domains. This result was achieved due to the solution of the non-critical, molecular
background challenge.

The authors would like to stress explicit hallmarks of the supercriticality in the
isotropic liquid phase above TP1 and TP2 domain, shown by the critical opalescence
evidence and NDE studies. Supercriticality is a phenomenon of particular importance in
modern materials engineering due to the possibility of selective extraction of ingredients or
stimulating processes, with intensities that can be precisely tuned and changed by via the
distance from the critical point [141]. According to the authors, this report indicates that
supercriticality can be a common phenomenon for monotectic mixtures, which can offer
innovative supplementation of current applications extending from metallurgy [93,94] to
polymer processing in the pharmaceutical industry [100–104].

There is also a question of whether the domains of critical opalescence are not a
‘hidden driving force’ already supporting some processes, e.g., in bio-systems. An example
of this is the appearance of a kind of opalescence in biomembranes [142], mainly built from
rod-like elements. The results presented in this work can be a significant universalistic
reference for all applications-related issues recalled above.
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